Как устроен суперконденсатор. Cамодельный ионистор - суперконденсатор делаем своими руками

Как устроен суперконденсатор. Cамодельный ионистор - суперконденсатор делаем своими руками

При проектировании современных электронных приборов и устройств перед разработчиком довольно часто встает вопрос резервного или автономного питания своего устройства. Как правило, в зависимости от характера потребления электроэнергии и задач, в этом случае используют электролитические конденсаторы, аккумуляторы или батареи. Однако использование вышеприведенных устройств или их комбинации, в силу специфики каждого устройства, не всегда в полной мере позволяет решить поставленную задачу.

При реализации автономного питания довольно часто также необходимо реализовать начальные большие кратковременные токи (например, ручной электроинструмент с аккумуляторным питанием), и обойтись только аккумулятором не представляется возможным. Тогда используют комбинацию аккумулятор (или батарея)/электролитический конденсатор. Аккумулятор или батарея реализуют долговременное энергонезависимое питание, а электролитический конденсатор - кратковременный большой ток в нагрузку. Относительно недавно появился новый класс приборов - ионисторы. В отличие от батарей, аккумуляторов или электролитических конденсаторов, где используются необратимые, обратимые химические реакции или классический заряд конденсатора соответственно, в ионисторах применяется механизм образования «двойного электрического слоя». Ионисторы обладают рядом преимуществ по сравнению с вышеприведенными устройствами: это широкий температурный диапазон, большая емкость, высокое сопротивление изоляции (низкие токи утечки), длительный срок службы, отсутствие необходимости контроля процесса зарядки, до нескольких десятков тысяч циклов заряд/разряд.

Сегодня ионисторы выпускаются многими производителями, как отечественными, так и зарубежными. В данной статье использованы материалы компании Panasonic, и на примере ионисторов данной компании, получивших фирменное название Gold Capacitors (Gold Cap), мы рассмотрим их физику и принцип работы, возможные варианты конструкции и эквивалентной схемы, характеристики и параметры, а также рекомендации по возможному применению.

Физико-химические основы работы ионистора

Известно, что обычные конденсаторы имеют многослойный или монолитный диэлектрик между двумя обкладками. В алюминиевом электролитическом конденсаторе, например, в качестве диэлектрического слоя используется пленка оксида алюминия, а в танталовом конденсаторе - пленка оксида тантала. Ионистор же не имеет диэлектрического слоя, в нем применяется физический механизм образования двойного электрического слоя, который работает аналогично заряженному диэлектрику. Процесс зарядки/разрядки происходит в слое ионов, сформированном на поверхностях положительного и отрицательного электродов, к примеру, из активированного угля (рис. 1). Под действием приложенного напряжения анионы и катионы движутся к соответствующему электроду и накапливаются на поверхности электрода, образуя, таким образом, с зарядом электрода двойной электрический слой. Вследствие этого и появилось название «конденсатор с двойным электрическим слоем» (electric double layer capacitor - EDLC).

Рис. 1. Образование двойного электрического слоя на поверхностях положительного и отрицательного электродов, к примеру, из активированного угля

Принцип работы и возможные конструкции

Существует два типа электролитов, которые чаще всего используются сейчас производителями ионисторов: водные (водорастворимые) и органические (водонерастворимые). Безводный электролит позволяет прикладывать напряжение до 3 В к ячейке ионистора, что в два раза выше по сравнению с водорастворимым электролитом, для которого это напряжение не превышает 1,5 В. В данном случае двойной электрический слой работает как изолирующий и при приложении постоянного внешнего напряжения не позволяет протекать сквозному току. При конкретном уровне напряжения определенной полярности за счет электрохимических процессов начнет протекать ток. Величина этого напряжения названа «напряжением разложения» или «напряжением электрохимического распада электролита». Дальнейшее увеличение напряжения заставит электролит разлагаться более интенсивно, приводя к появлению дополнительного тока, и ионистор выйдет из строя. Поэтому при зарядке приложенное к ионистору напряжение ограничено напряжением разложения, вследствие чего довольно часто ионисторы соединяют последовательно.

Как было сказано выше, положительные и отрицательные заряды формируются на поверхности электрода, образуя, таким образом, с зарядом электрода двойной электрический слой. Границей раздела в этом случае будет двойной электрический слой (рис. 2а). Эта область увеличивается при приложении более высокого напряжения (рис. 2б), и накапливаемый заряд увеличивается. Толщина двойного электрического слоя очень мала и сопоставима с размером молекулы, то есть около 5–10 нм. В качестве электродов, например, в ионисторах Panasonic используется активированный уголь (в виде мелкодисперсной фракции), изготовленный по специальной порошковой технологии, и органический электролит. Электролит проникает между частицами активированного угля, и электрод, таким образом, «пропитан» электролитом. Общую емкость ионистора можно представить, как большое количество малых конденсаторов, где каждая частица из активированного угля - своеобразный электрод для малого конденсатора с емкостью, обусловленной двойным электрическим слоем.

Рис. 2. Образование двойного электрического слоя (а) и увеличение заряда при приложении напряжения (б)

Общая емкость ионистора может быть представлена как:

где d - толщина двойного электрического слоя 5–10 нм, S - общая площадь поверхности электрода из активированного угля.

Поскольку электрод ионистора представляет собой совокупность огромного количества частиц активированного угля, он имеет очень большую «развитую» площадь поверхности, приблизительно до 2500–3000 см²/г. Это позволяет получить емкость до нескольких десятков фарад.

На рис. 3 представлена одна из возможных конструкций ионистора в поперечном разрезе на примере EN серии Panasonic. Между электродами для предотвращения проникновения ионов расположен «сепаратор» с хорошими изоляционными свойствами, что позволяет не допустить короткого замыкания между электродами.

Рис. 3. Одна из возможных конструкций ионистора в поперечном разрезе на примере EN серии Panasonic

Эквивалентная схема

Поскольку двойной электрический слой сформирован на поверхности активированного угля, который находится в контакте с электролитом, для ионисторов может быть применена эквивалентная схема с использованием условных конденсаторов (рис. 4). Каждый малый конденсатор на основе структуры частица активированного угля/электролит будет обладать емкостью двойного электрического слоя - Cn. Значения сопротивлений заряда R sn в процессе заряда и сопротивление нескомпенсированных ионов R ln могут увеличиваться или уменьшаться в зависимости от расстояния между «токоведущими» электродами, скоростью передвижения ионов, контактного сопротивления между частицами активированного угля и других параметров.

Рис. 4. Схематическое изображение многослойной структуры активированный уголь/электролит

Эквивалентная схема ионистора на основе параллельного соединения сопротивлений и емкостей малых конденсаторов приведена на рис. 5а. R 1 , R 2 и R n - сопротивления изоляции (внутреннее сопротивление частиц активированного угля), C 1 , C 2 и C n - соответствующая емкость двойного электрического слоя для сопротивлений R 1 , R 2 и R n .

Рис. 5. Варианты эквивалентной схемы ионистора на основе малых конденсаторов двойного электрического слоя от каждой частицы активированного угля и сопротивления изоляции (сопротивления частиц активированного угля) (а) и с учетом сопротивлений электродов и сепаратора (б)

Если приложить напряжение (V) к эквивалентной схеме, приведенной на рис. 5б, которая учитывает сопротивление электродов и сепаратора, то зарядный ток (i ) можно описать согласно:

Необходимо отметить, что при уменьшении величины зарядного тока (i) время заряда увеличится. Зарядный ток, согласно уравнению (2), графически будет представлен как прямая линия. Однако фактически кривая зарядного тока носит экспоненциальный характер (рис. 6а, б). Ток (i) в пределах ионистора может быть представлен как сумма токов, протекающих через каждый из малых конденсаторов (рис. 6б, 7а). Также необходимо отметить, что, если значение постоянной времени CxR мало, время зарядки тоже будет мало, и наоборот, если значение CxR большое, время зарядки будет большое. То есть если время зарядки ограничено несколькими минутами или источник заряда ограничен, ионистор не может достаточно зарядиться, чтобы запасти заданную энергию в течение необходимого времени.

Рис. 6. Зависимость зарядного тока от времени заряда: а) расчетная и реальная зависимости; б) как сумма токов через малые конденсаторы

Рис. 7. Эквивалентная схема со значениями напряжений сразу после процесса заряда и после разряда (а) и понижение напряжения в начале работы вследствие недостаточного заряда малых конденсаторов (б)

Электрические, эксплуатационные и надежностные параметры ионисторов

Емкость

При аналогичных условиях эксплуатации и тестировании емкость ионистора подобна эффективной емкости батареи. Как было сказано ранее, ионистор можно представить в виде эквивалентной схемы из малых конденсаторов, имеющих различные значения сопротивления. Если начальное зарядное напряжение ниже напряжения полного заряда (V 0), то в начале измерения емкости после снятия зарядного напряжения напряжение на ионисторе упадет вниз (рис. 8). Это связано с наличием не полностью заряженных малых конденсаторов с большим внутренним сопротивлением. Однако, увеличивая время зарядки, эти малые конденсаторы с большим внутренним сопротивлением зарядятся, что приведет к увеличению измеренной емкости.

Рис. 8. Зависимость напряжения для ионистора от времени

Емкость ионистора может быть оценена следующим образом:

где С - электростатическая емкость (Ф), I - тестовый ток (А), V 1 –V 2 - тестовый диапазон напряжений, (В) t - время (c). Емкость, конечно же, зависит от тока. Если ток разряда большой или конденсатор разряжался в течение длительного периода времени, результирующая емкость будет мала. И наоборот, если ток разряда мал или конденсатор разряжался в течение короткого периода времени, измеренная электростатическая емкость будет большая. Поэтому, чтобы иметь воспроизводимые измерения, используют стандартный ток разряда 1 мA/Ф.

Внутреннее сопротивление

Внутреннее сопротивление ионистора, например, по сравнению с электролитическими конденсаторами, велико, поскольку эквивалентная схема ионистора состоит из соединений большого количества малых конденсаторов, имеющих различные значения внутреннего сопротивления. Обычно значения этих сопротивлений могут быть представлены для постоянного напряжения. Но, чтобы получить их истинное значение, необходимо использовать комплексное сопротивление Z (к примеру на 1 кГц). Если измерять ток от 30 до 60 мин после приложения номинального напряжения, он будет довольно большой, до 10 мкА, вследствие того, что этот ток является суммой зарядных токов, протекающих через малые конденсаторы. Так как чрезвычайно трудно определить токи утечки в ионисторах, их чаще всего не указывают в документации. Требуется минимум 10 часов, чтобы полностьюзарядить ионистор так, чтобы появилась возможность оценить ток утечки.

Характеристика заряда

Характеристика зарядки ионистора при условии некоторых допущений может быть представлена выражением (4):

На рис. 9а приведена зависимость напряжения на ионисторе Panasonic EECF5R5U104 от времени заряда при различном сопротивлении нагрузки. С увеличением сопротивления характеристика становится более пологая, а время зарядки увеличивается.

Время разряда для постоянного тока и постоянного сопротивления нагрузки при разряде приведены в выражениях (5) и (6) соответственно:

где: t - время, С - емкость, V 0 - внутреннее напряжение, V 1 - напряжение после t (с ), I - ток нагрузки, R - сопротивление нагрузки.

На рис. 9б приведена зависимость напряжения ионистора Panasonic EECF5R5U104 от времени разряда при различном времени процесса зарядки. Видно, что, например, при изменении времени процесса заряда с одного часа до 100 часов, напряжение фактически меняется с 2,5, до 2,8 В, то есть процесс зарядки ионистора может быть очень быстрым.

Рис. 9. Зависимость напряжения ионистора от времени заряда при различном сопротивлении (а) и времени разряда при различном времени заряда (б)

Характеристика разряда и саморазряда

Характеристика разряда ионистора с учетом (3) может быть представлена следующим образом:

Характеристика саморазряда ионистора может быть представлена следующим образом:

где R L - сопротивление изоляции (сумма сопротивлений частиц активированного угля электрода).

Предполагаемый срок эксплуатации, срок службы и t back-up

Предполагаемый срок эксплуатации может быть оценен следующим образом:

Срок службы ионистора, как правило, ограничен временем t back-up , которое задано по условиям эксплуатации. t back-up (Back-up time) - это время, когда ионистор работает как резервный источник питания между циклами заряда и разряда.

Например, оценим t back-up для F-типа ионистора Panasonic, EECF5R5H105 (5,5 В, 1,0 Ф), полный заряд при 5,0 В постоянного напряжения, разрядный ток 10 мкА. Температура при разряде –40 °C, напряжение, до которого разрядится ионистор, - 2 В.

Параметр t back-up может быть рассчитан следующим образом:

где C - емкость ионистора (Ф), i - ток в течение t back-up (A), i L - ток утечки (A), R - внутреннее сопротивление ионистора (Ом на 1 кГц), V 1 - напряжение, до которого разрядится ионистор (В), V 0 - приложенное напряжение (В).

Тогда C = 0,8 Ф (1,0 Ф – 20%), R = 50 Ом, V 0 = 5 В, V 1 = 2 В, i =10 мкA. Следовательно: t back-up = 0,8×(5–0,0005–2)/(10+2×10 –6) = 55 часов.

Этот расчет показывает, что время, которое ионистор будет работать при приведенных условиях как резервный источник питания, составляет около 55 часов.

Если мы возьмем, например, реальное изменение емкости в 30% при четырехкратном изменении внутреннего сопротивления, при 85 °C и 5,5 В, то после 1000 часов эксплуатации t back-up изменится и составит около 38 часов.

Для учета температурного фактора для ионисторов можно использовать уравнение Аррениуса, согласно которому срок службы устройства удваивается при уменьшении температуры окружающей среды на каждые десять градусов.

При изменении напряжения с 5,5 до 5 В фактор напряжения для изменения емкости составит 1,1. Таким образом, предполагаемый срок эксплуатации = срок службы × температурный фактор × фактор напряжения = 1000 (ч)×22,6×1,1 = 24 800 (ч) = 2,8 года.

Диапазон емкостей ионистора занимает промежуточное положение между емкостями алюминиевого электролитического конденсатора и аккумуляторами и батареями (рис. 10). Ионистор главным образом используется как резервное или автономное питание, а также как замена батарей или аккумуляторов.

Рис. 10. Диапазон емкостей ионистора, алюминиевого электролитического конденсатора, аккумуляторов и батарей

Срок службы . Срок службы ионисторов очень большой. Фактически, когда ионистор находится в надлежащих условиях, он может работать столь же долго, как и само оборудование, в котором он используется.

Широкий рабочий температурный диапазон . Батареи обычно восприимчивы к перепадам температуры и имеют тенденцию терять энергию в процессе нагревания или при низких температурах, например, ниже 0 °C. Некоторые ионисторы могут работать вплоть до индустриального температурного диапазона.

Нет необходимости в контроле заряда . Ni-Cd батареи выделяют тепло в процессе заряда или разряда, которое сокращает срок их службы, поэтому возникает необходимость в схеме контроля заряда и нагрузки. Ионисторы не имеют никакого ограничения по процессу заряда и разряда и не нуждаются в контроле процесса заряда.

Скорость заряда, повторный заряд/циклы разряда . Для ионисторов возможны быстрый заряд и большое количество циклов заряд/рязряд (до нескольких десятков тысяч), поскольку в них не происходит никаких внутренних химических реакций, как, например, в батареях. Ионисторы идеально подходят для схем, в которых необходимы быстрые процессы заряда.

Экологическая чистота . В ионисторах Panasonic не используется никаких токсичных материалов типа свинца, кадмия или ртути. Ионисторы Panasonic удовлетворяют всем требованиям RoHS.

Типы и характеристики ионисторов Panasonic

Таблица 3. Диапазон токов

Как говорилось ранее, процесс заряда ионистора с учетом некоторых допущений может быть описан выражением (4). На рис. 12а приведена характеристика заряда для ионистора EECF5R5U105 фирмы Panasonic при двух различных сопротивлениях. Поскольку зависимость экспоненциальна, фактически различия наблюдаются на начальном этапе зарядки, в течение 6–7 минут. На рис. 12б для этого же ионистора приведена характеристика саморазряда. Видно, что процесс заряда оптимален при времени заряда больше 24 часов, однако на процесс саморазряда время заряда влияет не сильно, поскольку внутреннее сопротивление ионистора в этом случае изменяется лишь за счет сопротивления перераспределенных ионов. Чем ниже температура работы ионистора, тем больше время саморазряда, и срок службы устройства будет существенно больше (рис. 13). Поскольку зависимость времени разряда от емкости и сопротивления нагрузки прямо пропорциональная, а от напряжения - логарифмическая (смотри зависимость 6), то при большей емкости ионистора и сопротивлении нагрузки, при прочих равных (температура, условия заряда и т. д.), время процесса разряда будет больше (рис. 14а, б). Характеристика разряда, в отличие от саморазряда, зависит от температуры меньше (рис. 15). Изменение емкости, например, для EECF5R5U104 (5,5 В, 0,1 Ф) (условия измерения: 5,5 В, +70 °С) от тока разряда, приложенного напряжения и температуры фактически начинают проявляться при времени, превышающем 1000 часов (рис. 16).

Большинство современных ионисторов (суперконденсаторов) выпускается с рейтингом напряжения 2,7 или 2,85 В. Единственным поставщиком этих компонентов с рейтингом 3,0 В является корейская компания VINATech. Даже столь незначительное повышение напряжения дает целый ряд преимуществ, например, позволяет существенно продлить срок службы компонента.

Суперконденсаторы (ионисторы, ультраконденсаторы) представляют собой элементы питания, которые занимают промежуточное положение между химическими источниками тока (аккумуляторами и батарейками) и обыкновенными конденсаторами (рисунок 1).

Традиционные аккумуляторы имеют целый ряд преимуществ: большую емкость, низкие токи утечек, малые габариты. Однако есть у них и недостатки: длительный цикл заряда, относительно невысокая нагрузочная способность, ограниченное число циклов заряда-разряда. Обычные электролитические конденсаторы отличаются практически неограниченным числом циклов заряда-разряда и высокой пиковой отдаваемой мощностью, но емкость их невелика. Ионисторы, они же суперконденсаторы, по величине емкости уступают только химическим источникам тока (ХИТ), а по скорости и мощности заряда и разряда приближаются к электролитическим конденсаторам.

История суперконденсаторов насчитывает более пятидесяти лет. Начало было положено в 1957 году компанией General Electric, которая создала и запатентовала первый конденсатор с двойным электрическим слоем. Далее последовали подобные разработки других компаний. В Советском Союзе выпускались аналогичные элементы – ионисторы КИ1-1.

Нелишне заметить: часто с целью обеспечения патентной чистоты для новых элементов придумывали новые названия. По сути, двухслойный электрохимический конденсатор, ультраконденсатор, суперконденсатор и ионистор – это одно и то же.

Сейчас на рынке присутствуют различные производители, которые, в основном, выпускают ультраконденсаторы с номинальным напряжением 2,7 В. Наиболее продвинутые предлагают элементы питания с напряжением 2,85 В. Единственной компанией, производящей суперконденсаторы с напряжением 3,0 В, является VINATech (Южная Корея).

Почему максимально высокое номинальное напряжение так важно для суперкондесаторов? Во-первых, чаще всего они применяются совместно с аккумуляторами, у которых напряжение в заряженном состоянии оказывается выше, чем 2,7 В, а значит, их прямое параллельное включение исключено. Вместо этого приходится использовать преобразователи или последовательно соединять суперконденсаторы, что осложняется необходимостью балансировки.

Во-вторых, как показывают исследования, если суперконденсатор работает при напряжениях меньше номинального, это приводит к резкому росту срока службы . Например, для стандартных суперкондесаторов с рейтингом 2,7 В срок службы при напряжении 2,7 В и температуре 25°С составляет 15,7 лет, а при температуре 40°С падает до 6,6 лет (рисунок 2). При аналогичных условиях срок службы суперконденсаторов 3,0 В производства VINATech оценивается в 80,5 и 27,5 лет соответственно, то есть в 4…5 раз больше.

Таким образом суперконденсаторы 3,0 В VINATech имеют увеличенный срок службы не только при обычных, но и при повышенных температурах. По расчетам инженеров VINATech, даже при температуре 85°С суперконденсаторы будут работать почти полгода при напряжении 2,7 В (таблица 1).

Таблица 1. Зависимость срока службы суперконденсаторов 3,0 В VINATech от рабочего напряжения и температуры

Напряжение, В Температура, ºC
25 40 50 60 70 85
Тыс. часов Лет Тыс. часов Лет Тыс. часов Лет Тыс. часов Лет Тыс. часов Лет Тыс. часов Лет
2,1 2012 229,7 711,3 81,2 355,7 40,6 177,8 20,3 88,92 10,2 31,44 3,6
2,2 1423 162,4 503 57,4 251,5 28,7 125,7 14,4 62,87 7,18 22,23 2,5
2,3 1006 114,8 355,7 40,6 177,8 20,3 88,91 10,2 44,46 5,08 15,72 1,8
2,4 711,3 81,2 251,5 28,7 125,7 14,4 62,87 7,18 31,44 3,59 11,11 1,3
2,5 503 57,42 177,8 20,3 88,91 10,2 44,46 5,08 22,23 2,54 7,86 0,9
2,6 355,6 40,6 125,7 14,4 62,87 7,18 31,44 3,59 15,72 1,79 5,56 0,6
2,7 251,5 28,71 88,91 10,2 44,46 5,08 22,23 2,54 11,11 1,27 3,93 0,5
2,8 177,8 20,3 62,87 7,18 31,44 3,59 15,72 1,79 7,86 0,9 2,78 0,3
2,9 125,7 14,35 44,46 5,08 22,23 2,54 11,11 1,27 5,56 0,63 1,96 0,2
3 88,9 10,15 31,44 3,59 15,72 1,79 7,86 0,9 3,93 0,45 1,39 0,2

Краткие сведения о компании VINATech

Качество элементов питания (аккумуляторов, суперконденсаторов, конденсаторов) практически полностью определяется качеством материалов и соблюдением технологий. По этой причине к новичкам на этом рынке относятся настороженно. Такое же отношение может возникнуть и к VINATech, поэтому необходимо сказать несколько слов о данном производителе.

Южнокорейская компания VINATech только сейчас выходит на российский рынок, хотя в глобальном масштабе является одним из лидеров отрасли. С момента основания в 1999 году VINATech остается инновационным производителем. К настоящему времени компания успела зарегистрировать 183 патента, относящихся к конструктивным особенностям суперконденсаторов, используемым материалам и технологиям производства.

В 2002 году VINATech успешно завершила разработку собственной технологии углеродных нанотрубок CNF(Carbon Nano Fiber), после чего быстро наладила выпуск суперкондесаторов, гибридных конденсаторов и модулей под общим наименованием Hy-Cap.

С 2011 года компания VINATech запустила производство профильной продукции: элементов топливных ячеек, угольных фильтров и прочего.

Рассмотрим более подробно технологии и особенности элементов питания, предлагаемых компанией.

Обзор технологий суперконденсаторов и гибридных конденсаторов от VINATech

VINATech выпускает широкую номенклатуру суперконденсаторов Hy-Cap EDLC и гибридных конденсаторов Hy-Cap P-EDLC.

Суперконденсаторы Hy-Cap EDLC (Electric Double Layer Capacitor) построены по схеме с двойным электрическим слоем (ДЭС) (рисунок 3). Электроды суперконденсатора погружены в жидкий электролит и разделены сепаратором. На их поверхности сформирован слой пористого углеродного покрытия. При приложении внешнего напряжения свободные ионы электролита перемещаются в сторону противоположно заряженных электродов. Ионы не проникают внутрь и не взаимодействуют с поверхностью электродов из-за электрохимических особенностей углеродного покрытия. В результате образуются два электронных слоя, которые и являются источником запасаемой энергии.

Hy-Cap – Hybrid Capacitor, или Hy-Cap P-EDLC – комбинированные накопители энергии, у которых один из электродов выполнен по схеме ДЭС, а второй представляет собой псевдоконденсатор.

В суперконденсаторах для запасания энергии используется только электростатическое взаимодействие пассивных угольных электродов с электролитом. В псевдоконденсаторах применяются активные электроды, которые способны вступать в окислительно-восстановительные реакции с электролитом. То есть накопление энергии идет как за счет ДЭС, так и за счет обратимых химических реакций.

В результате емкость P-EDLC значительно выше, чем у EDLC, но, к сожалению, их пиковая мощность оказывается ощутимо меньше (таблица 2). По сроку службы Hy-Cap EDLC также оказываются далеко впереди. Таким образом, Hy-Cap EDLC будут идеальным выбором для устройств с ярко выраженным импульсным потреблением и значительными пиковыми токами, в то время как Hy-Cap P-EDLC подойдут для приложений с более равномерным распределением потребления.

Таблица 2. Сравнение характеристик Hy-Cap EDLC и Hy-Cap P-EDLC

Параметр Hy-Cap EDLC Hy-Cap P-EDLC
Механизм накопления Электростатическое накопление заряда + химическое взаимодействие
Рейтинг напряжения, В 2,5/2,7/3,0 2,3
Удельная емкость, Вт·ч/кг 3…5 7…12
Удельная мощность кВт/кг 2…3 1…2
90…95 90…95
Диапазон рабочих температур, ℃ -40…70 -25…60
Срок службы, количество циклов заряда-разряда более 500 000 более 100 000

При выборе подходящего накопительного элемента разработчикам необходимо определиться с типом элемента, величиной требуемой емкости, конфигурацией выводов и прочими параметрами. Широкая номенклатура накопителей от VINATech позволяет легко это сделать.

Суперконденсаторы и гибридные конденсаторы от VINATech

VINATech выпускает широкую номенклатуру одиночных суперконденсаторов Hy-Cap EDLC, одиночных гибридных конденсаторов Hy-Cap P-EDLC, а также их сборок. Кроме серийных образцов VINATech может производить накопители по техническому заданию заказчика (рисунок 4).

Таблица 3. Характеристики семейств накопителей от VINATech

Наименование Uном, В Емкость, Ф ESR, мОм Iмакс, А Iутечки, мА Габариты, мм Вес, г
AC
(1 кГц)
DC D L
Одиночные ячейки EDLC
VEC3R0xxxQx (прямые выводы) 3 1…60 12,5…145 19…220 1…42 0,003…0,18 8…18 13…40 1,1…13,5
VEC3R0xxxQx (выводы snap-in) 3 100…500 3…6 4,5…10 75…230 0,3…1,5 22…35 45…82 17,1…96,0
VEC2R7xxxQx (выводы snap-in) 2,7 1…100 10…130 16…195 1…51 0,002…0,2 8…18 13…59 0,7…15,0
VEC2R7xxxQx (выводы snap-in) 2,7 100…500 3…6 4,5…10 65…205 0,2…1,0 22…35 45…82 17,1…96,0
VEC2R7xxxHG-W (аксиальные выводы) 2,7 650…3000 0,21…0,5 0,28…0,7 603…2201 1,5…5,2 60,4 51,5…138 215…535
VEC2R7xxxHG-T (аксиальные выводы с резьбой) 2,7 650…3000 0,21…0,5 0,28…0,7 603…2201 1,5…5,2 60,4 51,5…138 215…535
VEC2R5xxxQx (прямые выводы) 2,5 1…60 25…400 40…600 0,5…22 0,002…0,12 8…18 13…40 0,7…10,2
VEC2R5xxxQx (выводы snap-in) 2,5 120…500 5…18 9…30 32…110 0,24…1,0 22…35 45…82 17,1…78,9
Одиночные ячейки P-EDLC
VHC2R3xxxQx (прямые выводы) 2,3 10…120 45…220 80…700 0,5…3 0,002…0,24 8…18 20…40 2,5…16,0
VHC2R3xxxQx (выводы snap-in) 2,3 220…800 10…30 15…45 3,5…12,5 0,44…1,6 22…35 45…70 17,1…69,2
Сдвоенные модули EDLC
VEC5R0xxxQx (прямые выводы) 5 0,5…7,5 145…805 205…1205 0,5…7,5 0,002…0,03 8,5…13 17…26 3,0…9,6
VEC5R4xxxQx (прямые выводы) 5,4 0,5…7,5 55…265 85…395 1…12,5 0,002…0,03 8,5…13 17…26 2,6…9,6
VEC6R0xxxQx (прямые выводы) 6 0,5…5,0 55…295 85…445 1…10 0,003…0,03 8,5…10,5 17…21 2,5…6,6
Высоковольтные модули
VEM16R0606QG 16 60 22 200 22 51,8×242,2 76,5 670
VEM16R0507QG 16 500 2,1 2000 5,2 68×418 177 5500
VEM48R0167QG 48 166 6,3 1900 5,2 191×418 177 13500

Одиночные суперконденсаторы Hy-Cap EDLC семейства VEC выпускаются в четырех конструктивных исполнениях (с прямыми выводами, с выводами-защелками, с аксиальными выводами, аксиальными выводами с резьбой) и с тремя номинальными напряжениями: 2,5/2,7/3,0 В.

Это самое «разношерстное» семейство, так как в него входят как относительно маломощные VEC3R0xxxQx с емкостью от 1 Ф и током от 1 А, так и мощные суперконденсаторы с аксиальными выводами, например, VEC2R7xxxHG , с емкостью до 3000 Ф и выходным током до 2201 А.

Одиночные гибридные конденсаторы Hy-Cap P-EDLC семейства VHC. Представители семейства имеют номинальное напряжение 2,3 В. Главным достоинством этих накопителей является высокая удельная емкость, которая у отдельных представителей достигает 800 Ф при достаточно скромных габаритах 35×70 мм. По сравнению с Hy-Cap EDLC гибридные конденсаторы имеют невысокие выходные токи до 12,5 А.

Сдвоенные суперконденсаторы Hy-Cap EDLC семейства VEC представляют собой пару последовательно соединенных суперконденсаторов EDLC, поэтому они имеют удвоенное номинальное напряжение 4,0/5,4/6,0 В.

Сборки суперконденсаторов Hy-Cap EDLC семейства VEM представляют собой сборные стандартные модули с выходными напряжениями 16/48 В, высокой емкостью и высоким выходным током до 2000 А.

Здесь еще раз стоит отметить, что компания VINATech готова производить модули по техническим требованиям заказчика. При этом пользователь получает сборку из суперконденсаторов, балансировка которых выполняется по запатентованной технологии VINATech.

Роль суперконденсаторов или гибридных конденсаторов в системе питания зависит от конкретного приложения. Богатая номенклатура накопителей от VINATech позволяет найти наиболее подходящий элемент для каждого конкретного устройства.

Особенности применения суперконденсаторов

Суперконденсатор может использоваться в системе питания:

  • как основной элемент питания;
  • как резервный элемент питания;
  • как буферный компонент совместно с аккумулятором или батарейкой.

Суперконденсатор как основной элемент питания. В последнее время суперконденсаторы и гибридные конденсаторы все чаще рассматриваются в качестве основных элементов питания в целом ряде приложений. Этому способствуют:

  • распространение харвестеров энергии, например харвестеров вибрации, термогенераторов, солнечных батарей и так далее;
  • развитие беспроводных систем передачи мощности, в том числе RFID (радиомаяки);
  • создание сверхнизкопотребляющих микросхем;
  • развитие самих суперконденсаторов, в частности – увеличение удельной емкости.

В результате современная элементная база позволяет создавать малопотребляющие устройства, которые могут обойтись и без аккумулятора. Примерами таких устройств становятся автономные датчики, в том числе – и с поддержкой Bluetooth Low Energy . Не стоит забывать, что суперконденсаторы, в отличие от химических элементов тока, могут работать и при отрицательных температурах, что также важно для автономных датчиков.

Тем не менее, широкому использованию суперконденсаторов в качестве основного элемента питания мешает высокий саморазряд и невысокая емкость.

Суперконденсатор как резервный элемент питания. В целом ряде приложений требуется резервный или дежурный источник питания. Резервирование необходимо, например, в системах сигнализации и аварийного освещения, черных ящиках автомобилей и так далее. В качестве дежурного источника суперконденсатор часто применяется в малопотребляющих системах, где он используется во время сна, например, для питания дежурного таймера.

Суперконденсатор как буферный элемент. В данном режиме суперконденсатор работает параллельно с аккумулятором и выступает в роли буферного источника питания.

Преимущества такого режима работы вытекают из сравнения характеристик аккумуляторов и суперконденсаторов (таблица 4). Аккумуляторы отличаются огромной емкостью, но сильно ограничены по величине выходного тока из-за высокого внутреннего сопротивления. Суперконденсаторы хотя и не могут похвастаться большой емкостью, зато могут обеспечивать огромный нагрузочный ток. Таким образом, суперконденсатор и аккумулятор идеально дополняют друг друга.

Таблица 4. Сравнение суперконденсаторов и аккумуляторов

Параметр Суперконденсаторы Аккумуляторы
Механизм накопления Электростатическое накопление заряда Химическое взаимодействие
Удельная емкость, Вт·ч/кг 3…5 20…150
Удельная мощность, кВт/кг 2…3 0,05…0,3
Время заряда Быстрое 1…30 с 0,3…3 часа
Срок службы более 500,000 циклов заряда-разряда, 10..50 лет 500…2000 циклов заряда-разряда, 10..50 лет
Эффективность заряда-разряда, % 90…95 70…85
Диапазон рабочих температур, °С -40…70 -20…70

Очевидно, что совместное использование аккумуляторов и ионисторов во всех приложениях без разбора будет как минимум неоправданно экономически, а также негативно скажется на габаритах устройства. По этой причине такой режим чаще всего используется в четырех основных случаях .

  • Когда аккумулятор не способен обеспечивать протекание импульсных токов, хотя имеет достаточную емкость. В качестве примера можно привести работу мощной светодиодной вспышки фотоаппарата . В обычном режиме потребление самого фотоаппарата оказывается достаточно скромным (сотни мА), однако в момент срабатывания вспышки источник питания должен обеспечить протекание значительного импульсного тока в единицы А (рисунок 5). Аккумулятор не всегда может справиться с этой задачей. Зато проблема просто решается за счет суперконденсатора, который заряжается в периоды «затишья» и разряжается при активации вспышки, снимая большую часть нагрузки с аккумулятора.

  • Когда аккумулятор способен выдерживать импульсные нагрузки, но наблюдаемая при этом просадка напряжения оказывается недопустимой. Примером являются мобильные устройства, в частности – GPRS-приемопередатчики . Приемопередатчики GPRS класса 10 имеют ток покоя около 100 мА, а во время передачи потребление возрастает до 2 А (в 20 раз). Такие импульсы тока приводят к возникновению различных проблем. В частности, на выводах аккумулятора наблюдается значительная просадка напряжения – ниже допустимого значения. В результате мобильное устройство в момент слота передачи выключается, притом, что аккумулятор может быть разряженным всего лишь наполовину.

Если в таких случаях параллельно с нагрузкой поместить суперконденсатор, то он позволит сгладить импульсы напряжения, обеспечив основную часть импульса тока. В результате со стороны нагрузки будут наблюдаться небольшие колебания вблизи реального уровня напряжения аккумулятора и выключение устройства произойдет при более полном разряде элемента питания. Таким образом, формально можно считать, что в рамках таких приложений суперконденсатор продлевает время работы аккумулятора.

  • Когда требуется рекуперация энергии. Суперконденсаторы могут не только быстро отдавать накопленную энергию, но и быстро ее запасать. Это свойство используется в системах рекуперации, в частности, в электромобилях и автомобилях с гибридными силовыми установками. Несмотря на то, что в автомобиле присутствует собственный аккумулятор, его невозможно эффективно использовать для запасания огромной энергии, выделяемой, например, при торможениях. А вот суперконденсаторы для этого подходят как нельзя лучше. Они запасают энергию во время торможений или скатывания с горки и отдают ее при первом удачном случае.

Ярким примером такого использования суперконденсаторов являются болиды Формулы 1. На них применяются системы рекуперации энергии KERS. О важности и эффективности этой системы говорит тот факт, что без надежной работы KERS болиды автоматически попадают в ранг аутсайдеров.

  • Для расширения температурного диапазона. Нагрузочная способность аккумуляторов резко уменьшается при опускании температуры ниже нуля, а просадки напряжения от протекания токов возрастают. Использование суперконденсаторов позволяет выполнять запуск устройств даже при пониженных температурах. Таким образом, суперконденсаторы как бы расширяют рабочий температурный диапазон для аккумуляторов.

Стоит отметить, что в большинстве рассмотренных случаев одиночные ячейки суперконденсаторов нельзя подключать к аккумулятору напрямую. Это связано с несовпадением уровней напряжения и необходимостью ограничения тока заряда. По этой причине используются ограничители тока и последовательное или параллельно-последовательное включение ионисторов. Если принято решение о последовательном включении, то не стоит забывать о важности балансировки ячеек, в частности, необходимо позаботится о выравнивании напряжений. Если требуются многоячеечные модули, лучше сразу обриться к VINATech.

Важно напомнить, что Hy-Cap EDLC производства VINATech стали первыми ионисторами с номинальным напряжением 3,0 В. Это позволяет напрямую подключать их к литий-диоксидмарганцевым батарейкам.

Примеры использования суперконденсаторов

Рассмотрим некоторые примеры использования суперконденсаторов .

Дежурное питание в электронных приборах. Большая часть современных электронных устройств использует режимы пониженного потребления. В режиме глубокого сна практически все цифровые и аналоговые микросхемы отключаются, а активным остается только дежурный таймер, который периодически пробуждает систему. Потребление при этом оказывается на уровне единиц и десятков микроампер. Если для питания таймера использовать суперконденсатор – можно дополнительно сократить потребление за счет отключения основной системы питания.

Радиопередающие устройстваGPS/GPRS (навигаторы, трекеры, мобильные телефоны и так далее). В таких приложениях наличие буферного суперконденсатора позволяет увеличить срок службы аккумуляторов и расширить диапазон рабочих температур устройства.

Счетчики энергии. Большинство современных счетчиков представляет собой достаточно сложные электронные устройства, зачастую – со встроенными интеллектуальными функциями и радиоинтерфейсом. При отключении внешнего питания счетчик должен успевать сохранять измеренные значения, для этого необходимо предусмотреть внутренний источник резервного питания, например, суперконденсатор EDLC. С одной стороны, он способен обеспечивать необходимую нагрузку в течение долгого времени, а с другой – не нуждается в обслуживании, и пользователю не требуется думать о смене батарейки.

Источники бесперебойного питания. ИБП используются для резервного питания устройств при отключении электричества. При этом активируется встроенный накопитель энергии, в качестве которого может выступать батарея из мощных суперконденсаторов.

Аварийное освещение. Во время отключения электричества в общественных местах необходимо обеспечить питание аварийного освещения. При этом потребляемая мощность оказывается не очень высокой благодаря использованию современных светодиодов. Суперконденсаторы подходят для таких приложений, так как имеют достаточную емкость и не требуют обслуживания.

Солнечные электростанции башенного типа. Такие электростанции состоят из двух основных элементов: башни с водяным бойлером и гелиостата. Гелиостат – набор из подвижных зеркал, которые отражают солнечные лучи в башню. Чтобы следить за перемещением солнца, зеркала должны поворачиваться. Для питания электроприводов удобно использовать суперконденсаторы, так как они отличаются высокой рабочей температурой и не требуют обслуживания.

Твердотельные жесткие диски. В данном случае суперконденсаторы могут использоваться в качестве резервного источника питания.

Электромобили и автомобили с гибридными силовыми установками. Как уже рассказывалось выше, для создания системы рекуперации энергии суперконденсаторы являются идеальным решением, так как способны быстро отдавать и запасать энергию.

Автомобильные «черные ящики». Изначально такие блоки были предназначены для активации подушек безопасности при авариях. Однако сейчас эти модули дополнительно выполняют сбор различных данных: скорость, состояние педалей, время, местоположение и так далее. Очевидно, что после аварии нет гарантий, что электросистема автомобиля не будет повреждена. По этой причине «черный ящик» должен иметь дежурный источник, который будет питать модуль хотя бы в течение 10…15 с после аварии. В данном случае суперконденсаторы окажутся более предпочтительным вариантом по сравнению с аккумуляторами, так как для автомобильных приложений важен широкий диапазон рабочих температур. Кроме того, «черный ящик» должен быть необслуживаемым блоком, а при использовании аккумуляторов это затруднительно.

Мультимедийные аудиосистемы. При старте двигателя из-за высокого пускового тока наблюдается резкая просадка напряжения бортовой системы, а при коммутации индуктивных нагрузок, например, катушек реле, могут появляться значительные перенапряжения. Электронные блоки автомобиля должны выдерживать эти колебания. Для этого могут использоваться суперконденсаторы EDLC требуемой мощности.

Элеваторы и лифты. В данном случае суперконденсаторы выполняют двоякую роль. Во-первых, они используются для рекуперации энергии. Когда лифт движется вниз – энергия запасается в ионисторе. Когда же лифт движется вверх – ионистор отдает накопленную мощность. Во-вторых, современные лифты часто снабжаются системой аварийного открывания дверей, которая требует резервного источника питания при отсутствии электричества. Как правило, это чрезвычайно важная функция с точки зрения пожарной безопасности, так как при пожаре в первую очередь необходимо обесточить здание. Конечно, в данном случае для работы от суперконденсатора потребуется инвертор.

Системы запуска двигателей и дизель-генераторов. При запуске дизель-генератора стартовый ток оказывается значительным, и аккумулятор не всегда может его обеспечить. Мощные суперконденсаторы семейств VEM решают эту проблему.

Ветрогенераторы. В случае возникновения аварийной ситуации требуется разворот лопастей, для этого необходим собственный резервный источник питания, не нуждающийся в обслуживании. Очевидно, что суперконденсаторы будут идеальным решением этой проблемы.

Железнодорожный транспорт и метро. При отсутствии контактного напряжения электровоз может получать энергию от собственного дежурного источника питания, например, от батареи суперконденсаторов (с инвертором), мощности которой хватит для кратковременных отключений длительностью 1…2 с.

Это лишь небольшая часть примеров использования суперконденсаторов. Есть и множество других, в том числе – промышленные роботы, игрушки, системы питания электромагнитных клапанов, актуаторов и так далее.

Некоторые расчетные соотношения

При работе с суперконденсаторами часто возникают вопросы. Рассмотрим наиболее распространенные из них.

Как оценить емкость суперконенсатора в Вт∙ч? В документации емкость суперконденсаторов обычно приводится в Фарадах, а емкость аккумуляторов в Ватт-часах. Этот факт иногда приводит потребителей в недоумение. Чтобы оценить емкость ультраконденсатора в более привычных единицах, следует воспользоваться двумя формулами:

$$E(Дж)=\frac{1}{2}\times C(Ф)\times U^{2}(В)\qquad{\mathrm{(}}{1}{\mathrm{)}}$$

После чего определить емкость в Ватт-часах:

$$E(Вт\cdot час)=\frac{E(Дж)}{3600(с)}\qquad{\mathrm{(}}{2}{\mathrm{)}}$$

Как оценить падение напряжения суперконденсатора при разряде? Для точной оценки падения напряжения при разряде суперконденсатора необходимо учитывать сам разряд, просадку напряжения на внутреннем сопротивлении суперконденсатора, вклад основного источника питания в общий ток, характер нагрузки. При этом расчетная формула окажется достаточно сложной. Впрочем, очень часто для грубых расчетов хватает упрощенной формулы:

$$\Delta V(I_{имп})=I_{имп}\times \frac{T_{имп}}{C}+I_{имп}\times ESR\qquad{\mathrm{(}}{3}{\mathrm{)}}$$

Здесь I имп – амплитуда импульсного тока (А), T имп – длительность импульса (с), C – емкость (Ф), ESR – последовательное сопротивление (Ом). Данная формула предполагает активный характер нагрузки (линейный разряд) и отсутствие внешнего источника (суперконденсатор единолично питает нагрузку).

Рассмотрим пример работы суперконденсатора VEC3R0105QG с импульсной нагрузкой 1 с/500 мА. Емкость VEC3R0105QG составляет 1 Ф, номинальное напряжение 3,0 В, ESR 220 мОм, пиковый ток до 1 А. В таком случае примерная просадка напряжения составит:

$$\Delta V(0.1\hspace{0.25em}А)=0.5\hspace{0.25em}А\times \frac{1\hspace{0.25em}с}{1\hspace{0.25em}Ф}+0.5\hspace{0.25em}А\times 0.22\hspace{0.25em}Ом=0.61\hspace{0.25em}{В}$$

То есть, если на момент начала разряда суперконденсатор был заряжен до номинала 3,0 В, то в конце разряда напряжение на нем составит около 2,39 В.

Стоит отметить, что чаще приходится решать обратную задачу и выбирать суперконденсатор для конкретного приложения. В таком случае исходными данными к расчету будут параметры импульса (I имп и T имп) и допустимый диапазон рабочих напряжений нагрузки.

Допустим, требуется обеспечить питание вспышки фотоаппарата с номинальным напряжением 3,0 В и минимально допустимым напряжением 2,5 В. Параметры импульса 4 А/0,16 мс. Если использовать формулу (3) и дополнительно пренебречь собственным сопротивлением суперконденсатора, получим:

$$C(Ф)=I_{имп}\times \frac{T_{имп}}{\Delta V}=4\hspace{0.25em}А\times \frac{0.16\hspace{0.25em}с}{0.5\hspace{0.25em}В}=1.28\hspace{0.25em}{Ф}$$

В последние годы появился новых класс приборов, функционально близких к конденсаторам очень большой емкости; по существу - занимающих положение между конденсаторами и источниками питания. Это - ионисторы, конденсаторы с двойным электрическим слоем.

Номинальное напряжение ионистора зависит от вида используемого в нем электролита и является для него максимально допустимым. Для получения более высокого рабочего напряжения ионисторы соединяют последовательно. Но делать это самостоятельно не рекомендуется - параметры ионисторов в такой связке должны быть очень близкими.

Внутреннее сопротивление Rвн ионистора может быть рассчитано по формуле: Rвн=U/Iкз, где Rвн - в омах; U - напряжение на ионисторе, В; Iкз - ток короткого замыкания, А. Для ионистора К58-3 (японский аналог DC-2R4D225) Rвн=10...100 Ом.

Электрическую емкость ионистора рассчитывают по формуле: C=I·t/U , где С - емкость, Ф; I - постоянный ток разрядки, А; U - номинальное напряжение ионистора, В; t - время разрядки от Uном до нуля, с;

Важнейший параметр ионистора - ток утечки. Особенно при использовании его в качестве резервного источника питания.

Габариты некоторых ионисторов, выпускаемых в России, показаны на рисунке выше. Ионистор К58-9а представляет собой залитый компаундом ионистор К58-3 с приваренными проволочными выводами («+» маркирован черной точкой). Ионисторы К58-96 и К58-9в (японский аналог DB-5R5D105) на напряжение 5 и 6,3 В состоят, соответственно, из двух и трех соединенных последовательно ионисторов К58-3.

В принципе ионистор - неполярный прибор. Вывод «+» указывают для обозначения полярности остаточного напряжения после его зарядки на заводе изготовителе.

Основные характеристики отечественных ионисторов приведены в таблице. Их рабочие температуры - -25...+70°С; отклонения емкости от номинальной - -20...+80%.

Тип ионистора

Емкость, Ф

Номинальное напряжение, В

Внутреннее сопротивление, Ом

Габариты a-b-c-d-e, MM

10,5-14-5-26-4,5

27-22,5-10-35-13

27-22,5-10-35-13

27-22,5-10-35-13

21,5-10,5-5-16,5-*

Долговечность ионистора зависит от условий эксплуатации. Так, при работе под напряжением Uном при температуре окружающей среды +70°С гарантированная долговечность составит 500 часов. При работе под напряжением 0,8Uном она увеличивается до 5000 часов. Если же напряжение на ионисторе не превышает 0,6Uном, а температура окружающей среды - +40°С, то ионистор будет исправно работать не менее 40000 часов.

Зависимость тока зарядки от времени зарядки ионистора

Зависимость тока утечки ионистора от рабочего напряжения

Зависимость тока утечки ионистора от температуры окружающей среды

На рисунках выше показаны типовые разрядные характеристики ионисторов; зависимость емкости ионистора от тока разряда (для температур +25°С и +70°С); зависимость тока зарядки от времени зарядки ионистора (для температур -15-С, +25°С и +80°С); зависимость тока утечки ионистора от рабочего напряжения и от температуры окружающей среды.

Включение ионистора в качестве резервного источника питания

Обычная схема включения ионистора в качестве резервного источника питания приведена на рисунке. Диод VD1 предотвращает разряд ионистора С1 при Uпит=0. Резистор R1 ограничивает зарядный ток ионистора, защищая источник питания от перегрузки при включении. Он не потребуется, если источник питания выдерживает кратковременную нагрузку током 100...250 мА.

Во многих случаях ионистор с успехом заменяет встраиваемые в прибор резервные источники питания. Весьма перспективен ионистор в качестве накопителя энергии при работе совместно с солнечными батареями. Здесь особенно ценна его некритичность к режиму заряда, практически неограниченное число циклов заряд-разряд. Ионистор не требует ухода в течении всего срока службы...

Ионистор – это конденсатор, обкладками которого является двойной электрический слой между электродом и электролитом. Другое название этого прибора – суперконденсатор, ультраконденсатор, двухслойный электрохимический конденсатор или ионикс. Обладает большой ёмкостью, что позволяет использовать его в качестве источника тока.

Устройство ионистора

Принцип действия ионистора аналогичен обычному конденсатору, но эти устройства отличаются используемыми материалами. В качестве обкладок в таких элементах применяют пористый материал – активированный уголь, являющийся хорошим проводником, или вспененные металлы. Это позволяет во много раз увеличить их площадь и, так как ёмкость конденсатора прямо пропорциональна площади электродов, она возрастает в той же степени. Кроме того, в качестве диэлектрика используется электролит, как в электролитических конденсаторах, что уменьшает расстояние между обкладками и увеличивает ёмкость. Самые распространённые параметры – несколько фарад при напряжении 5-10В.

Типы ионисторов

Есть несколько типов таких устройств:

  • С идеально поляризуемыми электродами из активированного угля. Электрохимические реакции в таких элементах не происходят. В качестве электролита используются водные растворы едкого натра (30% KOH), серной кислоты (38% H2SO4) или органические электролиты;
  • В качестве одной обкладки используется идеально поляризуемый электрод из активируемого угля. Второй электрод является слабо,- или неполяризуемым (анод или катод, в зависимости от конструкции);
  • Псевдоконденсаторы. В этих приборах на поверхности обкладок происходят обратимые электрохимические реакции. Отличаются большой ёмкостью.

Достоинства и недостатки ионисторов

Применяются такие устройства вместо аккумуляторов или батареек. По сравнению с ними, у таких элементов есть преимущества и недостатки.

Недостатки суперконденсаторов:

  • низкий ток разряда в распространённых элементах, а конструкции без этого недостатка отличаются высокой ценой;
  • напряжение на выходе устройства падает при разряде;
  • при коротком замыкании в элементах большой ёмкости с низким внутренним сопротивлением выгорают контакты;
  • пониженное допустимое напряжение и скорость разряда, по сравнению с конденсаторами обычных типов;
  • больший, чем в аккумуляторах, ток саморазряда.

Преимущества ультраконденсаторов:

  • большие, чем в аккумуляторах, скорость, ток заряда и разряда;
  • долговечность – при испытаниях после 100 000 циклов заряд/разряд не было отмечено ухудшение параметров;
  • высокое внутреннее сопротивление в большинстве конструкций, препятствующее саморазряду и выходу из строя при коротком замыкании;
  • длительный срок службы;
  • меньший объём и вес;
  • биполярность – изготовитель наносит маркировку «+» и «-«, но это полярность заряда, поданного при испытаниях на производстве;
  • широкий диапазон рабочих температур и стойкость к механическим перегрузкам.

Плотность энергии

Возможность запасать энергию у суперконденсаторов в 8 раз меньше, чем у свинцовых аккумуляторов, и в 25 раз меньше, чем у литиевых. Плотность энергии зависит от внутреннего сопротивления: чем она ниже, тем выше удельная энергоёмкость устройства. Последние разработки учёных позволяют создать элементы, способность запасать энергию которых сравнима со свинцовыми аккумуляторами.

В 2008 году в Индии был создан ионистор, в котором обкладки были изготовлены из графена. Энергоёмкость этого элемента составляет 32 (Вт*ч)/кг. Для сравнения, энергоёмкость автомобильных аккумуляторов – 30-40 (Вт*ч)/кг. Ускоренная зарядка этих аппаратов позволяет использовать их в электромобилях.

В 2011 году корейские конструкторы создали аппарат, в котором, кроме графена, был применён азот. Этот элемент обеспечил удвоенную удельную энергоёмкость.

Справка. Графен – это слой углерода, толщиной 1 атом.

Применение ионисторов

Электрические свойства суперконденсаторов находят применение в разных областях техники.

Общественный транспорт

Электробусы, в которых вместо аккумуляторов применяются ионисторы, производятся компаниями Hyundai Motor, «Тролза», Белкоммунмаш и некоторыми другими.

Эти автобусы конструктивно похожи на троллейбусы без штанг и не нуждающиеся в контактной сети. Они подзаряжаются на остановках за время высадки и посадки пассажиров или в конечных точках маршрута за 5-10 минут.

Троллейбусы, оборудованные ионисторами, способны объезжать обрывы контактной линии, пробки и не нуждаются в проводах в депо и стоянках в конечных точках маршрута.

Электромобили

Основная проблема электромобилей – длительное время заряда. Ультраконденсатор, с большим зарядным током и малым временем зарядки, позволяет вести подзарядку при кратковременных остановках.

В России разработан Ё-мобиль, использующий специально созданный ионистор в качестве аккумулятора.

Кроме того, установка суперконденсатора параллельно аккумулятору позволяет увеличить ток, потребляемый электродвигателем при пуске и разгоне. Такая система применяется в KERS, в болидах Формулы-1.

Бытовая электроника

Эти приборы используются в фотовспышках и других устройствах, в которых возможность быстрой зарядки и разрядки важнее габаритов и веса аппарата. Например, детектор рака заряжается за 2,5 минуты и работает 1 минуту. Этого достаточно, чтобы произвести исследование и предотвратить ситуации, в которых прибор неработоспособен из-за разряженных батарей.

В автомагазинах можно приобрести ионисторы ёмкостью 1 фарад, для использования параллельно автомагнитоле. Они сглаживают колебания напряжения в период пуска двигателя.

Ионистор своими руками

При желании можно сделать суперконденсатор своими руками. Такое устройство будет обладать худшими параметрами и прослужит недолго (пока не высохнет электролит), но даст представление о работе таких устройств в целом.

Для того чтобы изготовить ионистор своими руками, необходимы:

  • медная или алюминиевая фольга;
  • поваренная соль;
  • активированный уголь из аптеки;
  • вата;
  • гибкие провода для выводов;
  • пластмассовая коробочка для корпуса.

Порядок изготовления ультраконденсатора следующий:

  • отрезать два кусочка фольги такого размера, чтобы они помещались на дно коробки;
  • припаять к фольге провода;
  • смочить уголь водой, растереть в порошок и высушить;
  • приготовить 25% раствор соли;
  • смешать угольный порошок с солевым раствором до пастообразного состояния;
  • смочить раствором соли вату;
  • нанести пасту тонким ровным слоем на фольгу;
  • сделать «сэндвич»: фольга углём вверх, тонкий слой ваты, фольга углём вниз;
  • поместить конструкцию в коробку.

Допустимое напряжение такого прибора – 0,5 В. При его превышении начинается процесс электролиза, и ионистор превращается в газовый аккумулятор.

Интересно. Если собрать несколько таких конструкций, то рабочее напряжение вырастет, но ёмкость упадёт.

Ионисторы – это перспективные электроприборы, способные, благодаря большой скорости заряда и разряда, заменить обычные аккумуляторы.

Видео

Окружающая среда может служить источником бесконечного количества энергии самых разнообразных форм, включая пьезоэлектрическую, тепловую, фотогальваническую и энергию вибрации, однако мощность ее весьма мала и крайне далека от пиковой потребности передатчиков беспроводных сетей, таких как IEEE 802.15.4 (Zigbee), 802.11 (WLAN), или GSM/GPRS. Чтобы обеспечить датчик достаточной мощностью для каждого цикла измерений и передачи данных, энергию необходимо накапливать в буфере, в качестве которого удобнее всего использовать ионисторы. Такие устройства накопления энергии медленно заряжаются от маломощного источника и кратковременно отдают большую мощность, когда это необходимо.

Определение необходимой емкости ионистора

Типичное рабочее напряжение ионисторных элементов лежит в диапазоне от 2.3 до 2.8 В. Оптимальная стратегия, позволяющая эффективно и с минимальными издержками запасать необходимую для приложения энергию, реализуется ограничением напряжения заряда до уровня, несколько меньшего, чем допустимое напряжение ионистора.

Простой способ определения необходимой емкости ионистора заключается в том, чтобы рассчитать количество энергии, необходимое для обеспечения устройства достаточной мощностью P в периоды максимального потребления, и приравнять его к выражению

C - емкость ионистора (в фарадах),
V INITIAL - напряжение на ионисторе непосредственно перед началом периода пикового потребления,
V FINAL - напряжение на ионисторе в конце этого периода.

V INITIAL - ESR I LOAD

I LOAD - ток нагрузки.

Поскольку напряжение на нагрузке уменьшается, ток нагрузки для поддержания расчетного уровня мощности увеличивается. Руководствуясь Рисунком 1, разработчики могут описать разряд ионистора следующими выражениями:

V SCAP - напряжение на ионисторе.

Из приведенных выражений вытекает уравнение для тока нагрузки:

Затем разряд ионистора может быть легко смоделирован в Excel на основании формул

Этот расчет исключительно важен, особенно, если произведение тока нагрузки на ESR достаточно велико в сравнении с напряжением на ионисторе в конце цикла разряда. В этом случае простая оценка энергетического баланса может показать, что емкость ионистора слишком мала, причем с понижением рабочей температуры нехватка емкости будет проявляться сильнее, так как при низких температурах ESR становится в два-три раза больше, чем при комнатной температуре.

Необходимо также помнить, что емкость и ESR ионистора изменяются со временем вследствие старения. Емкость постепенно падает, а внутреннее сопротивление возрастает. Скорость старения зависит от напряжения на элементе и температуры. Разработчикам следует учитывать это, выбирая ионистор с запасом по обоим параметрам, исходя из расчетного срока службы датчика.

Зарядка ионистора

Для источника энергии разряженный ионистор представляет собой короткозамкнутую нагрузку. К счастью, многие устройства сбора энергии, такие, например, как фотогальванические элементы и микрогенераторы, могут работать на нулевое сопротивление, а значит, способны заряжать ионистор с нуля. Если же источником энергии служит пезо- или термоэлектрический преобразователь, способностью выдерживать короткое замыкание по выходу должна обладать микросхема, стоящая между источником и ионистором.

Промышленность создала множество контроллеров MPPT (Maximum Power Point Tracking - слежение за точкой максимальной мощности), обеспечивающих максимально эффективное использование устройств сбора энергии. Но все они, являясь, по сути, специализированными DC/DC преобразователями, рассчитаны на заряд аккумуляторов постоянным напряжением .

Однако, в отличие от аккумулятора, ионистор наиболее эффективно заряжается не постоянным напряжением, а током, причем максимальным, т.е. всем, который только в состоянии отдать источник. На Рисунке 2 приведена схема простого и эффективного зарядного устройства, применимого в тех случаях, когда напряжение холостого хода солнечной батареи не выходит за границы, допустимые для ионистора. Диод предохраняет ионистор от разряда через солнечную батарею в темное время суток. Если напряжение холостого хода источника энергии превышает рабочее напряжение ионистора, для его защиты потребуется шунтовой регулятор напряжения (Рисунок 3). Шунтовой (параллельный) регулятор - самый простой и дешевый способ защиты ионистора от перегрузки по току. После того, как ионистор зарядится, энергия источника становится ненужной, и регулятор просто рассеивает ее в виде тепла.

Устройство сбора энергии подобно шлангу с бесконечным источником воды, через который заполняется бочка, являющаяся аналогом ионистора. Если шланг не вынуть из бочки после ее заполнения, вода просто начнет переливаться через край. Это сравнение иллюстрирует еще одно принципиальное отличие ионистора от аккумулятора, энергетическая емкость которого ограничена, что требует точного управления зарядкой с помощью последовательного регулятора напряжения.

В изображенной на Рисунке 2 схеме в начальный момент напряжение на ионисторе равно 0 В, вследствие чего солнечная батарея закорочена. По мере заряда ионистора ток уменьшается в соответствии с вольтамперной характеристикой фотогальванического элемента. Ионистор всегда заряжается до максимально возможного уровня, так как забирает самый большой ток, который только способен отдать источник. В схеме на Рисунке 3 использована микросхема , в которой помимо компаратора содержится источник опорного напряжения. Микросхема исключительно экономична, так как потребляет порядка 3 мкА и имеет открытый сток на выходе, при выключенном регуляторе представляющий собой обрыв. Диод Шоттки выбран из-за низкого прямого падения напряжения при малых токах. Если прямой ток не превышает 10 мкА, напряжение на диоде не выйдет за пределы 0.1 В.

Микрогенераторы идеально подходят для промышленных приложений, в особенности таких, как контроль уровня вибраций вращающихся механизмов, которые, по определению, не могут не вибрировать при работе. На Рисунке 4 показана вольтамперная характеристика микрогенератора, весьма напоминающая характеристику фотогальванического элемента. Микрогенератор содержит диодный мост, не позволяющий ионистору разряжаться через генератор, что позволяет сделать схему заряда очень простой (Рисунок 5).

Напряжение холостого хода 8.5 В заставило выбрать двухэлементные ионисторы HZ202 с рабочим напряжением 5.5 В. Шунтовой регулятор защищает ионистор от перенапряжения и, одновременно, выполняет функцию слаботочной схемы активной балансировки, гарантирующей равное распределение токов между элементами. Специально для заряда ионисторов в схемах сбора энергии Linear Technology выпускает микросхемы , LTC3108 и LTC3625 , а Texas Instruments - .

Ток утечки

Некоторые устройства сбора энергии выдают ток, измеряемый единицами микроампер, поэтому нельзя не принимать во внимание утечки ионисторов. Рисунок 6 показывает, что ионисторы могут иметь ток утечки менее 1 мкА, что позволяет использовать их в схемах извлечения энергии.

После зарядки ионистора ток утечки постепенно, по мере того, как ионы диффундируют в поры угольного электрода, снижается, стремясь к равновесному значению, зависящему от емкости, напряжения и времени. Ток утечки пропорционален емкости элемента и в установившемся режиме подчиняется эмпирическому правилу, согласно которому при комнатной температуре он составляет 1 мкА/Ф. Так, из Рисунка 6 мы видим, что ионисторы емкостью 150 мФ по истечении 160 часов имеют ток утечки 0.2 и 0.3 мкА. С ростом температуры ток утечки экспоненциально увеличивается. Время установления равновесного состояния при увеличении температуры уменьшается вследствие роста активности ионов. Таким образом, совершенно очевидно, что для возможности начала зарядки полностью разряженных ионисторов требуется определенный минимальный ток в диапазоне от 5 до 50 мкА. При выборе ионистора для устройства сбора энергии разработчики не должны забывать про этот очень важный параметр.

Балансировка элементов

Если в какой-то схеме напряжение превышает допустимое для ионисторной ячейки, составляя, скажем, 5 или 12 В, несколько элементов придется соединять в последовательную батарею. В этом случае потребуется схема балансировки ионисторных ячеек, без которой напряжения на элементах батареи будут различаться из-за некоторого разброса токов утечки и неодинакового характера их зависимости от напряжения. При последовательном включении токи утечки элементов должны быть одинаковыми, для чего ячейки стремятся соответствующим образом перераспределять заряды между собой. При этом напряжение на какой-то из них может выходить за разрешенные границы. Проблема будет усугубляться различиями в температуре и возрасте элементов. Простейшая схема балансировки получается при включении резистора, параллельно каждому элементу. В зависимости от тока утечки ионистора, типичное сопротивление этого резистора может быть от 1 до 50 кОм. Однако для большинства устройств сбора энергии ток, протекающий через резисторы балансировки, окажется недопустимо большим. Гораздо лучше подходит для таких приложений изображенная на Рисунке 7 слаботочная схема активной балансировки.

Для работы изображенного на схеме операционного усилителя с rail-to-rail входами и выходом требуется ток порядка 750 нА. Резистор R3 ограничивает выходной ток в случае короткого замыкания одной из ячеек. После 160 часов балансировки ионисторов HW207 вся схема потребляет от 2 до 3 мкА.

Температурные характеристики

Важнейшим преимуществом ионисторов в приложениях для сбора энергии является их широкий диапазон рабочих температур. Например, ионисторы могут использоваться с вибропреобразователями при отрицательных температурах или c солнечными панелями в ясный зимний день. В типичном случае ESR ионисторов при -30°C увеличивается в два-три раза по сравнению с ESR при комнатной температуре. Для сравнения, внутреннее сопротивление аккумуляторов при таких температурах может достигать нескольких килоом.

Подключение дополнительных аккумуляторов

В одних приложениях ионисторы могут служить альтернативой аккумуляторам, в других - средством их поддержки. В некоторых ситуациях ионистор не сможет запасать достаточное количество энергии, и потребуется использовать аккумулятор. Например, если источником энергии является солнце, необходимо устройство накопления, способное не только обеспечивать передатчик пиковой мощностью, но и поддерживать работу всей системы продолжительное время в течение ночи. Если требуемая пиковая мощность превышает максимальную мощность, которую в состоянии отдать аккумулятор, что типично, скажем, для вызовов GSM или для маломощных передатчиков, работающих при низкой температуре, решить проблему можно с помощью ионистора, заряжаемого от аккумулятора. Этим не только решается проблема энергетического баланса, но и увеличивается ресурс аккумулятора, степень разряда которого никогда не будет глубокой. Энергия запасается в ионисторах за счет физического накопления заряда, в отличие от аккумуляторов, работа которых основана на химических реакциях, поэтому количество циклов перезаряда ионисторов практически неограниченно.

Когда заряжаемый от аккумулятора ионистор используется как источник импульсной мощности, очень важно правильно оценивать и учитывать величину интервалов между пиками потребления тока. Если интервалы относительно малы, энергетически эффективнее держать ионистор в режиме постоянного заряда. При более редкой периодичности пиков целесообразнее заряжать ионистор непосредственно перед началом разряда. Этот интервал зависит от ряда факторов, включая величину заряда, накапливаемого ионистором до установления равновесного уровня тока утечки, характеристику саморазряда и пиковое потребление схемы. Но все это имеет смысл лишь в том случае, когда моменты максимального потребления тока известны заранее. Если же они наступают вследствие непредсказуемых событий, такие как отказ аккумулятора или внешнее воздействие, оптимизировать режим использования ионистора невозможно.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows