Оперативная память компьютера (ОЗУ, RAM). Как работает оперативная память? Оперативная память все о ней

Оперативная память компьютера (ОЗУ, RAM). Как работает оперативная память? Оперативная память все о ней

26.10.2023

). Он в основном практический: что выбрать, что можно ставить и что нельзя, ну и различные полезности. Однако он не затронул, пожалуй, самую интересную часть - а как память вообще работает, и как ее тонко настроить (и разогнать). Если посмотреть, то по количеству параметров ОЗУ является чуть ли не самым сложным элементом ПК: посудите сами, для процессора вы в лучшем случае можете менять частоту тактового генератора (FSB, да и к тому же она уже лет 15 как 100 МГц и редко кто ее трогает), множитель (его как раз и меняют) и напряжение (ибо для работы на более высоких или низких частотах всегда можно подкорректировать напряжение для стабильности работы и, в некоторых случаях, меньшего энергопотребления), ну и количество рабочих ядер (хотя мало кто будет их трогать - разве что многопоточность отключают, ибо в некоторых задачах она может дать отрицательный прирост). Все остальные параметры уже индивидуальны и есть не у всех процессоров, так что зачастую их и не трогают. Что касается видеокарт, то тут параметров еще меньше - всего-то частоты GPU, памяти и напряжение GPU. Но если мы посмотрим на ОЗУ, то увидим море важных параметров: задержки, частоты, транзакции в секунду и т.д. - давайте разберемся, что это и как связано с производительностью и стабильностью работы памяти.

Технические характеристики памяти

Для начала нужно понять, что означают те или иные циферки и буковки в спецификациях памяти. Посмотреть их можно или на самой памяти, или на ее коробке, или в специальных программах типа AIDA64. Я разберу на примере своей памяти, но у вас будут схожие данные. Итак, вот скриншот из AIDA64:

Что мы видим про память? То, что она Dual Channel DDR4-3200 SDRAM (16-18-18-36-CR2). Если погуглить маркировку самих чипов, то можно узнать еще немного информации - PC4-17000 1.2 В. Пойдем по порядку. Что означает Dual Channel (у вас может быть и Single, и Triple, и Quad - хотя если у вас последнее, то вы, скорее всего, знаете, что это)? Это означает, что память работает в двухканальном режиме (или одноканальном, или в трехканальном, четырехканальном и т.д.). Если у вас стоит одна планка памяти, то она будет работать в одноканальном режиме - то есть характеристики чтения и записи будут приблизительно такими же, которые указаны на ней (на деле все зависит от контроллера памяти, и на практике значения могут быть на 10-15% ниже). Если у вас стоит две и больше планок с одинаковыми характеристиками, то они могут работать вместе: в таком случае объем увеличивается пропорционально числу модулей, и скорость также растет почти линейно. Поэтому если у вас одноканальная память и интегрированная графика, которая использует ОЗУ как видеопамять, и если вы на ПК занимаетесь чем-то серьезнее просмотра фильмов и сидения в интернете - в первую очередь нужно купить еще одну планку ОЗУ и сделать двухканальный режим (как это делается - написано в практической статье), ибо вы тем самым фактически удваиваете производительность ОЗУ (ну а двухканальные контроллеры памяти имеют 90% современных процессоров).

Идем дальше - сочетание букв DDR SDRAM (Double Data Rate Synchronous Dynamic Random Access Memory - синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных). Здесь нам интересна только концовка - «и удвоенной скоростью передачи данных». Смысл тут в том, что в старом типе памяти SDRAM данные считывались только при переходе из стостояния «0» в состояние «1» (по фронту сигнала). В DDR же решили считывать данные и при переходе из состояния «1» в состояние «0» (по спаду сигнала), то есть реальная частота памяти удвоилась. Однако с аппаратной точки зрения частота памяти остается той же, поэтому, например, в том же CPU-Z частота памяти будет вдвое ниже, чем в диспетчере задач:


Как я уже объяснил выше - пугаться этого не стоит, это особенность DDR.

Далее - что означает четверка в DDR4? В общем-то только одно - что это 4ое поколение памяти DDR. Отличия между всеми типами можно посмотреть на Вики, не вижу особого смысла это переписывать, но скажу, что основной прирост идет за счет роста частоты памяти.

Теперь посмотрим всю конструкцию - DDR4-3200. Очень многие после 3200 подписывают МГц - в общем-то, это не совсем правильно. На самом деле тут имеется ввиду МТ/с, или мегатранзакции в секунду. Что это за величина? Это величина, которая показывает, сколько операций в секунду может совершаться с памятью. С учетом того, что ширина шины DDR4 составляет 64 бита (или 8 байт), можно получить ее скорость в МБ/с - для этого нужно 3200 МТ/с * 8 Б = 25600 МБ/с. И тут следует сказать, что эта цифра зачастую уже пишется на самой памяти - в моем случае это PC4-17000. Вы скажете - 17000 не равно 25600. Все верно, в моем случае память разогнана, если взять ее реальную скорость в 2133 МТ/с то мы как раз получим 17000 МБ/с. Ну а PC4 в данном случае - эквивалент DDR4. То есть, как вы видите, DDR4-2133 и PC4-17000 - эквивалентные записи, поэтому для понимания того, какая у вас память, достаточно знать только одну из них.

Теперь идет конструкция 16-18-18-36-CR2. Для объяснения этих цифр нужно посмотреть, что же из себя представляет современная DDR-память. По сути она - набор ячеек, хранящих информацию. Каждая ячейка имеет внутри себя транзисторы и конденсаторы, и располагается она в двумерном массиве вместе с другими ячейками. Ну а принцип действия прост: конденсаторы заряжаются при записи в ячейку единичного бита и разряжаются при записи нулевого бита. Отсюда, кстати, возникает проблема - дабы избежать разрядки конденсаторов и потери информации, их нужно постоянно заряжать - именно поэтому при отключении питания ПК вся информация из ОЗУ стирается.

Основная проблема при работе с ОЗУ - это задержки (latency) при доступе к ячейкам памяти. Логично, что чем меньше задержка - тем быстрее будет идти чтение/запись - тем меньше будет простаивать процессор в ожидании ответа от ОЗУ - тем быстрее будет быстродействие. Посмотрим, какие бывают задержки и за что они отвечают.

Разумеется, каждая ячейка имеет свой «адрес»: грубо говоря, это ее номер в строке и столбце таких же ячеек в двухмерном массиве. В свою очередь, некоторое количество ячеек объединяется вместе для более быстрого доступа к ним - такая группа называется банком. Теперь посмотрим, что происходит, когда контроллер памяти хочет что-то записать в определенную ячейку. Для начала он обращается в банку с адресом строки - этот сигнал называется RAS (Row Address Strobe). Соответственно, время обращения (задержка) называется RAS Latency - но этот параметр малоинформативен и очень редко пишется. Зато важен параметр RAS to CAS Delay - это процесс поиска нужной строки в банке памяти. Вот этот параметр уже нужен, и его задержка пишется второй - то есть в моем случае он составляет 18 тактов (один такт - это одна отправка данных по шине памяти). Великолепно, всего за 18 тактов мы нашли нужную строку. Но ведь нужен еще и столбец - за него отвечает еще один сигнал, CAS, и его задержка пишется первой - в моем случае это 16 тактов. Казалось бы - все, мы получили точное расположение нашей ячейки, зачем еще две цифры?


Не все так просто - зачастую бывает, что контроллеру нужно обратиться к другой ячейке этой же строки. Но для этого он должен сначала закрыть предыдущую сессию запроса (нельзя одновременно обращаться к различным ячейкам одной строки) - а на это опять же уходит время, и эта задержка называется RAS Precharge - она указывает на время закрытия и повторной активации строки. Ее пишут третьей, в моем случае это опять же 18 тактов. Последний параметр - Cycle Time - отвечает за время, необходимое для полного открытия и закрытия всего банка, иными словами - это быстродействие всей памяти. Он пишется четвертым, и у меня он 36 тактов.

Остался последний параметр - CR (Command Rate), он может быть 1 или 2. Отвечает этот параметр за время, которое должно пройти между активацией памяти и ее способности к работе - это 1 или 2 такта. Разумеется, 1 такт лучше, но тут уж как повезет с памятью.

Разумеется, такой параметр как такт не очень нагляден - интереснее узнать результат в наносекундах. Для этого узнаем, сколько времени занимает один такт - это 1 / 1200 МГц = 0.83 нс (берем, разумеется, реальную частоту памяти). Cycle Time у памяти 36 тактов, то есть задержка получается 0.83 нс * 36 = 30 нс. Тогда почему AIDA64 показывает результат около 48 нс? Все просто - сам процессор хоть и небольшой, но из-за крайне малых промежутков времени (миллиардные доли секунды) приходится учитывать время на проход сигнала внутри него, что и добавляет дополнительные 18 нс.

Вот в общем-то и все, теперь Dual Channel DDR4-3200 SDRAM (16-18-18-36-CR2) для вас не просто куча символов, а вполне осмысленный набор параметров, который позволяет достаточно точно понять, что за ОЗУ перед вами.

Разгон ОЗУ

У внимательного читателя мог возникнуть вопрос - а что же важнее, более высокая частота памяти или более низкие тайминги (задержки)? Ведь, с одной стороны, чем выше частота - тем быстрее производительность памяти и системы в целом. С другой стороны, чем ниже тайминги - тем быстрее будет происходить обращение к памяти и меньше будет простаивать CPU, то есть - тем быстрее будет работать ПК. С учетом того, что чем выше частота - тем выше тайминги, тут нужно соблюсти баланс. Увы - у каждого он свой, так что разгон памяти - достаточно кропотливое занятие по выставлению различных таймингов, напряжений и частот, и тесты скорости работы ОЗУ в системе. Разумеется, далеко не все хотят заниматься перебором, поэтому в продаже есть память с поддержкой профилей DOCP и XMP. Это - уже зашитые в память профили авторазгона, где прописаны напряжения, частоты и тайминги, на которых память гарантированно заработает - вам лишь нужно выбрать нужный профиль в UEFI. Плюсы такого метода очевидны - вы получаете разгон в один клик. Минусы тоже - во-первых, такая память стоит дороже, причем чем выше гарантированная частота - чем больше цена. Во-вторых, профили не идеальны, и зачастую можно выжать еще 5-10% производительности, но опять же - ковыряясь в таймингах.

Ну и самый последний ожидаемый вопрос - а стоит ли вообще разгонять ОЗУ? Все зависит от ваших задач и процессоров: к примеру, в 6 и 8-ядерных AMD Ryzen частота шины, связывающей два процессорных кристалла, напрямую зависит от частоты ОЗУ, так что там ее разгон как говорится «маст хэв». В играх особого прироста производительности от разгона памяти стоит ждать лишь в топовых системах, и то это будет разница между 110 и 120 fps - с одной стороны, приятный бонус, с другой - разница-то все равно не заметна на глаз. Ну а лучше всего заметен разгон в задачах, тесно связанных с ОЗУ - к примеру, архивацией, где у процессоров зачастую не хватает кэша, и они вынуждены часто обращаться к памяти.

Компьютер совсем незаметно, но довольно быстро стал неотъемлемой частью нашей жизни. Без него невозможно представить ни одну отрасль производства, ни одну фабрику или завод, ни один офис. Да и ни одну квартиру, пожалуй, уже нельзя представить без персонального компьютера или ноутбука. Но хоть это устройство уже прочно вошло в нашу повседневную жизнь, в его работе и конструкции разбираются далеко не все. В этой статье будет рассмотрена одна из важнейших его составляющих - оперативная память ПК.

Речь не идёт о том, что каждый пользователь ПК должен досконально знать теоретические основы работы своего компьютера и уметь ремонтировать любую поломку. Нет, оставьте это профессионалам. Но элементарные знания устройства необходимы - это поможет избежать многих проблем в работе и, вполне вероятно, может предотвратить серьёзную поломку.

Оперативная память в структуре персонального компьютера

Итак, оперативная память. Это одна из важнейших комплектующих в компьютере. Нельзя сказать, что одна деталь более важна, а другая менее, но ОЗУ (оперативное запоминающее устройство - именно так официально именуется оперативная память) является незаменимым элементом в работе ПК. Можно сказать, что оперативная память - это своего рода буферная зона, связующий элемент между человеком и компьютером.

Физически оперативная память представлена в виде съёмного модуля, устанавливаемого в специальный разъём на материнской плате, расположенный справа от процессора. На большинстве материнских плат таких разъёмов два или четыре. На этом модуле с одной или двух сторон расположены микросхемы, которые, собственно, и являются памятью.

При включении компьютера запускается операционная система и некоторые программы. Все данные, которые им необходимы для нормального функционирования, помещаются в ОЗУ. Так поступают и все остальные программы, которые пользователь запускает в процессе работы. Будь то работа с текстом, обработка фотографий или прослушивание музыки - все промежуточные результаты работы программ находятся в оперативной памяти.

При выключении питания все данные из ОЗУ исчезают. Потому это устройство и именуется «оперативным». В этом одно из двух его главных отличий от ПЗУ - постоянной памяти типа жёсткого диска или флеш-накопителя. Второе отличие - скорость обмена данными. У ОЗУ она значительно выше, чем у ПЗУ. Этим, собственно, и объясняется назначение оперативной памяти - максимально повысить скорость отклика компьютера на действия пользователя.

На жёстком диске также может храниться некоторая оперативная информация (так называемый файл подкачки), помещаемая туда при недостатке места в ОЗУ. В таком случае пользователем могут наблюдаться негативные явления - подвисание и подтормаживание программ или всей системы.

История, развитие и типы ОЗУ

Оперативная память всегда присутствовала в структурной схеме вычислительной техники. Ещё в XIX веке были созданы первые образцы аналитических машин, состоящие сугубо из механических частей. Естественно, и ОЗУ было механическим. В XX столетии развитие электроники было стремительным. Это отражено и в эволюции оперативной памяти. В разное время для этих целей использовали электромеханические реле, электронно-лучевые трубки и магнитные барабаны.

С развитием полупроводниковых технологий появилась и стала развиваться оперативная память, основанная на транзисторах: десятки, сотни, тысячи, а затем и миллионы транзисторов в одном корпусе микросхемы. Сначала эти микросхемы памяти просто впаивались в материнскую плату, что было не очень удобно. С развитием компьютеров ОЗУ было вынесено на отдельную съёмную плату.

Основные современные типы оперативной памяти - это SRAM и DRAM - статическая и динамическая память с произвольным доступом. Первая выполнена на базе триггеров, имеет высокую скорость, но малую плотность элементов. Вторая построена на связках «конденсатор-транзистор», имеет высокую плотность и, как следствие, низкую себестоимость. Но уступает в скорости и нуждается в постоянной подзарядке своих конденсаторов. Поскольку для массового производства важна себестоимость продукции, то в ПК получила распространение именно динамическая память. С 1993 года и по сей день наиболее распространённой на рынке является её разновидность - синхронная DRAM (SDRAM).

Что касается технического исполнения, то первыми были односторонние модули SIMM, появившиеся в 80-х годах и имевшие по мере модификации объём от 64 Кбайт до 64 Мбайт. В них использовались чипы памяти FPM RAM и EDO RAM. На смену SIMM пришли двухсторонние модули DIMM, разработанные под память SDRAM. Они используются в компьютерах по сей день.

DDR и DDR2

Оперативная память DDR (Double Data Rate) стала следующим этапом развития SDRAM и характеризуется удвоившейся скоростью передачи данных. Различно также количество контактов (184 против 168) и ключей (1 против 2). Первым в линейке стал модуль PC1600 с чипом DDR200, эффективной частотой 200 МГц (при тактовой частоте шины памяти 100 МГц) и пропускной способностью 1600 МБ/с. Последним должен был стать PC3200 (DDR400, 400 МГц, 3200 МБ/с), но выпускались также модули PC4200 (DDR533, 533 МГц) и выше.

Кроме увеличившейся скорости, память DDR имела возможность работать в двухканальном режиме, что теоретически должно было повысить скорость (точнее, пропускную способность) в два раза. Для этого нужно было вставить в материнскую плату, которая также должна была поддерживать такой режим, две планки с абсолютно одинаковыми характеристиками. На практике прирост скорости не так ощутим, как это описывается в теории. Впоследствии двухканальный режим будут поддерживать и все другие типы DDR-памяти.

Впервые память DDR SDRAM появилась в 2001 году. Сегодня её ещё, конечно, можно встретить в старых компьютерах, но это большая редкость. Уже в 2003-2004 годах ей на смену пришла DDR2 SDRAM - второе поколение с удвоенной частотой шины. Память DDR2 имеет отличия в корпусе (240 контактов и иное расположение ключа), которые делают её не взаимозаменяемой с DDR.

Линейка начиналась с модуля PC2‑3200, работавшего на чипе DDR2‑400 с эффективной частотой 400 МГц и пропускной способностью 3200 МБ/с. Последним же стабильно работающим был модуль PC2‑9600 (DDR2‑1200, 1200 МГц, 9600 МБ/с). Выпускались и модули с более высокими характеристиками, но их работа не отличалась стабильностью.

DDR3

Следующим этапом эволюции стала оперативная память DDR3. Появившись в 2007-2008 годах, она не привела к резкому уходу от DDR2, но начала планомерно завоёвывать рынок памяти. На сегодняшний день это наиболее распространённый вид оперативной памяти.

Не желая отказываться от предшествующего поколения, производители выпускали материнские платы, поддерживающие оба стандарта. Память DDR2 не является совместимой с DDR3 ни электрически, ни механически. Хоть оба типа и имеют по 240 контактов, но ключ расположен в разный местах. Основное отличие заключается в ещё более понизившемся по сравнению с DDR и DDR2 энергопотреблении и напряжении питания (1,5 В).

В своей линейке оперативная память DDR3 начинается модулем PC3‑6400 (DDR3‑800) с эффективной частотой 800 МГц и скоростью передачи данных 6400 МБ/с. Сейчас такие модули уже стали достаточно большой редкостью. Это связано с тем, что большинство современных материнских плат поддерживает частоты памяти не ниже 1333 МГц. Топовые модели поддерживают память с частотой до 3200 МГц (PC3‑25600).

В семействе DDR3 существует небольшое ответвление - низкоуровневая (низковольтная) память DDR3L, которая характеризуется пониженным напряжением питания (1,35 В). Она полностью совместима с DDR3.

DDR4

Наиболее современной и скоростной является оперативная память DDR4. Её массовый выпуск начался ещё в 2014 году, но до сих пор она сильно проигрывает DDR3 по популярности и доступности. Хоть заявленные характеристики у неё и выше, но при этом и стоимость значительно возросла. К тому же память DDR4 не совместима с DDR3, целесообразность её выбора есть лишь при сборе новых систем, но не при модернизации старых.

Что касается характеристик, то первым в линейке идёт модуль PC4‑17000 (DDR4‑2133) с эффективной частотой 2133 МГц и пропускной способностью 17000 МБ/с. Планируется, что пределом для DDR4 станет эффективная частота 4266 МГц и пропускная способность 34100 МБ/с (PC4‑34100 DDR4‑4266).

Как и у каждого нового типа памяти, у этого основным отличием от своих предшественников является снижение энергопотребления и уменьшение напряжения питания (до 1,2 В), ну и, конечно же, улучшение всех скоростных характеристик. Кроме того, теперь модули имеют минимальный объём 4 Гб. Максимальный объём теоретически может достигать 192 Гб.

Куда делась оперативная память

Наверное, наиболее часто задаваемым вопросом о памяти компьютера будет вопрос: «Почему оперативная память используется не в полном объёме?». Причём услышать его можно как от начинающих, так от опытных пользователей ПК. Причин этого может быть несколько, но зачастую разгадка кроется в разрядности операционной системы.

Как известно, 32-разрядная версия операционной системы Windows способна работать с объёмом памяти, не превышающим 4 Гб. Всё, что сверх этого, она просто не «увидит». В 64-разрядной версии таких ограничений нет. Таким образом, при обнаружении такой проблемы в первую очередь следует проверить, какая версия ОС установлена. Сделать это можно, кликнув правой кнопкой мыши по значку «Компьютер» на рабочем столе (или же в меню «Пуск») и выбрав вкладку «Свойства». В разделе «Система» будет расположена вся необходимая информация, в том числе общий и доступный объём оперативной памяти.

Отметим, что 64-разрядная версия доступна для всех современных операционных систем Windows (XP, Vista, 7, 8, 10). Поэтому если в компьютере используется или планируется использовать более 4 Гб оперативной памяти, необходимо устанавливать 64-разрядную операционную систему Windows. Оперативная память при этом будет использоваться вся.

Но есть и другие причины уменьшения доступного объёма оперативной памяти. Это может быть программное ограничение используемой редакции операционной системы (в каждой версии доступно несколько редакций). Также некоторый объём может резервироваться для встроенного видеоадаптера, если таковой имеется. Не стоит забывать и о том, что каждая материнская плата имеет свои требования относительно характеристик и объёма оперативной памяти. Если они не выполняются, память не будет доступна.

Существуют и аппаратные проблемы. Например, модуль может быть неправильно или не полностью вставлен. Также он может иметь повреждённые участки памяти. Такой модуль не подлежит ремонту и требует немедленной замены. Выявить повреждения можно специальными программами.

Как проверить оперативную память

При возникновении сбоев и неполадок, которые могут быть вызваны проблемами с оперативной памятью (зависания и сбои системы, появление так называемого «синего экрана смерти») её необходимо проверить на ошибки. Сделать это можно как стандартными средствами операционной системы, так и сторонними программами.

В Windows 7 оперативная память проверяется программой, именуемой «Средство проверки памяти Windows». Найти её можно либо по адресу «Панель управления\Система и безопасность\Администрирование», либо через поиск по ключу «mdsched» в меню «Пуск». Из всех других утилит наиболее распространённой, доступной и надёжной программой для диагностики ОЗУ является Memtest86+.

Важно помнить пару моментов:

1. Оперативная память проверяется не из операционной системы (с загрузочной флешки, диска или после перезагрузки системы).

2. Если установлено несколько модулей памяти, проверять их желательно по одному. Так будет проще определить, который из них неисправен.

Очистка оперативной памяти

Самый простой и действенный способ очистки оперативной памяти - это перезагрузка компьютера. Но он подходит далеко не всем пользователям и не во всех случаях полезен. Альтернативой будет закрыть ненужные программы и тем самым высвободить зарезервированные ими объёмы памяти. Сделать это можно в «Диспетчере задач», вызвав его сочетанием клавиш Ctrl+Alt+Delete.

Существует также много различных программ, призванных оптимизировать расход оперативной памяти. Можно отметить такие утилиты, как CleanMem, SuperRam, Wise Memory Optimizer. А также CCleaner - универсальную и очень полезную утилиту мониторинга системы, которая способна эффективно очистить память, удалив временные файлы и кэш программ и системы, оптимизировав реестр.

Но стоит помнить, что эти способы лишь временное решение проблемы, полагаться на них не стоит. Главной проблемой нехватки оперативной памяти и, как следствие, медленной работы компьютера является недостаточный объём ОЗУ для конкретной комплектации компьютера или поставленной задачи. Решить её можно, установив дополнительную планку памяти или купив новую большего объёма.

Какой объём оперативной памяти необходим компьютеру

При выборе или модернизации компьютера часто возникают такие вопросы: «Как узнать оперативную память компьютера?», «Какой объём нужен?». Ответ на первый вопрос достаточно прост - нужно всего лишь воспользоваться утилитой CPU-Z. Она даст исчерпывающей ответ. С объёмом немного сложнее. Если идёт речь о модернизации, то пользователь, скорее всего, уже столкнулся с нехваткой памяти и приблизительно знает, насколько нужно её увеличить.

При сборке нового компьютера в первую очередь определяется его назначение. Для обычной офисной работы с документами вполне хватит и 1-2 Гб. Для домашнего компьютера смешанного использования приемлемо будет 4 Гб. Если собирается игровой компьютер, то понадобится минимум 8 Гб оперативной памяти, но комфортнее будет с 16 Гб. То же самое относится и к серьёзным рабочим машинам. Объём необходимой памяти определяется приложениями, с которыми будет вестись работа, но обычно составляет минимум 8-16 Гб.

Как выбрать оперативную память

Выяснив, как узнать оперативную память компьютера и какой объём нужен, можно отправляться в магазин. Но можно ли этими сведениями ограничиться? Однозначно, нет. Конечно, прежде всего нужно определить, какой тип (для новых компьютеров это DDR3 или DDR4) и объём нужны. Но есть ещё несколько факторов, которыми нельзя пренебречь.

Во-первых, оперативная память должна согласовываться с материнской платой и процессором не только по типу, но и по поддерживаемой ими частоте. Нет смысла покупать скоростную память, если другие комплектующие работают на более низких частотах. В лучшем случае память будет функционировать на пониженной частоте, а то и вовсе откажется работать. Если материнская плата поддерживает двухканальный режим, то лучше купить две одинаковые планки памяти. Это немного повысит её производительность. Обычно в продаже можно встретить уже готовые комплекты из 2 или 4 планок памяти.

Во-вторых, нужно обращать внимание на маркировку. Есть специальные типы памяти, имеющие приставку ECC. Означает она наличие дополнительного контроля ошибок. Большинство материнских плат не поддерживает такую память. Оперативная память для ноутбуков отличается от используемой в ПК и имеет приставку SO-DIMM.

В-третьих, немаловажное значение имеют тайминги. Это скоростная характеристика, означающая задержку сигнала. Обозначается тремя или четырьмя цифрами через дефис. Например, 9-8-11-18. Естественно, чем меньше числа, тем лучше, но для большинства пользователей эта разница будет практически неощутима. Зато тайминги значительно влияют на цену.

Оперативная память - это важная и сложная часть компьютера, влияющая на работу и производительность всей компьютерной системы. Она не так часто выходит со строя, но в этом и подвох - ведь от неё этого не ждут. Правильная диагностика и поиск ошибок в ОЗУ могут помочь избежать дорогостоящего ремонта и уж точно сэкономят уйму времени.

Как отличаются два разных процессора, так может отличаться и оперативная память. Это справедливо и относительно её стоимости. Но если более высокая цена процессора практически всегда означает, что он будет более производительным, то цена памяти сильно зависит от частоты и таймингов, которые хоть и гарантируют рост производительности, но зачастую незначительно влияют общую производительность системы. На них следует обращать внимание лишь при сборке игровых и высокопроизводительных рабочих компьютеров.

Сокращенно оперативную память компьютера называют ОЗУ (оперативное запоминающее устройство) или RAM (random access memory - память с произвольным доступом).

Название RAM более точно отражает строение и назначение устройства.

Назначение ОЗУ

  • Хранение данных и команд для дальнейшей их передачи процессору для обработки. Информация может поступать из оперативной памяти не сразу на обработку процессору, а в более быструю, чем ОЗУ, кэш-память процессора.
  • Хранение результатов вычислений, произведенных процессором.
  • Считывание (или запись) содержимого ячеек.

Особенности работы ОЗУ

Оперативная память может сохранять данные лишь при включенном компьютере. Поэтому при его выключении обрабатываемые данные следует сохранять на жестком диске или другом носителе информации. При запуске программ информация поступает в ОЗУ, например, с жесткого диска компьютера. Пока идет работа с программой она присутствует в оперативной памяти (обычно). Как только работа с ней закончена, данные перезаписываются на жесткий диск. Другими словами, потоки информации в оперативной памяти очень динамичны.

ОЗУ представляет собой запоминающее устройство с произвольным доступом . Это означает, что прочитать/записать данные можно из любой ячейки ОЗУ в любой момент времени. Для сравнения, например, магнитная лента является запоминающим устройством с последовательным доступом.

Логическое устройство оперативной памяти

Оперативная память состоит их ячеек, каждая из которых имеет свой собственный адрес. Все ячейки содержат одинаковое число бит. Соседние ячейки имеют последовательные адреса. Адреса памяти также как и данные выражаются в двоичных числах.

Обычно одна ячейка содержит 1 байт информации (8 бит, то же самое, что 8 разрядов) и является минимальной единицей информации, к которой возможно обращение. Однако многие команды работают с так называемыми словами. Слово представляет собой область памяти, состоящую из 4 или 8 байт (возможны другие варианты).

Типы оперативной памяти

Принято выделять два вида оперативной памяти: статическую (SRAM) и динамическую (DRAM). SRAM используется в качестве кэш-памяти процессора, а DRAM - непосредственно в роли оперативной памяти компьютера.

SRAM состоит из триггеров. Триггеры могут находиться лишь в двух состояниях: «включен» или «выключен» (хранение бита). Триггер не хранит заряд, поэтому переключение между состояниями происходит очень быстро. Однако триггеры требуют более сложную технологию производства. Это неминуемо отражается на цене устройства. Во-вторых, триггер, состоящий из группы транзисторов и связей между ними, занимает много места (на микроуровне), в результате SRAM получается достаточно большим устройством.

В DRAM нет триггеров, а бит сохраняется за счет использования одного транзистора и одного конденсатора. Получается дешевле и компактней. Однако конденсаторы хранят заряд, а процесс зарядки-разрядки более длительный, чем переключение триггера. Как следствие, DRAM работает медленнее. Второй минус – это самопроизвольная разрядка конденсаторов. Для поддержания заряда его регенерируют через определенные промежутки времени, на что тратится дополнительное время.

Вид модуля оперативной памяти

Внешне оперативная память персонального компьютера представляет собой модуль из микросхем (8 или 16 штук) на печатной плате. Модуль вставляется в специальный разъем на материнской плате.

По конструкции модули оперативной памяти для персональных компьютеров делят на SIMM (одностороннее расположение выводов) и DIMM (двустороннее расположение выводов) . DIMM обладает большей скоростью передачи данных, чем SIMM. В настоящее время преимущественно выпускаются DIMM-модули.

Основными характеристиками ОЗУ являются информационная емкость и быстродействие. Емкость оперативной памяти на сегодняшний день выражается в гигабайтах.

При этом оперативная память компьютера у многих пользователей является первым понятием, которое приходит на ум, когда речь заходит о памяти вообще.

Строго говоря, существует две разновидности памяти – постоянная и временная. И временная память компьютера – это и есть оперативная память плюс , о которой мы уже рассказывали в отдельной статье.

Информация, которую содержит временная память, как можно догадаться, не сохраняется постоянно и после выключения питания компьютера бесследно исчезает, если, разумеется, пользователь не успел сохранить ее в постоянной, то есть, на жестком диске или каком-либо сменном носителе. Однако временная память имеет одно большое преимущество перед постоянной – это высокое быстродействие. В частности, оперативная память работает в несколько сот тысяч (!) раз быстрее, чем жесткий диск. Именно поэтому во временной памяти хранятся динамично меняющиеся данные и программы, которые запускаются в течение сессии работы операционной системы.

Оперативная память (которую также иногда называют ОЗУ, что означает «оперативное запоминающее устройство») является самым большим временным хранилищем данных в компьютере. По сравнению с кэш-памятью ОЗУ обладает гораздо большим объемом, но в то же время, и меньшим быстродействием. Однако быстродействие ОЗУ, тем не менее, вполне достаточно для выполнения текущих задач прикладных программ и операционной системы.

Принцип работы оперативной памяти

В настоящее время микросхемы ОЗУ изготавливаются на основе технологии динамической памяти (DRAM, или Dynamic Random Access Memory). Динамическая память, в отличие от статической, которая используется в кэш-памяти, имеет более простое устройство, и, соответственно ее цена на единицу объема гораздо ниже. Для хранения одной единицы информации (одного бита) в DRAM используется всего лишь один транзистор и один конденсатор.

Помимо этого, особенностью динамической памяти является ее постоянная потребность в периодической регенерации содержимого. Эта особенность обусловлена тем, что конденсаторы, обслуживающие ячейку памяти, очень быстро разряжаются, и поэтому через определенное время их содержимое необходимо прочитать и записать заново. Данная операция в современных микросхемах осуществляется автоматически через определенный промежуток времени, при помощи контроллера микросхемы памяти.

Максимальный объем доступной оперативной памяти, которую можно установить в системе, определяется разрядностью шины адреса процессора. С появлением 32-разрядных процессоров этот объем был равен 4 ГБ. Современные 64-разрядные процессоры способны поддерживать адресное пространство ОЗУ в 16 ТБ. Это цифра представляется сейчас совершенно фантастической, но ведь когда-то и цифра в 4 ГБ для ОЗУ казалась абсолютно невероятной, а сегодня 32-разрядные системы уже уперлись в этот потолок, ограничивающий их возможности.

Как и в случае процессора, скорость работы ОЗУ во многом определяется ее тактовой частотой. Тактовая частота современных микросхем памяти типа DDR3 в среднем составляет примерно 1600 МГц.

Физически оперативная память представляет собой длинную и невысокую плату, к которой припаяны непосредственно микросхемы памяти. Эта плата вставляется в специальные слоты на материнской плате. В настоящее время наиболее распространены модули памяти форм-фактора DIMM (Dual In-line Memory Module или двухсторонний модуль памяти).

История развития микросхем

В эпоху господства компьютеров семейства XT/AT господствовали микросхемы памяти форм-фактора DIP. Эта память представляла собой отдельную микросхему, которую нужно было вставлять в горизонтальном положении в специальный разъем на материнской плате. Оперативная память формата DIP, однако, имела несколько существенных недостатков. Во-первых, микросхема не очень крепко держалась в своем гнезде, и поэтому часть ее контактов могла не действовать, что приводило к ошибкам памяти. Кроме того, подобные микросхемы имели небольшую емкость и неэффективно использовали свободное пространство материнской платы.

Недостатки технологии DIP побудили конструкторов к разработке модулей памяти форм-фактора SIMM (Single-in-line Memory Module). Первые SIMM появились еще в системах AT. В отличие от DIP модули SIMM, как и современные DIMM, представляли собой длинные модульные платы, к которым были в один ряд прикреплены микросхемы памяти, и которые можно было вставлять в специальный разъем на материнской плате в вертикальном положении.

В разные годы выпускалось два типа SIMM – 8-разрядные SIMM c 30 контактами и более поздний вариант, впервые появившийся в системах на базе 486-х процессоров – 32 разрядные модули c 72-разъемами.

Модули SIMM необходимо было вставлять не как угодно, а таким образом, чтобы заполнялись так называемые банки памяти. Разрядность банка памяти соответствовала разрядности шины адреса процессора. Для заполнения банка памяти в компьютерах с 16-разрядной шиной минимальное количество модулей SIMM составляло два 8-разрядных модуля, а в компьютерах с 32-разрядной шиной их требовалось уже 4.

Модули типа SIMM стали выходить из употребления уже в системах на базе первого Pentium. Вместо них конструкторами был разработан модуль DIMM. Как можно догадаться из названия («двухсторонний модуль памяти»), этот модуль имеет два ряда контактов с обеих сторон, в то время, как в SIMM фактически был всего один ряд контактов.

Помимо этого, модуль DIMM отличается технологией изготовления самих микросхем устанавливаемых на нем. Если до появления DIMM использовались микросхемы типа EDO или FPM, то в DIMM используется более новая технология Synchronous DRAM. Кроме того, модули DIMM имеют встроенную микросхему контроля четности памяти.

Модуль DIMM первого поколения, в отличие от SIMM, имел 168 контактов, а также специальный ключ в разъеме, исключающий неправильную установку модуля.

Второе поколение DIMM, основанное на технологии DDR SDRAM, имело уже 184 контакта. Следующие поколения – современные DDR2 и DDR3 могут похвастаться наличием 240 контактов.

Технология Double Data Rate Synchronous DRAM

Расскажем чуть подробнее о памяти технологии DDR SDRAM, которая стала настоящим технологическим прорывом и во многом предопределила дальнейшее развитие технологий оперативной памяти.

Модули ОЗУ типа DDR SDRAM были разработаны в начале 2000-х гг. и работали на тактовой частоте в 266 МГц. Первые модули DDR SDRAM появились в системах на базе AMD Athlon, а потом и на Pentium 4. По сравнению с предшественниками, микросхема DDR SDRAM позволила удвоить скорость считывания данных на одной и той же тактовой частоте, то есть скорость работы DDR SDRAM на частоте 100 МГц была эквивалентна работе простых микросхем Synchronous DRAM на частоте в 200 МГц. Удвоение скорости достигалось в DDR SDRAM за счет усовершенствования методики передачи сигнала. В преемниках технологии DDR SDRAM, технологиях DDR2 и DDR3 объем обрабатываемой за такт информации еще более увеличился.

Принципы работы современных микросхем памяти.

Память Rambus

Также стоит рассказать немного об одной интересной технологии ОЗУ, которая наделала в свое время много шума, однако так и не стала массовой. Речь идет о модулях памяти типа RIMM (Rambus in-line memory module), которые были разработаны компанией Rambus совместно с Intel в конце 90-х гг.

В основу модулей памяти RIMM Rambus положила технологию памяти, которая до этого использовалась в некоторых видеокартах. Технология RIMM до появления DIMM и DDR SDRAM казалась многообещающей и позиционировалась Rambus как замена всем старым форматам памяти. В частности, модули памяти Rambus RIMM в несколько раз превосходили своих конкурентов, предлагая пользователем скорость передачи данных в 1600 МБ/с при тактовой частоте в 400 МГц.

Тем не менее, модули памяти типа RIMM, оказались не лишены и нескольких недостатков. Во-первых, модули RIMM были довольно велики по размеру. Кроме того модули RIMM выделяли слишком много тепла и нуждались в средствах охлаждения. Ну и самое главное, память типа RIMM была отнюдь не дешева.

Поэтому на сегодняшний день ОЗУ, основанное на модулях памяти форм-фактора RIMM, можно встретить лишь в некоторых серверах, а не в персональных компьютерах.

Заключение

Оперативная память, или оперативное запоминающее устройство персонального компьютера – один из важнейших его компонентов. Основное назначение оперативной памяти – временное хранение текущих данных. Оперативная память предоставляет необходимое пространство для работы прикладных программ и операционной системы. От объема и скорости работы модулей оперативной памяти во многом зависит скорость работы и производительность всего компьютера.

Каждая ячейка оперативной памяти имеет свой индивидуальный адрес.

В современных вычислительных устройствах, по типу исполнения различают два основных вида ОЗУ:

1. ОЗУ, собранное на триггерах, называемое статической памятью с произвольным доступом, или просто статической памятью - SRAM (Static RAM). Достоинство этой памяти - скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Также данная память не лишена недостатоков. Во-первых, группа транзисторов, входящих в состав триггера обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи. Эти соображения заставили изобретателей изобрести более экономичную память, как по стоимости, так и по компактности.

2. В более экономичной памяти для хранения разряда (бита) используют схему, состоящую из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов), а во-вторых, компактности (на том месте, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов). Однако есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того, чтобы установить в единицу бит на основе конденсатора, этот конденсатор нужно зарядить, а для того, чтобы бит установить в 0, соответственно, разрядить. А зарядка или разрядка конденсатора - гораздо более длительная операция, чем переключение триггера (в 10 и более раз), даже если конденсатор имеет весьма небольшие размеры. Есть и второй существенный минус - конденсаторы склонны к "стеканию" заряда, проще говоря, со временем конденсаторы разряжаются. Причем разряжаются они тем быстрее, чем меньше их емкость. В связи с этим обстоятельством, дабы не потерять содержимое битов, эти конденсаторы необходимо регенерировать через определённый интервал времени, чтобы восстанавливать заряд. Регенерация, выполняется путем считывания заряда (считывание заряда с конденсатора выполняется через транзистор). Контроллер памяти периодически приостанавливает все операции с памятью для регенерации ее содержимого. Эта операция - регенерация значительно снижает производительность ОЗУ. Память на конденсаторах получила название - динамическая память - DRAM (Dynamic RAM) за то, что разряды в ней хранятся не статически, а "стекают" динамически во времени.

Таким образом, DRAM значительно дешевле SRAM, ее плотность значительно выше, что позволяет на том же пространстве кремниевой подложки размещать больше битов, но при этом ее быстродействие очень низкое. SRAM, наоборот, является очень быстрой памятью, но зато и очень дорогой. В связи с чем обычную оперативную память строят на модулях DRAM, а SRAM используется при создании, например кэшей микропроцессоров всех уровней.

ОЗУ может изготавливаться как отдельный блок, или входить в конструкцию однокристальной ЭВМ или микроконтроллера .

Пример структуры адресного пространства памяти на примере IBM PC

Основная область памяти

Upper Memory Area

Дополнительная область памяти

High Memory Area

См. также

Ссылки

Литература

  • Скотт Мюллер. Глава 6. Оперативная память // Модернизация и ремонт ПК = Upgrading and Repairing PCs. - 17 изд. - М.: «Вильямс» , 2007. - С. 499-572. - ISBN 0-7897-3404-4

Wikimedia Foundation . 2010 .

Смотреть что такое "" в других словарях:

    Запоминающее устройство ЭВМ, предназначенное для записи и хранения информации, используемой непосредственно при выполнении арифметических и логических операций в ходе реализации программы … Большой Энциклопедический словарь

    оперативное запоминающее устройство - оперативное запоминающее устройство; оперативная память; отрасл. оперативный накопитель Запоминающее устройство, предназначенное для информации, непосредственно участвующей в процессе выполнения операций, осуществляемых преимущественно… … Политехнический терминологический толковый словарь

    оперативное запоминающее устройство - ОЗУ Запоминающее устройство, непосредственно связанное с центральным процессором и предназначенное для данных, оперативно участвующих в выполнении арифметико логических операций. [ГОСТ 25492 82] Тематики устройства цифр. выч. машин запоминающие… …

    Оперативное запоминающее устройство - ВИДЫ ЗАПОМИНАЮЩИХ УСТРОЙСТВ 5. Оперативное запоминающее устройство ОЗУ Random access memory RAM Запоминающее устройство, непосредственно связанное с центральным процессором и предназначенное для данных, оперативно участвующих в выполнении… … Словарь-справочник терминов нормативно-технической документации

    оперативное запоминающее устройство - darbinė atmintinė statusas T sritis radioelektronika atitikmenys: angl. working memory vok. Arbeitsspeicher, n; Operationsspeicher, m rus. оперативное запоминающее устройство, n pranc. mémoire opératrice, f … Radioelektronikos terminų žodynas

    Запоминающее устройство ЭВМ, непосредственно связанное с центр. процессором и предназначенное для записи, хранения и выдачи информации, используемой при выполнении арифметич. и логич. операций в ходе реализации программы … Естествознание. Энциклопедический словарь

    Запоминающее устройство ЭВМ, непосредственно связанное с центральным процессором и предназначенное для записи, хранения и выдачи информации, используемой при выполнении арифметических и логических операций в ходе реализации программы … Энциклопедический словарь

    - (ОЗУ) запоминающее устройство ЭВМ, предназнач. для записи, хранения и выдачи информации, используемой непосредственно при выполнении арифметич. и логич. операций, осуществляемых в ходе реализации программы. Запись и считывание информации… … Большой энциклопедический политехнический словарь

    Оперативное запоминающее устройство - ОЗУ (RAM) - Оперативное запоминающее устройство (в англ. варианте память случайного доступа, Random Access Memory) это основные рабочие микросхемы, установленные на компьютере. В ОЗУ происходят все манипуляции с данными (арифметические действия, перезапись… … Краткий толковый словарь по полиграфии

    оперативное запоминающее устройство видеоадаптера - видео ОЗУ Память, предназначенная для вывода изображения на экран монитора. Современные видео ОЗУ являются двухпортовыми, что позволяет, в отличие от обычных микросхем DRAM , выполнять операции чтения и записи одновременно. Это резко увеличивает… … Справочник технического переводчика



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows