Исследование структурных характеристик компьютерных сетей. Анализ локальной вычислительной сети. Алгоритм запуска программы Internet Explorer

Исследование структурных характеристик компьютерных сетей. Анализ локальной вычислительной сети. Алгоритм запуска программы Internet Explorer

02.07.2020

Топология компьютерных сетей

Одним из важнейших различий между разными типами сетей является их топология.

Под топологией обычно понимают взаимное расположение друг относительно друга узлов сети. К узлам сети в данном случае относятся компьютеры, концентраторы, свитчи, маршрутизаторы, точки доступа и т.п.

Топология – это конфигурация физических связей между узлами сети. Характеристики сети зависят от типа устанавливаемой топологии. В частности, выбор той или иной топологии влияет:

  • на состав необходимого сетевого оборудования;
  • на возможности сетевого оборудования;
  • на возможности расширения сети;
  • на способ управления сетью.

Различают следующие основные виды топологий: щит, кольцо, звезда, ячеистая топология и решетка. Остальные являются комбинациями основных топологий и называются смешанными или гибридными.

Шина . Сети с шинной топологией используют линейный моноканал (коаксиальный кабель) передачи данных, на концах которого устанавливаются специальные заглушки – терминаторы (terminator). Они необходимы для того,

Рис. 6.1.

чтобы погасить сигнал после прохождения по шине. К недостаткам шинной топологии следует отнести следующее:

  • данные, передаваемые по кабелю, доступны всем подключенным компьютерам;
  • в случае повреждения шины вся сеть перестает функционировать.

Кольцо – это топология, в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передаст и подразумевает следующий механизм передачи данных: данные передаются последовательно от одного компьютера к другому, пока не достигнут компьютера-получателя. Недостатки топологии "кольцо" те же, что и у топологии "шина":

  • общедоступность данных;
  • неустойчивость к повреждениям кабельной системы.

Звезда – это единственная топология сети с явно выделенным центром, называемым сетевым концентратором или "хабом" (hub), к которому подключаются все остальные абоненты. Функциональность сети зависит от состояния этого концентратора. В топологии "звезда" прямые соединения двух компьютеров в сети отсутствуют. Благодаря этому имеется возможность решения проблемы общедоступности данных, а также повышается устойчивость к повреждениям кабельной системы.

Рис. 6.2.

Рис. 6.3. Топология типа "звезда"

– это топология компьютерной сети, в которой каждая рабочая станция сети соединяется с несколькими рабочими станциями этой же сети. Характеризуется высокой отказоустойчивостью, сложностью настройки и переизбыточным расходом кабеля. Каждый компьютер имеет множество возможных путей соединения с другими компьютерами. Обрыв кабеля не приведет к потере соединения между двумя компьютерами.

Рис. 6.4.

Решетка – это топология, в которой узлы образуют регулярную многомерную решетку. При этом каждое ребро решетки параллельно ее оси и соединяет два смежных узла вдоль этой оси. Одномерная решетка – это цепь, соединяющая два внешних узла (имеющие лишь одного соседа) через некоторое количество внутренних (у которых по два соседа – слева и справа). При соединении обоих внешних узлов получается топология "кольцо". Двух- и трехмерные решетки используются в архитектуре суперкомпьютеров.

Сети, основанные па FDDI, используют топологию "двойное кольцо", достигая тем самым высокой надежности и производительности. Многомерная решетка, соединенная циклически в более чем одном измерении, называется "тор".

(рис. 6.5) – топология, преобладающая в крупных сетях с произвольными связями между компьютерами. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети ), имеющие типовою топологию, поэтому их называют сетями со смешанной топологией.

Для подключения большого числа узлов сети применяют сетевые усилители и (или) коммутаторы. Также применяются активные концентраторы – коммутаторы, одновременно обладающие и функциями усилителя. На практике используют два вида активных концентраторов, обеспечивающих подключение 8 или 16 линий.

Рис. 6.5.

Другой тип коммутационного устройства – пассивный концентратор, который позволяет организовать разветвление сети для трех рабочих станций. Малое число присоединяемых узлов означает, что пассивный концентратор не нуждается в усилителе. Такие концентраторы применяются в тех случаях, когда расстояние до рабочей станции не превышает нескольких десятков метров.

По сравнению с шинной или кольцевой смешанная топология обладает большей надежностью. Выход из строя одного из компонентов сети в большинстве случаев не оказывает влияния на общую работоспособность сети.

Рассмотренные выше топологии локальных сетей являются основными, т. е. базовыми. Реальные вычислительные сети строят, основываясь на задачах, которые призвана решить данная локальная сеть, и па структуре ее информационных потоков. Таким образом, на практике топология вычислительных сетей представляет собой синтез традиционных типов топологий.

Основные характеристики современных компьютерных сетей

Качество работы сети характеризуют следующие свойства: производительность, надежность, совместимость, управляемость, защищенность, расширяемость и масштабируемость.

К основным характеристикам производительности сети относятся:

  • время реакции – характеристика, которая определяется как время между возникновением запроса к какому-либо сетевому сервису и получением ответа на него;
  • пропускная способность – характеристика, которая отражает объем данных, переданных сетью в единицу времени;
  • задержка передачи – интервал между моментом поступления пакета на вход какого-либо сетевого устройства и моментом его появления на выходе этого устройства.

Для оценки надежности сетей используются различные характеристики, в том числе:

  • коэффициент готовности, означающий долю времени, в течение которого система может быть использована;
  • безопасность, т.е. способность системы защитить данные от несанкционированного доступа;
  • отказоустойчивость – способность системы работать в условиях отказа некоторых ее элементов.

Расширяемость означает возможность сравнительно легкого добавления отдельных элементов сети (пользователей, компьютеров, приложений, сервисов), наращивания длины сегментов сети и замены существующей аппаратуры более мощной.

Масштабируемость означает, что сеть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сети не ухудшается.

Прозрачность – свойство сети скрывать от пользователя детали своего внутреннего устройства, упрощая тем самым его работу в сети.

Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети.

Совместимость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение.

Министерство образования науки РФ

Государственное образовательное учреждение

Высшего профессионального образования

«Хакасский государственный Университете имени Н.Ф. Катанова»

Институт информатики и телематики

Кафедра информатики и вычислительной техники

РЕФЕРАТ

Компьютерные сети

по дисциплине «Основы алгоритмической культуры»

Выполнил: студент 1 курса

Специальности «Прикладная информатика

(в экономике)

ИИТ, группа 20

Воронцов Е.Е.

Проверил:

Абакан, 2010

Введение…………………………………………………………………………...3

    Начало………………………………………………………………………4

    Понятие компьютерных сетей…………………………………………….5

2.1 Классификация компьютерных сетей……………………………………….7

    Понятие локальной компьютерной сети………………………………...11

3.1 Классификация локальных компьютерных сетей…………………………11

3.2 Структура локальных компьютерных сетей……………………………….13

3.2.1 Одноузловые сети………………………………………………………….13

3.2.2 Сети с проводными линиями связи………………………………………13

3.2.3 Радиоканальные сети……………………………………………………...14

3.2.4 Кольцевые сети…………………………………………………………….15

3.2.5 Магистральные сети……………………………………………………….16

          Магистральные моноканалы………………………………………16

          Магистральные поликаналы………………………………………17

3.2.6 Комбинированные сети……………………………………………………18

    Глобальные компьютерные сети………………………………………...18

4.1 Классификация глобальных компьютерных сетей………………………..18

4.2 Наземные многоузловые сети………………………………………………19

4.2.1 Общая структура сети……………………………………………………..19

4.2.2 Принцип модемной связи…………………………………………………20

4.3 Спутниковые и комбинированные сети……………………………………21

Заключение……………………………………………………………………….22

Список литературы………………………………………………………………23

Введение

В настоящее время компьютерные сети получили очень широкое распространение. Это вызвано несколькими причинами:

Объединение компьютеров в сеть позволяет значительно экономить денежные средства за счет уменьшения затрат на содержание компьютеров (достаточно иметь определенное дисковое пространство на файл-сервере (главном компьютере сети) с установленными на нем программными продуктами, используемыми несколькими рабочими станциями);

Компьютерные сети позволяют использовать почтовый ящик для передачи сообщений на другие компьютеры, что позволяет в наибо-лее короткий срок передавать документы с одного компьютера на другой;

Компьютерные сети, при наличии специального программного обеспечения (ПО), служат для организации совместного использования файлов (к примеру, бухгалтеры на нескольких машинах могут обрабатывать проводки одной и той же бухгалтерской книги).

Кроме всего прочего, в некоторых сферах деятельности просто невозможно обойтись без компьютерных сетей. К таким сферам относятся: банковское дело, складские операции крупных компаний, электронные архивы библиотек и др. В этих сферах каждая отдельно взятая рабочая станция в принципе не может хранить всей информации (в основном, по причине слишком большого ее объема). Сеть позволяет избранным (зарегистрированным на файл-сервере) пользователям получать доступ к той информации, к которой их допускает оператор сети.

Целью данной работы является: Изучение компьютерных сетей.

Для достижения поставленной цели необходимо решить следующие задачи:

Найти и изучить литературу по данной теме;

Узнать термин «компьютерные сети»;

Изучить классификацию компьютерных сетей;

Сделать вывод по данной теме.

1. Начало

Компьютеры появились в жизни человека не так уж давно, но почти любой человек может с твердой уверенностью сказать, что будущее – за компьютерными технологиями.

На заре своего появления компьютеры представляли собой громоздкие устройства, работающие на лампах и занимающие настолько много места, что для их размещения требовалась не одна комната. При всем этом производительность таких машин, по сравнению с современными, была невероятно мала.

Время шло. Постепенно научная мысль и возможности ученых развились настолько, что производство меньших по размеру, но более производительных компьютеров стало реальностью.

Процесс развития персонального компьютера движется с постоянно увеличивающимся ускорением, в связи с чем в ближайшем будущем компьютеры станут обязательным и незаменимым атрибутом любого предприятия, офиса и большинства квартир.

Причиной столь интенсивного развития информационных технологий является все возрастающая потребность в быстрой и качественной обработки ин-формации, потоки которой с развитием общества растут как снежный ком.

Компьютеры прочно вошли в современный мир, во все сферы человеческой деятельности и науки, создавая необходимость в обеспечении их различным программным обеспечением. Конечно, в первую очередь это связано с развитием электронной вычислительной техники и с её быстрым совершенствованием и внедрением в различные сферы человеческой деятельности.

Объединение компьютеров в сети позволило значительно повысить производительность труда. Компьютеры используются как для производственных (или офисных) нужд, так и для обучения.

2. Понятие компьютерных сетей

Компьютерной сетью называют совокупность узлов (компьютеров, терминалов, периферийных устройств), имеющих возможность информационного взаимодействия друг с другом с помощью специального коммуникационного оборудования и программного обеспечения.

Размеры сетей варьируются в широких пределах – от пары соединенных между собой компьютеров, стоящих на соседних столах, до миллионов компьютеров, разбросанных по всему миру (часть из них может находиться на космических объектах).

В сетях применяются различные сетевые технологии. Каждой технологии соответствуют свои типы оборудования.

Оборудование сетей подразделяется на активное и пассивное. Активное оборудование – это интерфейсные карты компьютеров, повторители, концентраторы; пассивное оборудование – это кабели, соединительные разъемы, коммутационные панели. Кроме того, имеется вспомогательное оборудование – устройства бесперебойного питания, кондиционирования воздуха и аксессуары – монтажные стойки, шкафы, кабелепроводы различного вида. С точки зрения физики, активное оборудование – это устройства, которым необходима подача энергии для генерации сигналов, пассивное оборудование подачи энергии не требует.

Оборудование компьютерных сетей подразделяется на конечные системы (устройства), являющиеся источниками и/или потребителями информации, и промежуточные системы, обеспечивающие прохождение информации по сети.

К конечным системам относят компьютеры, терминалы, сетевые принтеры, факс-машины, кассовые аппараты, считыватели штрихкодов, средства голосовой и видеосвязи и любые другие периферийные устройства.

К промежуточным системам относят концентраторы (повторители, мосты, коммутаторы), маршрутизаторы, модемы и прочие телекоммуникационные устройства, а также соединяющая их кабельная или беспроводная инфраструктура.

Действием, «полезным» для пользователя, является обмен информацией между конечными устройствами.

Для активного коммуникационного оборудования применимо понятие производительность, причем в двух различных аспектах. Кроме «валового» количества неструктурированной информации, пропускаемого оборудованием за единицу времени (бит/с), интересуются и скоростью обработки пакетов, кадров или ячеек. Естественно, при этом оговаривается и размер структур (пакетов, кадров, ячеек), для которого измеряется скорость обработки. В идеале производительность коммуникационного оборудования должна быть столь высокой, чтобы обеспечивать обработку информации, приходящейся на все интерфейсы (порты) на их полной скорости (wire speed)

Для организации обмена информацией должен быть разработан комплекс программных и аппаратных средств, распределенных по разным устройствам сети. Поначалу разработчики и поставщики сетевых средств пытались идти каждый по своему пути, решая весь комплекс задач с помощью собственного набора протоколов, программ и аппаратуры. Однако решения различных поставщиков оказывались несовместимыми друг с другом, что оказывало массу неудобств для пользователей, которых по разным причинам не удовлетворял набор возможностей, предоставляемых только одним из поставщиков. По мере развития техники и расширения ассортимента предоставляемых сервисов назрела необходимость декомпозиции сетевых задач – разбивки их на несколько взаимосвязанных подзадач с определением правил взаимодействия между ними. Разбивка задачи и стандартизация протоколов позволяет принимать участие в ее решении большому количеству сторон-разработчиков программных и аппаратных средств, изготовителей вспомогательного и коммуникационного оборудования, доносящих все эти плоды прогресса до конечного потребителя.

Применение открытых технологий и следование общепринятым стандартам позволяет избегать эффекта вавилонского столпотворения. Конечно, в камент стандарт становиться тормозом развития, но кто-то делает прорыв, и его новая фирменная технология со временем выливается в новый стандарт.

2.1 Классификация компьютерных сетей

Все многообразие компьютерных сетей можно классифицировать по различным признакам:

1) способ организации сети;

2) территориальная распространенность;

3) ведомственная принадлежность;

4) скорость передачи информации;

5) тип среды передачи;

6) топология;

7) организация взаимодействия компьютеров.

По способу организации сети подразделяются на реальные и искусственные.

Искусственные компьютерные сети (псевдосети) позволяют связывать компьютеры вместе через последовательные или параллельные порты и не нуждаются в дополнительных устройствах. Иногда связь в такой сети называют связью по нуль-модему (не используется модем). Само соединение называют нуль-модемным. Искусственные сети используются когда необходимо перекачать информацию с одного компьютера на другой. MS-DOS и Windows снабжены специальными программами для реализации нуль-модемного соединения. Основным недостатком этих компьютерных сетей является низкая скорость передачи данных и возможность соединения только двух компьютеров.

Реальные компьютерные сети позволяют связывать компьютеры с помощью специальных устройств коммутации и физической среда передачи данных. Основным недостаток реальных сетей является необходимость в дополнительных устройствах.

По территориальной распространенности компьютерные сети подразделяются на локальные, глобальные, и региональные.

Локальные компьютерные сети – это сети, перекрывающие территорию не более 10 кв. м. Они являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью.

Региональные компьютерные сети – это сети, расположенные на территории города или области

Глобальные компьютерные сети – это сети, расположенные на территории государства или группы государств. Например, всемирная сеть Internet. Они являются открытыми и ориентированы на обслуживание любых пользователей.

Термин «корпоративная сеть» также используется в литературе для обо-значения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

По ведомственной принадлежности различают ведомственные и государственные сети.

Ведомственные компьютерные сети принадлежат одной организации и располагаются на ее территории.

Государственные компьютерные сети – сети, используемые в государственных структурах.

По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные.

Низкоскоростные компьютерные сети – это сети, имеющие скорость пере-дачи информации до 10 Мбит/с.

Среднескоростные компьютерные сети – это сети, имеющие скорость передачи информации до 100 Мбит/с.

Высокоскоростные компьютерные сети – это сети, имеющие скорость передачи информации свыше 100 Мбит/с.

По типу среды передачи компьютерные сети подразделяются на проводные-коаксиальные, на витой паре, оптоволоконные, беспроводные (с передачей информации по радиоканалам, в инфракрасном диапазоне).

По топологии компьютерных сетей они подразделяются на компьютерные сети с оконечным узлом, компьютерные сети с промежуточным узлом и компьютерные сети со смежным узлом.

Компьютерные сети с оконечным узлом – это сети, у которых узел расположен в конце только одной ветви.

Компьютерные сети с промежуточным узлом – это сети, у которых узел расположен на концах более чем одной ветви.

Компьютерные сети со смежным узлом – это сети, у которых узлы соединены, по крайней мере, одним путём, не содержащим никаких других узлов.

Узел сети представляет собой компьютер, либо коммутирующее устройство сети. Ветвь сети – это путь, соединяющий два смежных узла.

С точки зрения организации взаимодействия компьютеров, сети делят на одноранговые и иерархические.

Все компьютеры одноранговой сети равноправны. Любой пользователь сети может получить доступ к данным, хранящимся на любом компьютере.

Одноранговые сети могут быть организованы с помощью таких операционных систем, как Windows"3.11, Novell Netware Lite. Указанные программы работают как с DOS, так и с Windows. Одноранговые сети могут быть организованы также на базе всех современных 32-разрядных операционных систем и некоторых других.

Достоинства одноранговых сетей:

1. наиболее просты в установке и эксплуатации.

2. операционные системы DOS и Windows обладают всеми необходимыми функциями, позволяющими строить одноранговую сеть.

Недостаток: в условиях одноранговых сетей затруднено решение вопросов защиты информации. Поэтому такой способ организации сети используется для сетей с небольшим количеством компьютеров.

В иерархической сети при установке сети заранее выделяются один или несколько компьютеров, управляющих обменом данных по сети и распределением ресурсов. Такой компьютер называют сервером. Любой компьютер, имеющий доступ к услугам сервера называют клиентом сети или рабочей станцией.

Сервер в иерархических сетях – это постоянное хранилище разделяемых ресурсов. Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Поэтому иерархические сети иногда называются сетями с выделенным сервером. Серверы обычно представляют собой высокопроизводительные компьютеры, возможно, с несколькими параллельно работающими процессорами, с винчестерами большой емкости, с высокоскоростной сетевой картой (100 Мбит/с и более).

Иерархическая модель сети является наиболее предпочтительной, так как позволяет создать наиболее устойчивую структуру сети и более рационально распределить ресурсы. Также достоинством иерархической сети является более высокий уровень защиты данных.

К недостаткам иерархической сети, по сравнению с одноранговыми сетями, относятся:

1. необходимость дополнительной ОС для сервера.

2. более высокая сложность установки и модернизации сети.

3. необходимость выделения отдельного компьютера в качестве сервера

Различают две технологии использования сервера: технологию файл-сервера и архитектуру клиент-сервер.

В первой модели используется файловый сервер, на котором хранится большинство программ и данных. По требованию пользователя ему пересылаются необходимая программа и данные. Обработка информации выполняется на рабочей станции.

В системах с архитектурой клиент-сервер обмен данными осуществляется между приложением-клиентом и приложением-сервером. Хранение данных и их обработка производится на мощном сервере, который выполняет также контроль над доступом к ресурсам и данным. Рабочая станция получает только результаты запроса. Разработчики приложений по обработке информации обычно используют эту технологию.

3. Понятие локальной компьютерной сети

Локальная сеть представляет собой набор компьютеров, периферийных устройств (принтеров и т. П.) и коммутационных устройств, соединенных кабеля-ми. Локальные сети делятся на учрежденческие (офисные сети фирм, сети организационного управления и другие сети, отличающиеся по терминологии, но практически одинаковые по своей идеологической сути) и сети управления технологическими процессами на предприятиях.

Локальные сети характерны тем, что расстояния между компонентами сети сравнительно невелики, как правило, не превышают нескольких километров. Локальные сети различаются по роли и значению ПЭВМ в сети, структуре, методам доступа пользователей к сети, способам передачи данных между компонентами сети и др. Каждой из предлагаемых на рынке сетей присуши свои достоинства и недостатки. Выбор сети определяется числом подключаемых пользователей, их приоритетом, необходимой скоростью и дальностью передачи данных, требуемой пропускной способностью, надежностью и стоимостью сети.

3.1 Классификация локальных компьютерных сетей

Локальные компьютерные сети можно классифицировать по следующим признакам:

1. по роли персонального компьютера в сети:

Сети с сервером;

Одноранговые (равноправные) сети.

2. по структуре (топологии) сети:

Одноузловые («звезда»);

Кольцевые («кольцо»);

Магистральные («шина»);

Комбинированные.

3. по способу доступа пользователей к ресурсам и абонентам сети:

Сети с подключением пользователя по указанным адресам абонентов по принципу коммутации каналов («звезда»);

Сети с централизованным (программным) управлением подключения

пользователей к сети («кольцо» и «шина»);

Сети со случайной дисциплиной обслуживания пользователей («шина»).

4. по виду коммуникационной среды передачи информации:

Сети с использованием существующих учрежденческих телефонных сетей;

Сети на специально проложенных кабельных линиях связи;

Комбинированные сети, совмещающие кабельные линии и радиоканалы.

5. по дисциплине обслуживания пользователей (способу доступа пользователей к сети):

Приоритетные, задающиеся ЦУС, когда пользователи получают доступ к сети

в соответствии с присвоенными им приоритетами (постоянными или изменяющимися);

Неприоритетные, когда все пользователи сети имеют равные права доступа к сети.

6. по размещению данных в компонентах сети:

С центральным банком данных;

С распределенным банком данных;

С комбинированной системой размещения данных.

3.2 Структура локальных компьютерных сетей

3.2.1 Одноузловые сети

В локальных сетях применяются в основном одноузловые (звездообразные) сети. В качестве средств коммуникаций могут использоваться телефонные линии связи и АТС организаций, предприятий, фирм и др., специально проложенные кабельные линии и каналы передачи сигналов по радио.

3.2.2 Сети с проводными линиями связи

Методом доступа к сети является вызов абонента по его сетевому имени с коммутацией каналов в узле коммуникации (УК). Способ коммутации каналов обеспечивает соединение абонентов через УК на время передачи сообщения. При этом в УК возможна организация приоритетного доступа к сети абонентов.

Достоинствами этого вида сети являются:

Простота и низкая стоимость подключения пользователей сети;

Простота управления сетью;

Возможность подключения и отключения абонентов без остановки работы сети;

Также она имеет и свои недостатки:

Скорость передачи сообщений зависит от количества абонентов, интенсивности приема и передачи сообщений и технических возможностей УК;

Надежность сети определяется надежностью УК;

Большая суммарная длина и низкая эффективность использования физической среды передачи сигналов;

Для повышения надежности УК строятся по модульному принципу, который предусматривает рабочие и резервные модули. Система диагностики оценивает функционирование рабочего модуля и в случае необходимости переключает сеть на работу с резервным модулем.

Примером одноузловой сети может служить Arcnet (США). Хотя сеть не имеет статуса международного стандарта, она широко применяется для построения небольших учрежденческих сетей. В состав сети входит 8-канальный канальный УК. Количество абонентов может быть увеличено путем подключения новых УК.

3.2.3 Радиоканальные сети

Структура сети похожа на одноузловую сеть, только сообщения в сети передаются не по проводным линиям связи, а по радиолиниям. Для этого каждый компьютер снабжена абонентской радиостанцией (АРС). Абонентские радио-станции связаны между собой через центральную радиостанцию (ЦРС).

Методы доступа к сети случайные. Наиболее простым является метод ALOHA –захват абонентом канала и выдача сообщения независимо от того, есть ли в сети другие сообщения или нет. Это может привести к столкновению сообщений в сети и взаимному их искажению. Искаженные сообщения повторно передаются через случайные промежутки времени. При столкновениях сообщений теряется активное время работы сети, равное сумме времени передачи обоих сообщений.

Для уменьшения вероятности появления столкновений применяются модификации этого метода: доступ с контролем несущей (CSMA) и доступ с контролем несущей и обнаружением столкновений (CSMA/CD). Доступ с контролем не-сущей заключается в том, что абонент «слушает» сеть и передает сообщение только в свободную сеть. Столкновения возможны, когда два или более абонентов начинают передачу одновременно. Искаженные сообщения передаются повторно.

При доступе с контролем несущей и обнаружением столкновений абонент «слушает» сеть, передает сообщение в освободившуюся сеть и контролирует возможность столкновения сообщений. Если абоненты начинают передачу одновременно, то столкнувшиеся сообщения сразу уничтожаются, не занимая времени передачей искаженных сообщений. Методы CSMA и GSMA/CD применяются при более высоких нагрузках на сеть, чем метод ALOHA.

Случайные методы доступа реализуются средствами ЭМВОС каждой ПЭВМ, поэтому они более надежны, чем централизованные методы доступа, реализуемые программными средствами ЦУС.

Достоинства сети:

Возможность связи с движущимися абонентами;

Возможность подключения и отключения абонентов без остановки сети.

Недостатки:

Возможность прослушивания всех абонентов;

Воздействие промышленных и атмосферных помех;

Наличие «мертвых зон», обусловленных конструкциями зданий и помещений.

Радиоканальные сети сейчас начинают все шире использоваться там, где необходимы связи с действующими абонентами.

3.2.4 Кольцевые сети

Средства коммуникаций сети включают физическую среду передачи сигналов в форме кольца, соединяющего компьютеры, блоки доступа и накопите-ли.

Блок доступа - это техническое устройство для подключения компьютера к физической среде. Блоки доступа делятся на две группы: доступ без разрыва целостности физической среды передачи сигналов и доступ с разрывом физической среды и восстановлением ее с помощью блока доступа. Например, без разрыва физической среды можно осуществить доступ к проводным линиям связи, но доступ к оптоволоконным линиям возможен только с разрывом среды передачи сигналов. Сообщение, переданное абонентом, поступает через блок доступа в физическую среду и дви отто по кольцу. Повторитель задерживает сообщение на время, необходимое для определения адреса абонента и приема его абонентом, восстанавливает ослабленные и искаженные электрические сигналы сообщения. Участок физической среды между двумя соседними повторителями называется сегментом.

Достоинства сети:

Простота реализации двухточечной линии связи (в каждый момент соединены только две точки – два абонента), что снижает требования к физической среде;

Простота организации подтверждения о приеме сообщения;

Небольшая общая длина физической среды;

Недостатки:

Низкая надежность, т.к. выход из строя участка физической силы или повторителя приводит к обстановке работы всей сети;

Невозможность подключения и отключения абонентов без остановки работы сети;

Максимальная задержка передачи сообщения зависит от количества абонентов;

Для повышения надежности и пропускной способности сети применяется двойное кольцо. Сообщения в кольцах курсируют в разных направлениях. При нарушениях одного кольца уменьшается только пропускная способность сети. При нарушениях обоих колец ближайшие к нарушению автоматически восстанавливают циркуляцию информации в одном кольце.

Пример кольцевой сети: Token Ring Network (филиал фирмы IBM в Цюрихе). Сеть обладает статусом мирового стандарта, ее длина достигает 2 км и обслуживает до 256 абонентов.

3.2.5 Магистральные сети

3.2.5.1 Магистральные моноканалы

Все абоненты подключены к одной физической среде, представляющей со-бой магистраль (шину). Сообщение, переданное пользователем, поступает через блок данных ко всем абонентам сети.

Достоинства сети:

Более высокая надежность, чем у кольцевых сетей, так как отказ абонента не влияет на работу сети;

Возможность подключения и отключения абонентов без остановки работы сети в случае неразрушающего физическую среду подключения абонентов;

Наименьшая длина физической среды.

Для повышения надежности и пропускной способности применяются двойные моноканалы.

Примером магистральной моноканальной структуры является сеть Ethernet, представляющая собой отраслевой стандарт фирм Intel, DEC и Xerox. Сеть положена в основу международного стандарта, обслуживает до 1000 абонентов при длине сети до 10 км, доступ к сети осуществляется по протоколам CSMA/CD.

3.2.5.2 Магистральные поликаналы

Поликаналом называют группу средств коммуникаций, работающих на одной физической среде и предназначенных для организации нескольких сетей различного назначения. Для этого применяется широкополосная физическая, среда, например широкополосный коаксиальный или оптоволоконный кабель.

Достоинства сети:

Высокая пропускная способность, позволяющая передавать большие потоки разнообразной информации;

Возможность организации на одной физической среде нескольких сетей различного назначения (например, в крупных финансовых организациях, информационных и многопрофильных фирмах).

Недостатки сети:

Сложность эксплуатации;

Высокая стоимость оборудования.

Магистральные поликаналы разрабатываются и производятся по конкретным заказам.

3.2.6 Комбинированные сети

Каждая из приведенных структур сетей обладает определенными достоинствами и недостатками. Преодолеть некоторые недостатки и повысить эффективность сетей можно путем комбинирования (структурирования) различных топологий.

Достоинства сетей:

Возможность легкого наращивания абонентов и ресурсов сети;

Изменение конфигурации сетевой структуры;

Повышение надежности сети;

Продление жизненного цикла.

Недостатком таких систем является более высокая их стоимость за счет дополнительного технического и программного сетевого оборудования.

4. Глобальные компьютерные сети

4.1 Классификация глобальных компьютерных сетей

Глобальные компьютерные сети можно классифицировать по следующим признакам:

1. по типу средств коммуникаций:

Наземные многоузловые сети

Спутниковые радиосети

Комбинированные сети

2. по способу коммутации сообщений

Коммутация каналов

Коммутация сообщений

Коммутация пакетов

Адаптивная коммутация

3. по выбору маршрута передачи сообщения:

Фиксированные пути

Направленный выбор пути

Случайные пути

Лавинный способ

4.2. Наземные многоузловые сети

4.2.1. Общая структура сети

Рабочими компьютерами сети могут быть все классы компьютеров от персональных до суперкомпьютеров. Используются также отдельные терминалы (Т). Абоненты подключаются к сети посредством телефонных и телеграфных каналов связи в точках подключения (ТП). Доступ пользователей к ресурсам сети осуществляется через узлы коммутации. Каждый узел коммутации (УК) обслуживает определенное число пользователей, обычно наиболее близко расположенных к узлу. Архитектуру УК составляют компьютеры со специальным сетевым программным обеспечением и коммуникационное оборудование. УК могут быть обслуживаемыми и необслуживаемыми, т. е. работающими в автоматическом режиме. УК выполняют важные сетевые функции: анализ и формирование сетевых адресов абонентов, кодирование сообщений, контроль и коррекцию ошибок, появившихся в процессе передачи информации, управление потоками сообщений, выбор оптимального для данной ситуации маршрута передачи сообщения и др. Один из УК выполняет роль шлюза или моста.

С одним из УК совмещается центр управления сетью (ЦУС), на котором работает администратор сети. В ЦУС, как правило, входит наиболее мощный компьютер сети со специальным программным обеспечением.

Между УК прокладываются, как правило, магистральные скоростные каналы передачи данных (МСКПД) на основе коаксиальных, многожильных и оптоволоконных кабелей. В крайнем случае используются телефонные линии связи, обладающие средней скоростью передачи данных.

Достоинства многоузловой сети:

Возможно использование ранее приложенных каналов связи

Допустимо применение в разных частях сети различных физических средств и скоростей передачи данных

Возможность применения различных способов коммутации и выбора путей передачи сообщений

Недостатки многоузловой сети:

Сложность прокладки в труднодоступных местах

Невозможность связи с движущимися абонентами

4.2.2. Принцип модемной связи

Чтобы передать дискретный двоичный сигнал с выхода одного компьютера на вход другой по аналоговой телефонной линии связи, этот сигнал должен быть преобразован в стандартную форму передачи сигнала по телефонной линии. Такое преобразование называется модуляцией, а устройство, осуществляющее преобразование модулятором. На входе компьютера - получателя сообщения должно быть сделано обратное преобразование, которое называется демодуляцией, а устройство - демодулятором. Так как компьютер передает и принимает сообщение, то модулятор и демодулятор объединяют в одном устройстве под названием модем. Модемы выпускаются как в виде отдельных блоков, так и встроенными в компьютерах. В зависимости от качества модемов и линий связи скорость передачи данных через модемы составляет 2400,4800,9600 бит/с.

Для того чтобы два компьютера могли обмениваться информацией, кроме модема и физической среды передачи сигналов необходимо специальное программное обеспечение для согласования работы компьютера и поддержки средств коммуникаций. Большинство модемов автоматически определяют, с какой скоростью поступает информация, проводят тестирование качества линии связи, а также кодируют сообщения специальными помехоустойчивы-ми кодами.

Обычный тип модема позволяет передавать только текстовую информацию, в связи с чем его иногда называют телефонным. Кроме телефонного модема выпускаются факс-модемы, которые могут передавать графическую ин-формацию: деловые письма с подписями и печатями, чертежи, эскизы, рисунки, фотографии. Для разносторонней работы пользователя в сети к компьютеру должен быть подключен сканер.

4.3 Спутниковые и комбинированные сети

Применение космических спутников связи привело к возможности создания глобальных радиосетей. Средства коммуникаций включают спутники связи (СС), наземные радиостанции (PC) и проводные каналы связи между компьютером и наземными радиостанциями.

Достоинства спутниковых сетей:

Используя разные частоты, можно организовать несколько сетей, работающих параллельно и не мешающих друг другу

Просто реализовать связь с движущимися абонентами

Сравнительно недорого проложить каналы связи в труднодоступных местах

Недостаток: высокая стоимость реализации спутниковой связи.

В настоящее время среди глобальных сетей все большее распространение получают комбинированные сети, в которых передача данных через наземные УК дополняется радиосвязью абонентов с УК, а при необходимости и спутниковой связью.

Заключение

Делая вывод после всего выше сказанного, мы понимаем, что компьютерные сети занимают особое место в нашей повседневной жизни, в нашей производственной деятельности и в других областях. Соединение компьютеров в сети позволяют людям находить необходимую им информацию, используя ресурсы других компьютеров, общаться друг с другом, не выходя за пределы своей комнаты, общаться с людьми, которые находятся на огромных расстояниях. Также компьютерные сети обеспечивают быструю передачу информации на миллионы километров, что позволяет ускорить работу каких-либо предприятий.

В данном реферате были рассмотрены такие важные вопросы, как понятие компьютерных сетей, их классификация, а также понятие локальных и глобальных сетей. Также были показаны сравнительные характеристики, достоинства и недостатки наиболее популярных сейчас информационных технологий: локальной компьютерной сети и глобальной компьютерной сети. Они являются в данный момент основой нашей жизни. Ни одно предприятие такое, как фабрика, завод либо какая-то частная фирма, не смогли бы выполнять свою работу без подключенных к сети компьютеров, так как объединение компьютеров в сети позволило значительно повысить производительность труда.

Существует множество других эффективных и полезных технологий, число их увеличивается с каждым днем. Поэтому, чтобы не отстать от ритма современной жизни, нужно постоянно быть в курсе новинок технических средств персонального компьютера, системного программного обеспечения и прикладных компьютерных технологий.

Компьютерного оборудования (сервер). Для... многое другое. 5. Назначение локальных компьютерных сетей Локальная компьютерная сеть - это объединение некоторого количества...

  • Компьютерные сети (13)

    Реферат >> Информатика

    Или без. Реферат. Компьютерные сети реферат Поскольку на сегодняшний день... человека, то соответственно и использование компьютерных сетей в нашем повседневном быту и учебе... выполняют на тему «Компьютерные сети» реферат. Сети неразрывно связаны с процессами...

  • Компьютерные сети (10)

    Реферат >> Коммуникации и связь

    Принятых для проектирования и построения сетей . Компьютерная сеть (Network) – это группа... проекте проводится расчёт локальной компьютерной сети в соответствии с зданием... Олифер В. Г. Олифер Н. А. Компьютерные сети . Принципы, технологии, протоколы. Учебник...

  • Компьютерные сети понятие и виды

    Реферат >> Информатика

    Самоуправления, предприятий и организаций. КОМПЬЮТЕРНЫЕ СЕТИ . Компьютерная сеть - объединение нескольких ЭВМ для... 2008. СОДЕРЖАНИЕ: ВВЕДЕНИЕ. Компьютерные сети . Локальные компьютерные сети . Глобальные компьютерные сети . ВЫВОД. СПИСОК ИСПОЛЬЗОВАННОЙ...


  • Качество работы сети характеризуют следующие свойства: производительность, надежность, совместимость, управляемость, защищенность, расширяемость и масштабируемость.

    Существуют два основных подхода к обеспечению качества работы сети. Первый - состоит в том, что сеть гарантирует пользователю соблюдение некоторой числовой величины показателя качества обслуживания. Например, сети frame relay и АТМ могут гарантировать пользователю заданный уровень пропускной способности. При втором подходе (best effort) сеть старается по возможности более качественно обслужить пользователя, но ничего при этом не гарантирует.

    К основным характеристикам производительности сети относятся: время реакции, которое определяется как время между возникновением запроса к какому-либо сетевому сервису и получением ответа на него; пропускная способность, которая отражает объем данных, переданных сетью в единицу времени, и задержка передачи, которая равна интервалу между моментом поступления пакета на вход какого-либо сетевого устройства и моментом его появления на выходе этого устройства.

    Для оценки надежности сетей используются различные характеристики, в том числе: коэффициент готовности, означающий долю времени, в течение которого система может быть использована; безопасность, то есть способность системы защитить данные от несанкционированного доступа; отказоустойчивость - способность системы работать в условиях отказа некоторых ее элементов.

    Расширяемость означает возможность сравнительно легкого добавления отдельных элементов сети (пользователей, компьютеров, приложений, сервисов), наращивания длины сегментов сети и замены существующей аппаратуры более мощной.

    Масштабируемость означает, что сеть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сети не ухудшается.

    Прозрачность - свойство сети скрывать от пользователя детали своего внутреннего устройства, упрощая тем самым его работу в сети.

    Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети.

    Совместимость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение.

    Топология – конфигурация физических связей между узлами сети. Характеристики сети зависят от типа устанавливаемой топологии. В частности, выбор той или иной топологии влияет:

    На состав необходимого сетевого оборудования;

    Возможности сетевого оборудования;

    Возможности расширения сети;

    Способ управления сетью.

    Под термином «топология КС» может подразумеваться физическая топология (конфигурация физических связей) или логическая топология – маршруты передачи сигналов между узлами сети. Физическая и логическая топологии КС могут совпадать или различаться. Локальные сети строятся на основе трех базовых топологий, известных как:

    · общая шина (bus);

    · звезда(star)

    5. Compose the final formal specification, using algorithm 3.

    A sample of formal specification for "Store" particle

    shown in figure 5, is specified in figure 7.

    In order to verify the usability of the requirements particle networks, we conducted a workshop of developing software functional requirements specification of a small software system. A sample of software requirements for "Video Shop" in is selected. More than 80 attendants with experience in writing data flow diagram are gathered. Five requirements primitives are selected as follows: 1) primitive for registering a new video title in the video stock, 2) primitive for searching video stock for the existing of the video title, 3) primitive for registering a new member, 4) primitive for searching the existing of the member name in the member list, and 5) primitive for keeping the video hiring record of each member.

    Average time to accomplish the specification procedure is 50 minutes and more than 90% of the attendants produce the complete requirements particle networks. The final formal specifications are consequently mapped from their requirements particle networks without any major complication.

    We have developed an approach to software functional requirements specification using requirements particle networks. Our approach emphasizes that requirements particle is the atomic task and a well-defined formal specification template is relevantly assigned to each requirements parti-

    cle. Moreover, we introduce the explicit definition of preconditions in the requirements particle networks so that software analyst is capable to specify when a particular particle is activated in the consequences of preconditions. A number of requirements particles are proposed to deal with store and retrieve functions in software system.

    We intend to investigate and define more relevant requirements particles for the another part of software system for business information system. A set of requirements particles to perform calculation is required as well. In addition, the reuse features of several common requirements particle networks will be considered.

    J. J. P. Tsai, T. Weigert, M. Aoyama, A Declarative Approach to Software Requirements Specification Languages, Proceedings of International Computer Languages, 1988, 414-421.

    H. M. Jarvinen, R. K. Suonio, DisCo Specification Language: Marriage of Actions and Objects, Proceedings of Conference on 11th International Distributed Computing Systems, 1991, 142-151.

    B. H. C. Cheng, G. C. Gannod, Abstraction of Formal Specifications from Program Code, Proceedings of IEEE International Conference on Tools for AI, 1991.

    L. Jin, H. Zhu, Automatic Generation of Formal Specification from Requirements Definition, Proceedings of First IEEE Format Engineering Methods, 1997, 243-251.

    W. Vatanawood and P. Chongstitvatana, A Genetic Algorithm Approach to Software Components Search using Software Functional Requirements Checklist, Proceedings of 3rd Annual National Symposium on Computational Science and Engineering (ANSCSE), 1999.

    R. Barden, S. Stepney, D. Cooper, Z in Practice, (Prentice-Hall, 1994).

    АНАЛИЗ ХАРАКТЕРИСТИК МНОГОПОТОКОВЫХ СЕТЕЙ

    ОБСЛУЖИВАНИЯ

    А.А.Алиев, Б.Г.Исмайлов

    Рассмотрены модели многопотоковых компьютерных сетей обслуживания. Поставлены задачи минимизации математического ожидания вероятностной функции потерь информации при минимально необходимой производительности сети. Разработаны процедуры анализа характеристик сети и приведены результаты численных экспериментов.

    Itistream computer networks of service are considered. The tasks of minimization of expectation of a probability loss function of the information are posed at minimum of necessary productivity of the network. The procedures of the analysis of the characteristics of the network are developed and the results of numerical experiments are indicated.

    В современных сетях компьютеры должны обслуживать большое число источников информации. По этой причине им необходимо работать оперативно и выполнять несколь-

    ко операций одновременно. Таким требованиям отвечает мультипроцессорная обработка информации. В таких сетях операционная система позволяет добавить дополнительные процессоры, и она позволяет распределять процессы по нескольким компьютерам, управляя выполняемыми ими задачами. Поэтому с целью ее построения в работе дается анализ характеристик многопотоковых сетей.

    В рассмотренной многопотоковой сети имеется т очередей и N мест в очереди. Интенсивность потока заявок, количество заявок в группе, время обслуживания заявок заданы. Характеристики такой сети, в частности, вероятность возникновения заявок на обслуживание, вероятность прихода заявок за время цикла, среднее время цикла и т.д. неизвестны. С целью построения сети необ-

    ISSN 1607-3274 "Радюелектрошка. 1нформатика. Управл1ння" № 2, 2001

    ходимо определить ее характеристики при заданных условиях.

    Разработка современных компьютерных систем и сетей сопряжена с применением математических методов моделирования. В условиях случайного характера процессов поступления и обслуживания информации необходимо использование моделей и методов теории массового обслуживания.

    В работе рассматривается многопотоковая модель, учитывающая мультипроцессорный принцип построения, позволяющий обеспечить высокие характеристики оперативности и надежности компьютерных сетей; приоритетное обслуживание запросов, ориентированное на повышение общей эффективности компьютерной сети.

    На выбор типа используемой модели системы массового обслуживания (СМО) существенно влияет структурная организация анализируемой многопотоковой мультипроцессорной сети.

    Теория анализа приоритетных процессов обслуживания достаточно полно разработана в [ 1].

    Однако в отличие от [ 1 ] здесь исследуются модели многопотоковых систем с ограничением на время ожидания заявки в очереди.

    Рассматриваются многопотоковые компьютерные сети, предназначенные для обслуживания потоков информации поступающих от большего числа источников. Основу системы составляют т периферийных компьютеров (ПК;). Эти ПК; объединяются в мультипроцессорные сети (МС) с помощью координирующего компьютера (КК). ПК; организуют сбор и обработку информации. КК соединяет ПК; с линией связи или терминалом. Конструктивная однородность ПК; дает возможность наращивания их числа при увеличении количества источников информации, приближения МС к источникам, реализации широкого набора вычислительных процедур.

    При организации СМО имеющей много источников информации одним из основных вопросов может являться выбор дисциплины опроса источников.

    В обычном случае (без прерывания) КК опрашивает все источники информации по порядку. Если на входе имеется достаточное количество информации, то выполняются операции по ее обслуживанию. В противном случае КК переходит к опросу следующих источников информации.

    МС работает в реальном режиме времени, что характерно для управляющих систем и сетей .

    При моделировании МС основной задачей может являться оптимальное распределение ресурсов сети и программное обеспечение ПК;, которое включает средства программирования и пакет прикладных программ. При этом рассматриваются некоторые вопросы моделирования МС, связанные с оптимальным выбором нагрузочных и структурных параметров. Оптимизация ресурса позволяет получать требуемые значения выбранного критерия функционирования сети в зависимости от параметров обрабатываемой информации.

    Одним из показателей качества функционирования МС является минимизация потерь информации, полученной от источников. Следует отметить, что сложность методов

    оптимизации ресурсов зависит от вида обработки информации. Если на входе ПК; дискретная информация, которая поступает в детерминированный момент времени, и известно время обслуживания, то анализ характеристик сети не является трудным. Анализ характеристик сети значительно усложняется при наличии в МС информационных потоков, составляющие которых случайны по моментам поступления.

    Если рассматривать сообщения как заявки, а КК, занимающийся сбором сообщений, как обслуживающий прибор, то МС в целом можно рассматривать как однофазную, однолинейную СМО.

    Предполагается, что источники заявок выдают стационарные пуассоновские потоки.

    Замечание 1. Кроме упрощения анализа, это предположение позволяет получить верхние оценки параметров сети для других законов распределений.

    В случае отсутствия потерь интенсивность потока заявок, поступающего на КК равна X = ^ и считается,

    что в установившемся режиме интенсивности входящих и обслуженных заявок одинаковы.

    В сети ПК; выступают по отношению к КК как устройства ввода-вывода и с помощью критерия эффективности анализируются потери информации как в СМО, имеющей т источников заявок. В каждом источнике имеется конечная очередь заявок; время обслуживания одной заявки и время переключения КК от источника к источнику являются постоянными величинами и заявки могут обслуживаться группами.

    В сети имеется т очередей и N мест в очереди. Время обслуживания заявки обозначается Тобсл, А(- время

    переключения прибора, X - интенсивность потока заявок, Б - количество заявок в группе.

    Запрос на обслуживание возникает в очереди в том случае, когда в ней находятся не менее Б заявок, после окончания;-ой очереди прибор переходит к опросу (;+1)-ой, цикл работы СМО завершается опросом т-ой очереди.

    Заявки, поступившие в очередь, после того как был произведен ее опрос, рассматриваются в данном цикле.

    Оценка характеристик сети осуществляется путем минимизации математического ожидания вероятности потерь информации при заданном количестве источников, т.е.

    М[ Р(т, N Б, Х,тобсл ш1п, Х<Х0, £ < Ьч < Ь 0, (1)

    где X0 , Ь0 - максимальные допустимые значения X , Ьч;

    Ьп - количество заявок в очереди. ч

    Однако строгое аналитическое выражение для определения потерь Р(т, N Б, X, Тобсл) в таких СМО в настоящее время отсутствует и, следовательно, аналитическое решение постановки (1) представляет большую сложность.

    Вместе с тем в таких СМО потери вида (1) могут быть определены с помощью следующих характеристик:

    Вероятность возникновения заявок на обслуживание в

    п из т очередей как :

    Рп + 1 = П^Тобсл + Т)/(1 - П*((п + 1)*Тобсл + Т)) ,

    где Т = тАг, (ns"lобсл + Т) - вероятность появления заявок в очереди, с которой начинается цикл;

    Заявки на обслуживание заявок появляются при наличии в очереди Б и более заявок, при этом для простейшего потока вероятность прихода заявок, за время цикла

    Х (п ^обсл + тА г) " к!

    п^Тобсл + тАг);

    Среднее время цикла

    Тс = I (п*Тобсл + тАг)Рп; п = 0

    Вероятность появления заявок в первой очереди

    П = I ПЛп*Тобсл + тАг)Рп. п = 0

    Следовательно, вероятность потери заявок

    Р = 1 - П/^с.

    Данное соотношение в нормализованном виде может быть косвенным решением постановки (1). Под нормализацией подразумевается выбор из множества значений

    Р лишь тех, при которых для количества заявок Ьч,

    ожидающих обслуживания, выполняется условие

    £ < Ьч < Ь0 .

    Таким образом, при выполнении условия Б < Ь < Ь0 ,

    рассмотренная СМО обеспечивает обслуживание потока заявок в пределах допустимых потерь и, следовательно, система имеет минимально необходимую производительность.

    В СМО среди источников заявок в первую очередь выделяют приоритетные. Приоритетность в СМО определяется таким образом, что для группы заявок, ожидающих обслуживания |Л,г-, является самой большой по значению, т.е. классы приоритетов упорядочиваются согласно соотношению :

    11С1 <12 С2 <-<1кск,

    где с{ - стоимость обслуживания за единицу времени.

    При решении задачи (1), устанавливая приоритетность по (3), осуществляется выбор из множества значений Р лишь тех, при которых выполняется условие Ь > Б.

    Предлагаются прерывания двух типов: прерывания с относительным и абсолютным приоритетами. При этом во

    втором случае прерванные заявки вновь поступают в КК и их обслуживание начинается с прерванного места.

    Данная задача для небольших значений интенсивностей потоков информации на входе СМО может быть решена при отсутствии приоритетов. Здесь в рассмотренную систему вводятся к различных приоритетных классов (к> 3) , т.е. в системе имеются три крупных приоритетных класса заявок. При функционировании системы внутри потоков может быть дальнейшее разделение на под-потоки. Заявки приоритетного класса К К = 1, 2, ..., к поступают как пуассоновские потоки с интенсивностью Хк, каждая заявка из приоритетного класса К имеет время обслуживания, выбранное независимо из экспоненциального распределения со средним значением 1/|к.

    Кроме того, применение приоритетности в данном случае показывает, что значение математического ожидания вероятностной функции потери заявок существенно меньше для прерывания с абсолютным приоритетом, чем для прерывания с относительным приоритетом. Предложенный подход обеспечивает исследование многопотоковых СМО с относительным и абсолютным приоритетами. В его основе лежит решение задачи анализа характеристик компьютерной сети с групповым обслуживанием.

    Данная процедура определения характеристик СМО обобщена в виде алгоритма, который имеет следующие шаги:

    Для простейших потоков вводятся значения т, N Б с целью определения основных характеристик СМО.

    Для количества заявок, ожидающих обслуживания

    проверяется условие Ьч > Б. Если данное условие удовле-ч

    творяется для относительных и абсолютных приоритетов, то вычисляются и выводятся на печать характеристики СМО.

    Если цикл опроса не завершен, осуществляется переход к первому шагу. В противном случае процесс анализа характеристик СМО завершается.

    На основе вышеизложенной процедуры анализа для определения характеристик систем проведены объемные вычислительные эксперименты и получены численные результаты. В этих экспериментах при заданном количестве источников информации определены потери информации в зависимости от интенсивности входного потока.

    Потери информации в такой СМО могут возрастать засчет появления потерь в ПК;, и МС можно рассматривать как двухфазные СМО . Предполагая что, потоки заявок в обеих фазах пуассоновские, время обслуживания одной заявки, как в первой, так и во второй фазе постоянно. Для оценки параметров СМО можно использовать результаты приведенные здесь для однофазной СМО.

    Следует отметить, что при более детальном изучении СМО такого вида целесообразно применять методы имитационного моделирования, так как аналитическое описание двухфазной СМО с не пуассоновскими потоками заявок и ограниченной очередью во второй фазе представляется очень сложным.

    1607-3274 "Радюелектрошка. 1нформатика. Управл1ння" № 2, 2001

    0.02 0.04 0.06 0.08 0.10 Лто1

    0.02 0.04 0.06 0.08 0.10 0.12 Лто6

    I-1-1-1-1-1-1-

    0.02 0.04 0.06 0.08 0.10 0.14 0.16 Лто6сд

    Рисунок 1

    В качестве примера, для Аt = 0,1 Тобсл: а) т = 4, Б = N = 1 (кривая 1); б) т = 4, Б = N = 2 (кривая 2); в) т = 16, Б = 1 , N = 10 (кривая 3); г) т = 2,5 , Б = 1 , N = 10 (кривая 4); д) т = 16, Б = N = 1 (кривая 5); е) т = 16, Б = N = 2 (кривая 6) исследованы зависимости при различных т, N и Б. Из рисунка 1 видно, что при т = 4, Б = N = 1 и т = 4, Б = N = 2 значения кривых 1, 3 вероятностной функции по сравнению с другими кривыми находятся в пределах допустимых потерь и полученные характеристики СМО считаются оптимальными.

    ЗАКЛЮЧЕНИЕ

    Процедура анализа многопотоковых сетей обслуживания позволяет сделать следующие выводы:

    1. Разработанная процедура анализа оптимальных характеристик многопотоковых сетей является удобной для описания сети с групповым обслуживанием. Использование разработанного алгоритма вычисления характеристик сетей может значительно облегчить анализ характеристик подобных сетей.

    2. Разработка такой модели позволяет определить не только вероятностно-временные характеристики сети в рамках системы массового обслуживания, но и повысить надежность системы в целом.

    ПЕРЕЧЕНЬ ССЫЛОК

    1. Меликов А.З., Пономаренко Л.А., Рюмшин H.A. Математические модели многопотоковых систем обслуживания. - К. 1991, - 264 с.

    2. Меликов А.З., Исмайлов Б.Г. О моделировании процесса маршрутизации сообщений в распределенных компьютерных сетях обслуживания. Известия АН Азербайджана. Серия физико-технических и математических наук, XVIII том, №1, 1998 г. - с. 54-56.

    3. Исмайлов Б.Г. Анализ характеристик взаимодействия компьютеров распределенных сетей обслуживания. Изв. АН Азерб., Серия физико-технических и математических наук, XIX том, №3-4, 1999г.- с.130-136.



    © 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows