Сенсорные сети применение. Как развернуть беспроводные сенсорные сети в сложных условиях индустриальной среды. Реализация передового производства на базе беспроводных сенсорных сетей

Сенсорные сети применение. Как развернуть беспроводные сенсорные сети в сложных условиях индустриальной среды. Реализация передового производства на базе беспроводных сенсорных сетей

29.06.2020

Распределенные сенсорные сети

Что такое беспроводные сенсорные сети?

Датчики и принимаемое устройство

Беспроводные сенсорные сети строятся из узлов, называемых моты (mote ) - небольших автономных устройств с питанием от батарей и микрочипами с радиосвязью на частоте - например 2,4 ГГц. Специальное программное обеспечение позволяет мотам само организовываться в распределенные сети, связываться друг с другом, опрашивать и обмениваться данными с ближайшими узлами, расстояние до которых обычно не превышает 100 метров.

В англоязычной литературе такую сеть называют wireless sensor network (WSN) - это беспроводная сеть состоящая из территориально распределенных автономных устройств, использующих датчики для совместного контроля физических или экологических условий в разных районах.

Они могут измерять такие параметры, как температуры, звук, вибрации, давление, движение объектов или воздуха. Развитие беспроводных сенсорных сетей изначально было мотивированно военными задачами, например наблюдением за полем боя. В настоящее время беспроводные сенсорные сети используются все шире во многих областях гражданской жизнедеятельности, включая промышленный мониторинг и мониторинг окружающей среды, здравоохранение и контроль движения объектов. Область применения становится все шире.

Основные принципы работы

3-х уровневая схема сети. 1-й Уровень сенсоров и шлюза. 2-й уровень сервера. 3-й уровень тонкого клиента

Каждый узел сети: мот оснащен радиотрансивером или другим устройством беспроводной связи, небольшим микроконтроллером и источником энергии, обычно батареей. Возможно использование батарей солнечного освещения или других альтернативных источников энергии

Данные от отдаленных элементов передаются по сети между ближайшими от узла к узлу, по радиоканалу. В итоге с ближайшего мота пакет с данными передается на шлюз. Шлюз соединен, как правило, USB кабелем с сервером. На сервере - собранные данные обрабатываются, хранятся и могут быть доступны через WEB оболочку широкому числу пользователей.

Стоимость сенсорного узла меняется от сотни долларов до нескольких центов, в зависимости от размера сенсорной сети и ее сложности.

Аппаратное обеспечение и стандарты

Шлюз (2шт), соединен с ноутбуком кабелем USB. Ноутбук по UTP соединен с интернетом и выполняет роль сервера

Сенсорные устройства с радио антенной

Аппаратное обеспечение беспроводного узла и протоколы сетевого взаимодействия между узлами оптимизированы по энергопотреблению для обеспечения длительного срока эксплуатации системы при автономных источниках питания. В зависимости от режима работы время жизни узла может достигать нескольких лет.

Ряд стандартов в настоящее время либо ратифицирован или находятся в стадии разработки для беспроводных сенсорных сетей. ZigBee является стандартом, предназначенным для использования таких вещей, как промышленный контроль, встроенное зондирование, сбора медицинских данных, автоматизации зданий. Развитию Zigbee способствует большой консорциум индустриальных компаний.

  • WirelessHART является продолжением HART протокол для промышленной автоматизации. WirelessHART был добавлен в общей HART протокол как часть спецификации HART 7, который был утвержден фонд HART коммуникации в июне 2007 года.
  • 6lowpan является заявленным стандартом для сетевой слоя, но он не была принят еще.
  • ISA100 это еще одна работа в попытке войти в WSN технологию, но построено более широко включить обратную связь контроль в своей сфере. Внедрение ISA100 на основе ANSI стандартов планируется завершить к концу года 2008 года.

WirelessHART, ISA100, ZigBee, и все они основаны на тех же стандарт: IEEE 802.15.4 - 2005.

Программное обеспечение беспроводной сенсорной сети

Операционная система

Операционные системы для беспроводных сенсорных сетей менее сложны, чем универсальные операционные системы в силу ограниченности ресурсов в аппаратном обеспечении сенсорной сети. Из - за этого, операционной системе не нужно включать поддержку пользовательских интерфейсов.

Оборудование беспроводных сенсорных сетей не отличается о т традиционных встраиваемых систем, и поэтому для сенсорных сетей можно использовать встроенную операционную систему

Прикладные программы для визуализации

Программа визуализации результатов измерений и генерации отчетов MoteView v1.1

Данные с беспроводных сенсорных сетей, как правило, сохраняются в виде цифровых данных в центральной базовой станции. Есть много стандартных программ, таких как TosGUI MonSense, ГНС, облегчающих просмотр этих больших объемов данных. Кроме того, Открытый консорциум (OGC) указывает стандарты для совместимости и взаимодействия метаданных кодировки, что позволит в режиме реального времени любому лицу осуществлять наблюдение или контроль за беспроводной сенсорной сетью через Web Browser.

Для работы с данными, поступающими от узлов беспроводной сенсорной сети, используются программы, облегчающие просмотр и оценку данных. Одной из таких программ является MoteView . Эта программа позволяет просматривать данные в реальном времени и анализировать их, строить всевозможные графики, выдавать отчеты в различных разрезах.

Преимущества использования

  • Отсутствие необходимости в прокладке кабелей для электропитания и передачи данных;
  • Низкая стоимость комплектующих, монтажа, пуско-наладки и технического обслуживания системы;
  • Быстрота и упрощенность развертывания сети;
  • Надежность и отказоустойчивость всей системы в целом при выходе из строя отдельных узлов или компонентов;
  • Возможность внедрения и модификации сети на любом объекте без вмешательства в процесс функционирования самого объектах
  • Возможность быстрого и при необходимости скрытного монтажа всей системы в целом.

Каждый сенсор размером с пивную крышку (но в будущем их размеры можно будет уменьшить в сотни раз) содержит процессор, память и радиопередатчик. Такие крышки можно разбросать на любой территории, а они сами наладят связь между собой, сформируют единую беспроводную сеть и начнут передавать данные на ближайший компьютер.

Объединенные в беспроводную сеть, сенсоры могут отслеживать параметры окружающей среды: движение, свет, температуру, давление, влажность и т. д. Мониторинг может осуществляться на очень большой территории, потому что сенсоры передают информацию по цепочке от соседа к соседу. Технология позволяет им годами (даже десятилетиями) работать без смены батарей. Сенсорные сети это универсальные органы чувств для компьютера, и все физические объекты в мире, оборудованные сенсорами, могут быть распознаны компьютером. В перспективе каждый из миллиардов сенсоров получит IP-адрес, и они даже могут сформировать нечто вроде Глобальной сенсорной сети. Возможности сенсорных сетей заинтересовали пока только военных и промышленность. Согласно последнему отчету компании ON World, которая специализируется на исследовании рынка сенсорных сетей, в этом году рынок переживает заметный подъем. Еще одним заметным событием в этом году стал выпуск первой в мире системы ZigBee на одной микросхеме (производства Ember). Среди крупных промышленных компаний США, среди которых был проведен опрос ON World, около 29 % уже используют сенсорные сети, а еще 40 % планируют развернуть их в течение 18 месяцев. В Америке появилось более сотни коммерческих фирм, которые занимаются созданием и обслуживанием сенсорных сетей.

К концу нынешнего года количество сенсоров на планете превысит 1 млн. Сейчас растет не только количество сетей, но и их размер. Впервые созданы и успешно эксплуатируются несколько сетей из более чем 1000 нодов, в том числе одна на 25 тысяч нодов.

Источник: Веб ПЛАНЕТА

Область применений

Применение WSN многочисленно и разнообразно. Они используются в коммерческих и промышленных системах для мониторинга данных, которые трудно или дорого контролировать с использованием проводных датчиков. WSN могут использоваться в трудно досягаемых районах, где они могут оставаться в течение многих лет (экологический мониторинг окружающей среды) без необходимости замены источников питания. Они могут контролировать действия нарушителей охраняемого объекта

Так же WSN используют для мониторинга, отслеживания и контроля. Вот некоторые приложения:

  • Мониторинг задымленности и обнаружение очагов возгорания с больших лесных массивов и торфяников
  • Дополнительный источник информации для Кризисных Центров Управления субъектов федерации РФ
  • Сейсмическое обнаружение потенциальной напряженности
  • Военные наблюдения
  • Акустическое обнаружение движения объекта в охранных системах.
  • Экологический мониторинг пространства и окружающей среды
  • Мониторинг промышленных процессов, использование в MES системах
  • Медицинский мониторинг

Автоматизация зданий:

мониторинг температуры, расхода воздуха, присутствия людей и управление оборудованием для поддержания микроклимата;
управление освещением;
управление энергоснабжением;
сбор показаний квартирных счетчиков газа, воды, электроэнергии и т. д.;
охранно-пожарная сигнализация;
мониторинг состояния несущих конструкций зданий и сооружений.

Промышленная автоматизация:

дистанционный контроль и диагностика промышленного оборудования;
техническое обслуживание оборудования по текущему состоянию (прогнозирование запаса надежности);
мониторинг производственных процессов;

Киреев А.О., Светлов А.В. БЕСПРОВОДНЫЕ СЕНСОРНЫЕ СЕТИ В СФЕРЕ ТЕХНОЛОГИЙ ОХРАНЫ ОБЪЕКТОВ

Устоявшийся термин «беспроводная сенсорная сеть» (БСС) обозначает новый класс беспроводных систем, которые представляют собой распределенную, самоорганизующуюся и устойчивую к отказам отдельных элементов сеть миниатюрных электронных устройств с автономными источниками питания. Интеллектуальные узлы такой сети способны ретранслировать сообщения по цепи, обеспечивая значительную площадь покрытия системы при малой мощности передатчиков и, следовательно, высокой энергетической эффективности системы.

В настоящее время большое внимание уделяется вопросам организации автоматизированного мониторинга территорий с целью получения оперативной информации о наличии нарушителя, его перемещении и несанкционированных действиях на территориях, прилегающих к особо важным (ядерным, правительственным, военным) объектам, к государственной границе, или находящихся в зоне ответственности разведподразделе-ний (мониторинг участков фронта, тыловых коммуникаций противника). Для рационального решения данных задач необходимо использовать новое поколение технических средств и алгоритмов, принципиально отличающихся от применяемых в настоящее время. Наиболее перспективным направлением в этой области следует признать создание беспроводных сенсорных сетей. Именно они дают возможность обеспечить тотальный целенаправленный мониторинг больших территорий.

Применительно к системам охраны объектов БСС должны обнаруживать и классифицировать нарушителя, определять координаты, прогнозировать траектории его движения. Обладая распределенным интеллектом, система самостоятельно обеспечивает изменение направления потоков информации, например, в обход вышедших из строя или временно не функционирующих узлов, организует надежную передачу информации на всей контролируемой территории и на центральный пункт.

Перспективными являются также БСС, в которых приемопередатчик каждого сенсора будет являться фактически датчиком обнаружения объекта (эффект снижения уровня несущей в радиоканале вследствие появления объекта в зоне действия сети).

Для обеспечения высокой надежности и защиты передаваемой информации в БСС следует разрабатывать собственные радиопротоколы, устойчивые к изменению характеристик канала связи, радиоподавлению, к перехвату и имитации данных. В этом случае целесообразным является использование технологий расширения спектра - методами DSSS (прямой числовой последовательности) и FHSS (скачкообразной перестройки частоты) .

Что касается механизмов доступа к среде передачи данных, то здесь появляются взаимоисключающие требования высокой энергетической эффективности системы и минимальных временных задержек распространения данных в БСС. Использование в качестве базового алгоритма CSMA/CA (множественный доступ к среде с контролем несущей и предотвращением коллизий) имеет свой недостаток - устройства сети должны находиться в режиме постоянного прослушивания эфира, что приводит к росту энергопотребления. В полностью асинхронных сетях этот алгоритм малоэффективен .

Наиболее приемлемым в такой ситуации выглядит алгоритм «слотового» CSMA/CA, совмещающий принципы синхронизированного доступа (временное разделения TDMA) и доступа на конкурентной основе.

Среди открытых стандартов в области беспроводных сенсорных сетей на сегодняшний момент ратифицирован только стандарт ZigBee, основанный на принятом ранее стандарте 802.15.4, который описывает физический уровень (PHY) и уровень доступа к среде (MAC) для беспроводных персональных сетей (WPAN). Эта технология изначально была разработана для задач, не требующих высоких скоростей передачи информации. Устройства таких сетей должны быть максимально дешевыми, со сверхнизким потреблением энергии .

Среди несомненных преимуществ ZigBee-решений следует отметить и существенные недостатки. Например, наличие трех различных классов устройств (координаторов, маршрутизаторов и оконечных устройств) существенно снижает отказоустойчивость сети в случае выхода из строя отдельных ее элементов. Кроме того, такое построение требует планирования размещения устройств еще на этапе проектирования системы, соответственно резко снижается устойчивость сети к изменениям в топологии.

Всех перечисленных недостатков лишены Mesh-сети - многоячейковые одноранговые сети, в которых каждый узел может ретранслировать пакеты в процессе доставки. Узлы такой сети равноправны и взаимозаменяемы - в результате улучшается масштабируемость системы, повышается ее отказоустойчивость .

Беспроводная сенсорная сеть охранной системы должна контролировать максимально возможную территорию. В связи с этим, одним из основных требований к выбору элементной базы для создания радиоканала между отдельными узлами сети является максимальная дальность связи. Работа в диапазоне частот 433 МГц (открыт для свободного использования в России) обладает рядом преимуществ по сравнению с работой в СВЧ диапазоне 2,4 ГГц (для которого выпускается основная номенклатура ZigBee устройств). Так, в диапазоне 433 МГц дальность уверенной связи в несколько раз больше, чем в диапазоне 2,4 ГГц, при той же мощности передатчика. Кроме того, устройства, работающие в диапазоне 433 МГц, обладают достаточно хорошей устойчивостью к действию преград на пути распространения радиоволн, таких как погодные осадки, перепады рельефа местности, деревья и пр. Радиоволны 433 МГц значительно лучше распространяются в замкнутых пространствах, таких как туннели метро, городские улицы и т.д., чем радиоволны диапазона 2,4 ГГц. Преимущество диапазона 2,4 ГГц в скорости передачи данных не является критичным в сфере охранных технологий, так как объем передаваемой информации, как правило, незначителен и ограничивается десятками байт (за исключением телеметрии).

Таким образом, выбор приемопередатчика для узла БСС охраны объектов будем вести в диапазоне 433 МГц. Трансиверы должны обладать высокой энергетической эффективностью (напряжение питания не более

3,3 В, низкие токи потребления), функционировать в температурном диапазоне минус 40... +85 °С.

Среди множества микросхем приемопередатчиков ISM-диапазона особое место занимают трансиверы XE-MICS. Для применения в беспроводных сенсорных сетях подходят 2 микросхемы этой фирмы: XE1203F и

Это интегральные однокристальные полудуплексные приемопередатчики, построенные по схеме прямого (Zero-IF) преобразования, обеспечивающие 2-х уровневую частотную манипуляцию без разрыва фазы (CPFSK) и NRZ кодирование. Таким образом, тип модуляции несущей, реализованный в приемопередатчиках XEMICS, позволяет рационально использовать рабочую полосу частот.

Общими для трансиверов XE1203F и XE1205F являются сверхмалое энергопотребление: работа в диапазоне напряжения питания 2,4...3,6 В, токи потребления:

0,2 мкА в спящем режиме;

14 мА в режиме приема;

62 мА в режиме передачи (+15 дБм) .

Рабочая полоса частот: 433-435 МГц. Температурный диапазон: минус 40. +85°С. Приемники транси-

веров идентичны между собой и построены по схеме с прямым преобразованием частоты. Внутри этих модулей встроен синтезатор частоты, основанный на петле сигма-дельта ФАПЧ с шагом в 500 Гц.

Приемники имеют индикатор уровня принимаемого сигнала RSSI (Received Signal Strength Indicator), что в сочетании с возможностью программирования выходной мощности, позволяет реализовать идею адаптивного управления энергопотреблением. В состав трансивера входит устройство контроля частоты FEI (Frequency Error Indicator), позволяющее получить информацию о смещении частоты гетеродина приемника и организовать АПЧ .

Трансиверы также обладают функцией распознавания данных (pattern recognition), благодаря которой трансивер может обнаружить программно заданное слово (до 4 байт) в принимаемом потоке данных. Последнюю особенность можно использовать для идентификации модулей в БСС, что сократит количество служебных байт в передаваемом пакете.

Основные отличия двух модулей проявляются в использовании различных методов расширения спектра.

Трансивер XE1203F обладает аппаратным блоком расширения спектра сигнала прямой последовательностью - Direct Sequence Spread Spectrum (DSSS). При активировании режима DSSS каждый бит данных кодируется 11-разрядным кодом Баркера: 101 1011 1000 или 0x5B8h. Автокорреляционная функция кода Баркера обладает ярко выраженным автокорреляционным пиком.

В отличие от XE1203F трансивер XE1205F (и модуль DP1205F на его основе) является узкополосным устройством. Наименьшее значение внутреннего полосового фильтра, которое можно установить 2разрядным конфигурационным регистром, составляет 10 кГц (используя специальные дополнительные настройки, это значение можно уменьшить даже до 7 кГц!). Количество возможных каналов в этом случае

Эта возможность позволяет использовать XE1205F для специфических узкополосных приложений. Использовать сужение полосы можно, если скорость передачи данных и девиация частоты не будет превышать значений 4800 бит и 5 кГц соответственно, и при условии, что тактовая частота опорного генератора стабилизируется резонатором, имеющим высокую стабильность, или используется частотная коррекция.

В трансивере используется 16-байтный буфер FIFO для хранения передаваемых или принимаемых байтов данных. Байты данных передаются и принимаются из буфера FIFO по внешнему стандартному 3-проводному последовательному интерфейсу SPI.

Узкополосность, а также малое время восстановления передатчика при переключении между каналами (~150 мкс) позволяют применять трансивер XE1205F для построения радиосистем, использующих метод частотных скачков (FHSS). Метод частотных скачков подразумевает, что вся отведенная для передачи полоса рабочих частот разделяется на определенное количество частотных каналов. Скачки с канала на канал происходят синхронно в некоторой последовательности (например, линейной или псевдослучайной).

Преимуществом трансивера XE1205F также является уникальная в своем классе чувствительность приемника -121 дБм.

Что касается скоростей передачи данных, то возможности модуля XE1203F при использовании кодека Баркера выглядят недостаточными даже для систем охраны- всего лишь 1,154 кБит. Этот показатель не позволит реализовать энергетически эффективную БСС, т.к. время сна, предусмотренное по протоколу CSMA/CA, будет слишком коротким.

Трансиверы узлов беспроводной сенсорной сети охраны объектов должны обеспечивать возможность:

создания Mesh-сети с увеличенным радиусом действия;

реализации на физическом уровне - технологий расширения спектра FHSS;

реализации на уровне доступа к среде - «слотового» CSMA/CA с синхронизацией доступа.

Основываясь на вышесказанном можно сделать вывод о предпочтительности использования модуля приемопередатчика XE1205F для организации физического и MAC уровня беспроводной сенсорной сети охраны объектов.

ЛИТЕРАТУРА

1. Варагузин В. Радиосети для сбора данных от сенсоров, мониторинга и управления на основе стандарта IEEE 802.15.4 // ТелеМультиМедиа. - 2005.-№6.- С23-27. - www.telemultimedia.ru

2. Вишневский В.М., Ляхов А.И., Портной С.Л., Шахнович И.В. Широкополосные беспроводные сети передачи информации. - М.: Техносфера, 2005 г. - 592 с.

3. Баскаков С., Оганов В. Беспроводные сенсорные сети на базе платформы MeshLogic™ // Электронные

компоненты. - 2006. - №8. - С.65-69.

4. Горюнов Г. Интегральный СВЧ трансивер XE1203. // Мир электронных компонентов. - 2004. - №1. -

Уже близок тот день, когда сотни миллионов полупроводниковых сенсоров будут интегрироваться во все, что только возможно, начиная от брелока на ключе и заканчивая детской коляской. И все они будут в состоянии не только выступать в роли интеллектуальных датчиков, но и выполнять первичную обработку информации, а также взаимодействовать друг с другом, образуя единую беспроводную сенсорную сеть. При этом такие датчики практически не будут потреблять электроэнергию, так как встроенных миниатюрных аккумуляторов будет хватать на несколько лет, то есть на весь срок работы сенсоров. Это будет концептуально новый тип компьютерной системы, функционирующей с помощью беспроводной сенсорной сети. Такую сеть принято называть Ad-hoc Wireless Sensor Networks. Термин Ad-hoc позаимствован из современных беспроводных сетей, действующих, например, в стандарте IEEE 802.11b. Такие беспроводные сети имеют два режима взаимодействия: режим Infrastructure и Ad-hoc. В режиме Infrastructure узлы сети взаимодействуют друг с другом не напрямую, а через точку доступа (Access Point), которая выполняет в беспроводной сети роль своеобразного концентратора (аналогично тому, как это происходит в традиционных кабельных сетях). В режиме Ad-hoc, который также называется Peer-to-Peer («точка-точка»), станции непосредственно взаимодействуют друг с другом. Соответственно и в беспроводных сенсорных сетях режим Ad-hoc означает, что все сенсоры напрямую взаимодействуют друг с другом, создавая своеобразную сотовую сеть

Беспроводные сенсорные сети - это своеобразный шаг на пути перехода в следующую эпоху - когда компьютеры будут непосредственно соединены с физическим миром и смогут угадывать желания пользователей, а также принимать за них решения.
Давайте немного помечтаем, что принесут нам такие сенсорные сети в будущем. Представьте себе детские кроватки, слушающие дыхание младенцев; браслеты, следящие за состоянием пациентов в клинике; детекторы дыма, которые могут не только в случае необходимости вызвать пожарных, но и заранее проинформируют их об очаге возгорания и степени сложности пожара. Электронные устройства смогут распознавать друг друга, источники питания будут напоминать о том, что им необходимо «подкрепиться».

Представьте сотни тысяч сенсорных датчиков, объединенных в общую сеть в лесу. В таком лесу просто невозможно будет заблудиться, поскольку передвижение человека будет фиксироваться, и анализироваться датчиками. Другой пример - датчики в поле, настроенные на контроль за состоянием почвы и в зависимости от меняющихся условий регулирующие полив и количество вносимых удобрений.
Не менее полезными будут сенсорные сети на дорогах. Общаясь друг с другом, они смогут регулировать поток машин. Это же мечта любого водителя - дороги без пробок! Такие сети смогут справляться с этой задачей значительно эффективнее, чем любое ведомство. Проблема контроля
правонарушений на дорогах решится при этом сама собой.

Использование сенсорных сетей для управления электроснабжением позволит достичь невероятной экономии электроэнергии. Представьте себе такую управляющую сеть у вас в квартире. Отслеживая ваше местонахождение, датчики смогут повсюду выключать за вами свет и включать его по мере необходимости. Ну а если использовать такие сети для контроля освещения улиц и дорог, то проблема нехватки электричества исчезнет сама собой. Для того, чтобы сенсорные сети стали реальностью завтрашнего дня, исследования в этом направлении ведутся уже сегодня. И лидером в этой области является корпорация Intel, которая поддерживает все передовые компьютерные технологии будущего. Особое внимание, уделяя разработке беспроводных много узловых сенсорных сетей, способных к самостоятельному автоматическому формированию и настройке по мере необходимости. Реализация этой технологии позволит развернуть сеть недорогих, но при этом весьма сложных полупроводниковых сенсорных устройств, которые смогут самостоятельно устанавливать связь друг с другом, докладывая о тех или иных изменениях в окружающей обстановке. К примеру, сенсор Mica оснащается 128 килобайтами программой флэш-памяти, 256 килобайтами флэш-памяти для хранения данных и радиопередатчиком, работающим на частоте 900 МГц.
Некоторые из этих устройств работают под управлением операционной системы
TinyOS , код этой операционной системы является открытым и состоит всего из
8.5 Кб.

Такие устройства найдут применение в принципиально новых областях, например в разработке интеллектуальных предметов одежды, подключенных одеял, которые будут следить за состоянием здоровья новорожденного и сообщать важнейшие показатели его жизнедеятельности, интеллектуальных фермерских хозяйств, в которых полупроводниковые датчики, установленные в почве, займутся управлением ирригационной
системой и внесением удобрений. Исследованием сенсорных сетей в корпорации Intel занимается
знаменитая исследовательская лаборатория Intel Berkeley Research laboratory, расположенная в штате Калифорния. Существующие сегодня экспериментальные сенсорные сети лишь отчасти удовлетворяют вышеизложенным требованиям. Так, на сегодняшний день сети состоят только из сотен сенсоров с ограниченной зоной покрытия и выполняют лишь четко определенные задачи. Они способны передавать лишь определенный тип информации от одного датчика к другому и только в заданной полосе пропускания. Потребление энергии также нельзя назвать ничтожно малым
- заряда батареи хватает всего на несколько дней. Существующие сенсорные датчики пока еще достаточно инертны, а о высокой надежности и незаметности в эксплуатации (хотя бы из-за размеров) и речи не идет. Ну и, конечно же, такие сенсоры стоят достаточно дорого, так что сеть, состоящая из сотни сенсоров, обходится недешево. Но надо помнить, что речь идет об экспериментальных сетях и о развитии технологии будущего. В то же время экспериментальные сенсорные сети уже сейчас приносят пользу. Одна из таких сенсорных сетей, созданная совместными усилиями исследовательской лаборатории Intel Berkeley, институтом Атлантики и Калифорнийским университетом, действует на Большом утином острове (Great Duck Island) в штате Мэн.

Задача этой сети - изучение микросреды обитания различных биологических организмов населяющих остров.
Любое человеческое вмешательство (даже с целью изучения) иногда излишне,
вот тут-то и приходят на выручку сенсорные сети, позволяющие без непосредственного участия человека собирать все необходимую информацию.

Сенсорная сеть использует в качестве узловых элементов две платы. На первой плате расположены температурный датчик, датчики влажности и барометрического давления и инфракрасный датчик. На второй плате находятся микропроцессор (частота 4 МГц), оперативная память объемом 1 Кбайт, флэш-память для хранения программ и данных, источник питания (две батарейки типоразмера АА) и радиопередатчик/
приемник, работающий на частоте 900 МГц. Сенсоры позволяют регистрировать всю необходимую информацию и передавать ее в базу данных главного компьютера. Все датчики предварительно проходят тщательное тестирование - плату с датчиками погружают в воду надвое суток и следят за ее функциональностью. Все сенсорные узлы образуют единую беспроводную сеть и способны обмениваться информацией. При этом передача информации от удаленного узла сети к шлюзу (Gateway Sensor) происходит по цепочке, то есть от одного узла сети к другому, что позволяет создавать большую зону покрытия.

Через шлюз информация достигает главного компьютера. Шлюз использует направленную антенну, что позволяет увеличить расстояние передачи до 300 м. С главного компьютера информация с помощью спутниковой связи передается через Интернет в исследовательский центр, расположенный в Калифорнии.

Не менее активно сотрудники лаборатории работают над прецизионной биологией, созданием биочипов. Кроме сенсорного восприятия мира твердых вещей, исследуется возможность "ощущать" жидкие среды и биологические, развивающиеся объекты. Подобные исследования открывают колоссальные перспективы для медицинских и фармацевтических разработок, осуществления химических процессов и изготовления биологических препаратов. Поскольку главное предназначение сенсорных сетей – восприятие и передача полезной информации, специалисты лаборатории Intel в Беркли заняты разработкой методики объединения сенсоров с предметами, мониторинг которых вменяется им в обязанность, а также исследуют возможность создания «актуаторов» - устройств на основе сенсоров, которые позволяют влиять на ситуацию, а не только регистрировать ее состояние. Сенсорные сети очевидным образом полезны для военных приложений, одна из возможных вариаций сетей проходила "боевые" испытания в Афганистане, где вооруженные силы США разместили несколько сот сенсоров с целью отслеживания передвижений боевой техники противника. Однако о внедрении
реальных сетей в нашу жизнь говорить рано, сеть уязвима в отказоустойчивости. Атакой в сенсорной сети, приводящей к отказу в обслуживании (Denial of Service - DoS), является любое событие, которое уменьшает или ликвидирует возможность сети выполнять ожидаемую от нее функцию. Авторы предлагают основывать протоколы сенсорных сетей на многоуровневой архитектуре, что может повредить эффективности сети, но повысит ее надежность. Обсуждаются виды DoS-атак, типичные для каждого уровня, и приемлемые методы защиты. Таким образом, уже сегодня, несмотря на несовершенство и пока еще достаточно узкий круг использования, сенсорные сети находят применение в науке, а в дальнейшем и в жизни.

Использовались материалы с сайтов:

Практически все сферы жизни в 21 веке зависят от информационно-коммуникационных технологий (ИКТ). Данными обмениваются не только люди, но и всевозможные интеллектуальные системы, мобильные телефоны, носимые устройства, банкоматы, датчики. К «Интернету вещей» уже подключены по меньшей мере 5 млрд устройств. Функционирование любых крупных комплексов — предприятий промышленности, энергетики, сельского хозяйства, торговых центров, музеев, офисов, жилых зданий — сопряжено с постоянным контролем ситуации на их территории. Чувствительные сенсоры в режиме реального времени следят за исправностью оборудования, организацией взаимодействия приборов между собой, предупреждают о необходимости их замены или о чрезвычайных ситуациях. При стремительно растущих объемах данных необходим простой и удобный способ обмена ими между устройствами и центрами обработки информации.

Версия для печати:

Беспров одные сенсорные сети (БСС, Wireless Sensor Networks), состоящие из беспроводных сенсоров и управляющих устройств и способные к самоорганизации с помощью интеллектуальных алгоритмов, демонстрируют масштабные перспективы использования для контроля здоровья человека, состояния окружающей среды, функционирования производственных и транспортных систем, учета различных ресурсов и др. В настоящем выпуске информационного бюллетеня представлены технологические тренды в области БСС, связанные с обеспечением постоянной работы беспроводных сенсоров и их применением в двух областях современной экономики - передовом производстве (advanced manufacturing) и «умной» энергетике (smart grid).


Самозарядные сенсорные устройства

Для развития беспроводных сенсорных сетей важно решить проблему их энергопитания. Перспективным трендом является создание долговечных автономных устройств с минимальным потреблением энергии - преобразованной из внешних источников.

Беспроводные сенсорные устройства могут, например, питаться от энергии радиосигнала, отправленного на них от какого‑либо передатчика (подобно устройствам радиочастотной идентификации (RFID) или бесконтактным смарт-картам). Эта энергия используется устройством как для подзарядки сенсора, так и для формирования ответного сигнала с информацией о текущем состоянии контролируемого объекта.

Другой способ - пассивное преобразование энергии из внешней среды (energy harvesting): солнечной (снаружи помещения при достаточно ясной погоде), тепловой, энергии механических вибраций (от работающих рядом приборов - сборочных аппаратов, конвейеров и т. п.), энергии вибраций самого сенсора (в случае с носимыми устройствами), фоновых радиоизлучений от окружающих электроприборов (в том числе Wi-Fi).

Реализация передового производства на базе беспроводных сенсорных сетей

Нерациональное использование ресурсов и производственных мощностей, выработка большого количества загрязняющих окружающую среду отходов, отсутствие постоянного контроля состояния объектов на предприятиях - эти и другие проблемы современной промышленности стимулируют переход к модели передового производства (advanced manufacturing). Для него характерны использование новых материалов и экологически безопасных технологий (green technologies), а также повсеместное применение ИКТ и интеллектуальных систем, в частности робототехники и беспроводных сенсорных сетей.

Индустриальные беспроводные сенсорные сети (ИБСС, Industrial Wireless Sensor Networks) - важнейший фактор реализации передового производства. Для управления и контроля состояния объектов на предприятии (оборудования, конвейеров, сборочных аппаратов, реакторов) используется набор взаимосвязанных беспроводных сенсоров и информационных систем, которые обрабатывают данные с сенсоров и взаимодействуют с контролируемыми объектами с помощью управляющих устройств. Такая автоматизированная система реагирует на любые изменения показателей на предприятии, оповещает персонал об авариях и проблемных ситуациях, анализирует эффективность использования оборудования, оценивает уровень загрязнения окружающей среды и объемы производимых отходов.

«Умные» энергосети

Глобальная проблема нерационального использования электроэнергии особенно актуальна для России. Большие затраты на генерацию электроэнергии увеличивают себестоимость производства продукции, что ложится двойным бременем на конечного потребителя. Для повышения эффективности и надежности энергосистем многие страны переходят к концепции «умных» энергосетей (smart grid).

Такая сеть управляет в режиме реального времени всеми подсоединенными к ней генерирующими источниками, магистральными и распределительными сетями и объектами, потребляющими электроэнергию. Для управления «умной» энергосетью используются беспроводные сенсорные сети, которые контролируют объемы энергопроизводства и энергопотребления на разных ее участках. С помощью информационных систем рассчитывается оптимальное распределение энергии в сети, строятся прогнозы на разные сезоны и периоды дня, синхронизируются выработка энергии и ее доставка, контролируется безопасность линий электропередач. Для повышения эффективности энергосети ее некритические элементы на время пониженной активности выключаются.

Мониторинг глобальных технологических трендов проводится Институтом статистических исследований и экономики знаний Высшей школы экономики () в рамках Программы фундаментальных исследований НИУ ВШЭ.

При подготовке трендлеттера использовались следующие источники: Прогноз научно-технологического развития РФ до 2030 года (prognoz2030.hse.ru), материалы научного журнала «Форсайт» (foresight-journal.hse.ru), данные Web of Science , Orbit , idc.com, marketsandmarkets.com, wintergreenresearch.com, greentechmedia.com, greenpatrol.ru и др.

Максим Сергиевский

Новейшие технологии беспроводной связи и прогресс в области производства микросхем позволили в течение последних нескольких лет перейти к практической разработке и внедрению нового класса распределенных коммуникационных систем - сенсорных сетей.

Беспроводные сенсорные сети (wireless sensor networks) состоят из миниатюрных вычислительно-коммуникационных устройств - мотов (от англ. motes - пылинки), или сенсоров. Мот представляет собой плату размером обычно не более одного кубического дюйма. На плате размещаются процессор, память - флэш и оперативная, цифроаналоговые и аналого-цифровые преобразователи, радиочастотный приемопередатчик, источник питания и датчики. Датчики могут быть самыми разнообразными; они подключаются через цифровые и аналоговые коннекторы. Чаще других используются датчики температуры, давления, влажности, освещенности, вибрации, реже - магнитоэлектрические, химические (например, измеряющие содержание CO, CO2), звуковые и некоторые другие. Набор применяемых датчиков зависит от функций, выполняемых беспроводными сенсорными сетями. Питание мота осуществляется от небольшой батареи. Моты используются только для сбора, первичной обработки и передачи сенсорных данных. Внешний вид мотов, выпускаемых различными производителями, приведен на рис. 1.

Основная функциональная обработка данных, собираемых мотами, осуществляется на узле, или шлюзе, который представляет собой достаточно мощный компьютер. Но для того, чтобы обработать данные, их нужно сначала получить. Для этой цели узел обязательно оснащается антенной. Но в любом случае доступными для узла оказываются только моты, находящиеся достаточно близко от него; другими словами, узел не получает информацию непосредственно от каждого мота. Проблема получения сенсорной информации, собираемой мотами, решается следующим образом. Моты могут обмениваться между собой информацией с помощью приемопередатчиков, работающих в радиодиапазоне. Это, во-первых, сенсорная информация, считываемая с датчиков, а во-вторых, информация о состоянии устройств и результатах процесса передачи данных. Информация передается от одних мотов другим по цепочке, и в итоге ближайшие к шлюзу моты сбрасывают ему всю аккумулированную информацию. Если часть мотов выходит из строя, работа сенсорной сети после реконфигурации должна продолжаться. Но в этом случае, естественно, уменьшается число источников информации.

Для выполнения функций на каждый мот устанавливается специализированная операционная система. В настоящее время в большинстве беспроводных сенсорных сетей используется TinyOS - ОС, разработанная в Университете Беркли. TinyOS относится к программному обеспечению с открытым кодом; оно доступно по адресу: www.tinyos.net. TinyOS - это управляемая событиями операционная система реального времени, рассчитанная на работу в условиях ограниченных вычислительных ресурсов. Эта ОС позволяет мотам автоматически устанавливать связи с соседями и формировать сенсорную сеть заданной топологии. Последний релиз TinyOS 2.0 появился в 2006 году.

Важнейшим фактором при работе беспроводных сенсорных сетей является ограниченная емкость батарей, устанавливаемых на моты. Следует учитывать, что заменить батареи чаще всего невозможно. В связи с этим необходимо выполнять на мотах только простейшую первичную обработку, ориентированную на уменьшение объема передаваемой информации, и, что самое главное, минимизировать число циклов приема и передачи данных. Для решения этой задачи разработаны специальные коммуникационные протоколы, наиболее известными из которых являются протоколы альянса ZigBee. Данный альянс (сайт www.zigbee.org) был создан в 2002 году именно для координации работ в области беспроводных сенсорных сетей. В него вошли крупнейшие разработчики аппаратных и программных средств: Philips, Ember, Samsung, IBM, Motorola, Freescale Semiconductor, Texas Instruments, NEC, LG, OKI и многие другие (всего более 200 членов). Корпорация Intel в альянс не входит, хотя и поддерживает его деятельность.

В принципе, для выработки стандарта, в том числе стека протоколов для беспроводных сенсорных сетей, ZigBee использовал разработанный ранее стандарт IEEE 802.15.4, который описывает физический уровень и уровень доступа к среде для беспроводных сетей передачи данных на небольшие расстояния (до 75 м) с низким энергопотреблением, но с высокой степенью надежности. Некоторые характеристики радиопередачи данных для стандарта IEEE 802.15.4 приведены в табл. 1.

Таблица 1. Характеристики радиопередачи данных для IEEE 802.15.4

Полоса частот, МГц

Нужна ли лицензия

Географический регион

Скорость передачи данных, Кбит/с

Число каналов

На данный момент ZigBee разработал единственный в этой области стандарт, который подкреплен наличием производства полностью совместимых аппаратных и программных продуктов. Протоколы ZigBee позволяют устройствам находиться в спящем режиме бо льшую часть времени, что значительно продлевает срок службы батареи.

Очевидно, что разработать схемы обмена данными между сотнями и даже тысячами мотов не так-то просто. Наряду с прочим необходимо учесть тот факт, что сенсорные сети работают в нелицензированных частотных диапазонах, поэтому в ряде случаев могут возникать помехи, создаваемые посторонними источниками радиосигналов. Желательно также избегать повторной передачи одних и тех же данных, а кроме того, учитывать, что из-за недостаточной энергоемкости и внешних воздействий моты будут выходить из строя навсегда или на какое-то время. Во всех таких случаях схемы обмена данными должны модифицироваться. Поскольку одной из важнейших функций TinyOS является автоматический выбор схемы организации сети и маршрутов передачи данных, беспроводные сенсорные сети по существу являются самонастраиваемыми.

Чаще всего мот должен иметь возможность самостоятельно определить свое местоположение, по крайней мере по отношению к тому другому моту, которому он будет передавать данные. То есть сначала происходит идентификация всех мотов, а затем уже формируется схема маршрутизации. Вообще все моты - устройства стандарта ZigBee - по уровню сложности разбиваются на три класса. Высший из них - координатор - управляет работой сети, хранит данные о ее топологии и служит шлюзом для передачи данных, собираемых всей беспроводной сенсорной сетью, для дальнейшей обработки. В сенсорных сетях обычно используется один координатор. Средний по сложности мот является маршрутизатором, то есть может принимать и передавать данные, а также определять направления передачи. И наконец, самый простой мот может лишь передавать данные ближайшему маршрутизатору. Таким образом, получается, что стандарт ZigBee поддерживает сеть с кластерной архитектурой (рис. 2). Кластер образуют маршрутизатор и простейшие моты, у которых он запрашивает сенсорные данные. Маршрутизаторы кластеров ретранслируют данные друг другу, и в конечном счете данные передаются координатору. Координатор обычно имеет связь с IP-сетью, куда и направляются данные для окончательной обработки.

В России тоже проводятся разработки, связанные с созданием беспроводных сенсорных сетей. Так, компания «Высокотехнологичные системы» предлагает свою аппаратно-программную платформу MeshLogic для построения беспроводных сенсорных сетей (сайт www.meshlogic.ru). Основным отличием этой платформы от ZigBee является ориентация на построение одноранговых ячеистых сетей (рис. 3). В таких сетях функциональные возможности каждого мота одинаковы. Возможность самоорганизации и самовосстановления сетей ячеистой топологии позволяет в случае выхода части мотов из строя спонтанно формировать новую структуру сети. Правда, в любом случае необходим центральный функциональный узел, принимающий и обрабатывающий все данные, или шлюз для передачи данных на обработку узлу. Спонтанно создаваемые сети часто называют латинским термином Ad Hoc, что означает «для конкретного случая».

В сетях MeshLogic каждый мот может выполнять ретрансляцию пакетов, то есть по своим функциям напоминает маршрутизатор ZigBee. Сети MeshLogic являются в полной мере самоорганизуемыми: никакого узла-координатора не предусмотрено. В качестве радиочастотных приемопередатчиков в MeshLogic могут использоваться различные устройства, в частности Cypress WirelessUSB, которые так же, как и устройства стандарта ZigBee, работают в диапазоне частот 2,4... 2,4835 ГГц. Следует отметить, что для платформы MeshLogic существуют только нижние уровни стека протоколов. Считается, что верхние уровни, в частности сетевой и прикладной, будут создаваться под конкретные приложения. Конфигурации и основные параметры двух мотов MeshLogic и одного мота стандарта ZigBee приведены в табл. 2.

Таблица 2. Основные характеристики мотов различных производителей

Параметры

Микроконтроллер

Процессор

Texas Instruments MSP430

Тактовая частота

От 32,768 кГц до 8 МГц

Оперативная память

Flash-память

Приемопередатчик

Cypress WirelessUSBTM LP

Диапазон частот

2400-2483,5 МГц

2400-2483,5 МГц

Скорость передачи данных

От 15,625 до 250 Кбит/с

Выходная мощность

От –24 до 0 дБм

От –35 до 4 дБм

От –28 до 3 дБм

Чувствительность

1 или 2 чипа

Внешние интерфейсы

12-разрядный, 7 каналов

10-разрядный, 3 канала

Цифровые интерфейсы

I2C/SPI/UART/USB

I2C/SPI/UART/IRQ/JTAG

Другие параметры

Напряжение питания

От 0,9 до 6,5 В

От 1,8 до 3,6 В

Температурный диапазон

От –40 до 85 °C

От 0 до 70 °C

От 0 до 85 °C

Отметим, что интегрированных сенсорных датчиков на этих платах нет.

Укажем, что в первую очередь отличает беспроводные сенсорные сети от обычных вычислительных (проводных и беспроводных) сетей:

  • полное отсутствие каких бы то ни было кабелей - электрических, коммуникационных и т.д.;
  • возможность компактного размещения или даже интеграции мотов в объекты окружающей среды;
  • надежность как отдельных элементов, так и, что более важно, всей системы в целом; в ряде случаев сеть может функционировать при исправности только 10-20% сенсоров (мотов);
  • отсутствие необходимости в персонале для монтажа и технического обслуживания.

Сенсорные сети могут быть использованы во многих прикладных областях. Беспроводные сенсорные сети - это новая перспективная технология, и все связанные с ней проекты в основном находятся в стадии разработки. Укажем основные области применения данной технологии:

  • системы обороны и обеспечение безопасности;
  • контроль окружающей среды;
  • мониторинг промышленного оборудования;
  • охранные системы;
  • мониторинг состояния сельскохозяйственных угодий;
  • управление энергоснабжением;
  • контроль систем вентиляции, кондиционирования и освещения;
  • пожарная сигнализация;
  • складской учет;
  • слежение за транспортировкой грузов;
  • мониторинг физиологического состояния человека;
  • контроль персонала.

Из достаточно большого числа примеров использования беспроводных сенсорных сетей выделим два. Наиболее известным является, пожалуй, развертывание сети на борту нефтяного танкера компании ВР. Там с помощью сети, построенной на основе оборудования Intel, осуществлялся мониторинг состояния судна с целью организации его профилактического обслуживания. Компания BP проанализировала, может ли сенсорная сеть работать на борту судна в условиях экстремальных температур, высокой вибрации и значительного уровня радиочастотных помех, имеющихся в некоторых помещениях судна. Эксперимент прошел успешно, несколько раз автоматически осуществлялись реконфигурация и восстановление работоспособности сети.

Примером еще одного реализованного пилотного проекта является развертывание сенсорной сети на базе военно-воздушных сил США во Флориде. Система продемонстрировала хорошие возможности по распознаванию различных металлических объектов, в том числе движущихся. Применение сенсорной сети позволило обнаруживать проникновение людей и автомобилей в контролируемую зону и отслеживать их перемещения. Для решения этих задач использовались моты, оснащенные магнитоэлектрическими и температурными датчиками. В настоящее время масштабы проекта расширяются, и беспроводная сенсорная сеть устанавливается уже на полигоне размером 10 000x500 м. Соответствующее прикладное программное обеспечение разрабатывается несколькими американскими университетами.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows