Частные производные сложной функции нескольких переменных. Доказательство формулы производной сложной функции. Производная сложной функции от нескольких переменных

Частные производные сложной функции нескольких переменных. Доказательство формулы производной сложной функции. Производная сложной функции от нескольких переменных

29.06.2020

Пусть функция z - /(х, у) определена в некоторой области D на плоскости хОу. Возьмем внутреннюю точку (х, у) из области D и дадим х приращение Ах такое, чтобы точка (х + Ах, у) 6 D (рис.9). Величину назовем частным приращением функции z по х. Составим отношение Для данной точки (х, у) это отношение является функцией от Определение. Если при Ах -* 0 отношение ^ имеет конечный предел, то этот предел называется частной производной функции z = /(х, у) по независимой переменной х в точке (х, у) и обозначается символом jfc (или /i(x, jj), или z"x(x, Та ним образом, по определению или, чтотоже самое, Аналогично Если и - функция п независимых переменных, то Заметив, что Arz вычисляется при неизменном значении переменной у, a Atz - при неизменном значении переменной х, определения частных производных можно сформулировать так: Частные производные Геометрический смысл частных производных функции двух переменных Дифференцируемость функции нескольких переменных Необходимые условия дифференцируемости функции Достаточные условия дифференцируемсти функций нескольких переменных Полный дифференциал. Частные дифференциалы Производные сложной функции частной производной по х функции z = /(х, у) называется обычная производная этой функции по х, вычисленная в предположении, что у - постоянная; частной производной по у функции z - /(х, у) называется ее производная по у, вычисленная в предположении, что х - постоянная. Отсюда следует, что правила вычисления частных производных совпадают с правилами, доказанными для функции одной переменной. Пример. Найти частные производные функции 4 Имеем Заменами*. Из существования у функции г = /(х, у) в данной точке частных производных по всем аргументам не вытемает непрерывности функции в этой точке. Так, функция не является непрерывной в точке 0(0,0). Однако в этой точке указанная функция имеет частные производные по х и по у. Это следует из того, что /(х, 0) = 0 и /(0, у) = 0 и поэтому Геометрический смысл частных производных функции двух переменных Пусть в трехмерном пространстве поверхность S задана уравнением где f(x, у) - функция, непрерывная в некоторой области D и имеющая там частные производные по х и по у. Выясним геометрический смысл этих производных в точке Мо(хо,уо) 6 D, которой на поверхности z = f{x}y) соответствует точка f(x0}yo)). При нахождении частной производной вточке М0 мы полагаем, что z является только функцией аргумента х, тогда как аргумент у сохраняет постоянное значение у = уо, т. е. Функция fi(x) геометрически изображается кривой L, по которой поверхность S пересекается плоскостью у = у о. В силу геометрического смысла производной функции одной переменной f\(xo) = tg а, где а - угол, образованный касательной к линии L в точке JV0 с осью Ох (рис. 10). Но так что Такимобразом, частная производная ($|) равнатангенсуугла а между осью Ох и касательной в точке N0 к кривой, полученной в сечении поверхности z = /(х, у) плоскостью у Аналогично получаем, что §6. Дифференцируемость функции нескольких переменных Пусть функция z = /(х, у) определена в некоторой области D на плоскости хОу. Возьмем точку (х, у) € D и выбранным значениям х и у дадим любые приращения Ах и Ду, но такие, чтобы точка. Определение. Функция г = /(х, у) называется дифференцируемой * точке (ж, у) € 2Э, если полное прирашение этой функции, отвечающее приращениям Дх, Ду аргументов, можно представить в виде где Л и В не зависят от Дх и Д у (но вообще зависят от х и у), а а(Дх, Ду) и /?(Дх, Ду) стремятся к нулю при стремлении к нулю Дх и Ду. . Если фунмция z = /(х, у) дифференцируема в точке (х, у), то часть А Дх 4- ВДу приращения функции, линейная относительно Дх и Ду, называется полным дифференциалом этой функции в точке (х, у) и обозначается символом dz: Таним образом, Пример. Пусть г = х2 + у2. Во всякой точке (г,у) и для любых Дх и Ду имеем Здесь. тек что а и /3 стремятся к нулю при стремлении к нулю Дх и Ду. Согласно определению, данная функция дифференцируема в любой точке плоскости хОу. При этом Заметим, что в наших рассуждениях не был формально исключен тот случай, когда приращения Дх, Ду порознь или даже оба сразу равны нулю. Формулу (1) можно записать более компактно, если ввести выражение (расстояние между точками (Пользуясь им, можем написать Обозначив выражение, стоящее в скобнах, через е, будем иметь где с зависит от Дж, Ду и стремится к нулю, если Дж 0 и Ду 0, или, короче, если р 0. Формулу (1), выражающую условие дифференцируемости функции z = f{xt у) в точке (ж, у), можно теперь записать в виде Так, в приведенном выше примере 6.1. Необходимые условия дифференцируемое™ функции Теореме 4. Если функция г = /(ж, у) дифференцируема в некоторой точке, то она в этой точке непрерывна. 4 Если в точке (ж, у) фунлшя г = /(ж, у) дифференцируема, то полное приращение функции я в этой точ»«е, отвечающее приращениям Дж и Ду аргументов, можно представи ть в виде (величины Л, В для данной точки постоянны; , откуда следует, что Последнее означает, что в точке (ж, у) функция г /(ж, у) непрерывна. Теорем! б. Если функция г = /(ж, у) дифференцируема в данной точке, mo око ы.иеет в этой точке частные производные $§ и. Пусть функция z = /(х, у) дифференцируемад точке (х, у). .Тогда прираше^ Дг этой функции, отвечающее приращениям Дх, Ау аргументов, можно представить в виде (1). Взяв в равенстве (1) Дх Ф 0, Ду = 0, получим откуда Так как в правой части последнего равенства величина А не зависит от, Это означает, что в точке (х, у) существует частная производная функции г = /{х, у) по х, причем Подобными же рассуждениями убеждаемся (х, существует частная производная функции zу, причем Из теоремы следует, что Подчеркнем, что теорема 5 утверждает существование частных производных только в точке (х, у), но ничего не говорит о непрерывности их в этой точке, а также об их поведении в окрестности точки (х, у). 6.2. Достаточные условия дифференцируемое™ функций нескольких переменных Как известно, необходимым и достаточным условием дифференцируемости функции у = /(х) одной переменной в точке хо являетсясу шествование конечной производной /"(х) в точке х0. В случае, когда функция зависит от нескольких переменных, дело обстоит значительно сложнее: необходимых и достаточных условий дифференцируемости нет уже для функ ии z = /(х, у) двух независимых переменных х, у; есть лишь отдельно необходимые условия (см. выше) и отдельно - достаточные. Эти достаточные условия дифференцируемости функций нескольких переменных выражаются следующей теоремой. Теорема в. Если функция имеет частные производные /£ и f"v в некоторой окрестности тонки (хо, Уо) и если эти производные непрерывны в самой точке (хо,Уо), то функция z = f(x, у) дифференцируема в точке (х- Пример. Рассмотрим функцию Частные производные Геометрический смысл частных производных функции двух переменных Дифференцируемость функции нескольких переменных Необходимые условия дифференцируемости функции Достаточные условия дифференцируемсти функций нескольких переменных Полный дифференциал. Частные дифференциалы Производные сложной функции Она определена всюду. Исходя из определения частных производных, имеем Для наощдрлм* дифференцируемое™ данной функции в точке 0(0,0) найдем и приращение этой точит Для дифференцируем ости функции /(х,у) = в точив 0(0,0) необходимо, чтобы функция е(Дх, Ду) быле 6всконеио малой при Дх 0 и Ду 0. Положим Д0. Тогда из формулы (1) будем иметь Поэтому функции /(х,у) = не дифференцируема в точке 0(0,0), хотя и имеет в этой точке производим fa и f"r Полученный результат объясняется тем, что производные f"z и f"t разрывны точке §7. Полный дифференциал. Частные дифференциалы Если функция г - f(z> у) дифференцируема, то ее пожьгй дифференциал dz равен Замечая, что А = В = щ, запишем формулу (1) в следующем виде Распространим понятие дифференциала функции на независимые переменные, положив дифференциалы независимых переменных равными их приращениям: После этого формула полного дифференциала функции приметвкд Пример. Пусть i - 1л(х + у2). Тогда Аналогично, если u =) есть дифференцируемая функция n независимых переменных, то Выражение называется постным дифференциалом функции z = f(x, у) по переменной х; выражение называется частным дифференциалом функции z = /(ж, у) попеременной у. Из формул (3), (4) и (5) следует, что полный дифференциал функции является суммой ее частных дифференциалов: Отметим, что полное приращение Az функции z = /(ж, у), вообще говоря, не равно сумме частных приращений. Если в точке (я, у) фунмцияг = /(ж, у) дифференцируема и дифференциал dz Ф О в этой точке, то ее полное приращение отличается от своей линейной части только на сумму последних слагаемых аАх 4- /?ДУ, которые при Аж 0 и Ау --» О являются бесконечно малыми более высокого порядка, чем слагаемыелинейной части. Поэтому при dz Ф 0 линейную часть приращения дифференцируемой функции называют главной частью приращения функции и пользуются приближенной формулой которая будет тем более точной, чем меньшими по абсолютной величине будут приращения аргументов. §8. Производные сложной функции 1. Пусть функция определена в некоторой области D на плоскости хОу, причем каждая из переменных ж, у в свою очередь является функцией аргумента t: Будем предполагать, что при изменении t в интервале (соответствующие точки (ж, у) не выходят за пределы области D. Если подставить значения в функцию z = / (ж, у), то получим сложную функцию одной переменной t. и при соответствующих значениях функция /(х,у) дифференцируема, то сложная функция, в точке t имеет производную причем M Дадим t приращение Дt. Тогда x и у получат некоторые приращения Ах и Ду. В результате этого при (Дж)2 + (Ду)2 Ф 0 функция z также получит некоторое приращение Дг, которое в силу дифференцируемости функции z = /(ж, у) в точке (х, у) может быть представлено в виде где а) стремятся к нулю при стремлении к нулю Ах и Ду. Доопределим а и /3 при Ах = Ау = 0, положив а Тогда а(будут непрерывны при Дж = Ду = 0. Рассмотрим отношение Имеем В каждом слагаемом^ в Правой части (2) оба сомножителя имеют пределы при действительно, частные производные и ^ для данной являются постоянными, по условию существуют пределы из существования производных ^ и в точке £ следует непрерывность в этой точке функций х = y(t) и у = поэтому при At 0 стремятся к нулю и Дж и Ду, что в свою очередь влечет за собой стремление к нулю а(Дх, Ду) и Р(Ах, Ау). Таким образом, правая часть равенства (2) при 0 имеет предел, равный Значит, существует при At 0 и предел левой части (2), т. е. существует равный Переходя в равенстве (2) к пределу при At -» 0, получаем требуемую формулу В частном случае, когда, следовательно, z является сложной функцией от ж, получаем В формуле (5) есть частная производная фунадииг = /(ж, у) по ж, при вычи слении которой в выражении/(ж, у) аргумент у принимается за постоянную. А есть полная производная функции z по независимой переменной ж, при вычислении которой у в выражении /(ж, у) уже не принимается за постоянную, а считается в свою очередь функцией от ж: у = tp(x)t и поэтому зависимость z от ж учитывается полностью. Пример. Найти и jg , если 2. Рассмотрим теперь дифференцирование сложной функции нескольких переменных. Пусть где в свою очередь так что Предположим, что в точке (() существуют непрерывные частные производные щ, 3?» а в соответствующей точке (ж,у), где Функция /(ж, у) дифференцируема. Покажем, что при этих условиях сложная фуншия z = z({} у) в точке t7) имеет производные и щ, и найдем выражения для этих производных. Заметим, что этот случай от уже изученного существенно не отличается. Действительно, при дифференцировании z по £ вторая независимая переменная rj принимается за постоянную, вследствие чего ж и у при этой операции становятся функциями одной переменной ж" = с), у = с) и вопрос о производной Ц решается совершенно так же, как вопрос о производной при выводе формулы (3). Используя формулу (3) и формально заменяя в ней производные § и ^ на производные щ и соответственно, получим Аналогично находим Пример. Найти частные производные ^ и ^ функции г = ж2 у - хуесли х - у = Если сложная функция « Задана формулами так что то при выполнении соответствующих условий имеем В частном случае, когда И = где Частные производные Геометрический смысл частных производных функции двух переменных Дифференцируемость функции нескольких переменных Необходимые условия дифференцируемости функции Достаточные условия дифференцируемсти функций нескольких переменных Полный дифференциал. Частные дифференциалы Производные сложной функции имеем Здесь т- полная.частная производная функции и по независимой переменной х, учитывающая полную зависимость и от х, втомчисле и через z = z(x,y),a ^ -частная произврдная.функдодои и = /(г,у, г) по х, при вычислении к

Частные производные применяются в заданиях с функциями нескольких переменных. Правила нахождения точно такие же как и для функций одной переменной, с разницей лишь в том, что одну из переменных нужно считать в момент дифференцирования константой (постоянным числом).

Формула

Частные производные для функции двух переменных $ z(x,y) $ записываются в следующем виде $ z"_x, z"_y $ и находятся по формулам:

Частные производные первого порядка

$$ z"_x = \frac{\partial z}{\partial x} $$

$$ z"_y = \frac{\partial z}{\partial y} $$

Частные производные второго порядка

$$ z""_{xx} = \frac{\partial^2 z}{\partial x \partial x} $$

$$ z""_{yy} = \frac{\partial^2 z}{\partial y \partial y} $$

Смешанная производная

$$ z""_{xy} = \frac{\partial^2 z}{\partial x \partial y} $$

$$ z""_{yx} = \frac{\partial^2 z}{\partial y \partial x} $$

Частная производная сложной функции

а) Пусть $ z (t) = f(x(t), y(t)) $, тогда производная сложной функции определяется по формуле:

$$ \frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} $$

б) Пусть $ z (u,v) = z(x(u,v),y(u,v)) $, тогда частные производные функции находится по формуле:

$$ \frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} $$

$$ \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} $$

Частные производные неявно заданной функции

а) Пусть $ F(x,y(x)) = 0 $, тогда $$ \frac{dy}{dx} = -\frac{f"_x}{f"_y} $$

б) Пусть $ F(x,y,z)=0 $, тогда $$ z"_x = - \frac{F"_x}{F"_z}; z"_y = - \frac{F"_y}{F"_z} $$

Примеры решений

Пример 1
Найти частные производные первого порядка $ z (x,y) = x^2 - y^2 + 4xy + 10 $
Решение

Для нахождения частной производной по $ x $ будем считать $ y $ постоянной величиной (числом):

$$ z"_x = (x^2-y^2+4xy+10)"_x = 2x - 0 + 4y + 0 = 2x+4y $$

Для нахождения частной производной функции по $ y $ определим $ y $ константой:

$$ z"_y = (x^2-y^2+4xy+10)"_y = -2y+4x $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ z"_x = 2x+4y; z"_y = -2y+4x $$
Пример 2
Найти частные производные функции второго порядка $ z = e^{xy} $
Решение

Сперва нужно найти первый производные, а затем зная их можно найти производные второго порядка.

Полагаем $ y $ константой:

$$ z"_x = (e^{xy})"_x = e^{xy} \cdot (xy)"_x = ye^{xy} $$

Положим теперь $ x $ постоянной величиной:

$$ z"_y = (e^{xy})"_y = e^{xy} \cdot (xy)"_y = xe^{xy} $$

Зная первые производные аналогично находим вторые.

Устанавливаем $ y $ постоянной:

$$ z""_{xx} = (z"_x)"_x = (ye^{xy})"_x = (y)"_x e^{xy} + y(e^{xy})"_x = 0 + ye^{xy}\cdot (xy)"_x = y^2e^{xy} $$

Задаем $ x $ постоянной:

$$ z""_{yy} = (z"_y)"_y = (xe^{xy})"_y = (x)"_y e^{xy} + x(e^{xy})"_y = 0 + x^2e^{xy} = x^2e^{xy} $$

Теперь осталось найти смешанную производную. Можно продифференцировать $ z"_x $ по $ y $, а можно $ z"_y $ по $ x $, так как по теореме $ z""_{xy} = z""_{yx} $

$$ z""_{xy} = (z"_x)"_y = (ye^{xy})"_y = (y)"_y e^{xy} + y (e^{xy})"_y = ye^{xy}\cdot (xy)"_y = yxe^{xy} $$

Ответ
$$ z"_x = ye^{xy}; z"_y = xe^{xy}; z""_{xy} = yxe^{xy} $$
Пример 4
Пусть $ 3x^3z - 2z^2 + 3yz^2-4x+z-5 = 0 $ задаёт неявную функцию $ F(x,y,z) = 0 $. Найти частные производные первого порядка.
Решение

Записываем функцию в формате: $ F(x,y,z) = 3x^3z - 2z^2 + 3yz^2-4x+z-5 = 0 $ и находим производные:

$$ z"_x (y,z - const) = (x^3 z - 2z^2 + 3yz^2-4x+z-5)"_x = 3 x^2 z - 4 $$

$$ z"_y (x,y - const) = (x^3 z - 2z^2 + 3yz^2-4x+z-5)"_y = 3z^2 $$

Ответ
$$ z"_x = 3x^2 z - 4; z"_y = 3z^2; $$

Приводится доказательство формулы производной сложной функции. Подробно рассмотрены случаи, когда сложная функция зависит от одной и двух переменных. Производится обобщение на случай произвольного числа переменных.

Содержание

См. также: Примеры применения формулы производной сложной функции

Основные формулы

Здесь мы приводим вывод следующих формул для производной сложной функции.
Если , то
.
Если , то
.
Если , то
.

Производная сложной функции от одной переменной

Пусть функцию от переменной x можно представить как сложную функцию в следующем виде:
,
где и есть некоторые функции. Функция дифференцируема при некотором значении переменной x . Функция дифференцируема при значении переменной .
Тогда сложная (составная) функция дифференцируема в точке x и ее производная определяется по формуле:
(1) .

Формулу (1) также можно записать так:
;
.

Доказательство

Введем следующие обозначения.
;
.
Здесь есть функция от переменных и , есть функция от переменных и . Но мы будем опускать аргументы этих функций, чтобы не загромождать выкладки.

Поскольку функции и дифференцируемы в точках x и , соответственно, то в этих точках существуют производные этих функций, которые являются следующими пределами:
;
.

Рассмотрим следующую функцию:
.
При фиксированном значении переменной u , является функцией от . Очевидно, что
.
Тогда
.

Поскольку функция является дифференцируемой функцией в точке , то она непрерывна в этой точке. Поэтому
.
Тогда
.

Теперь находим производную.

.

Формула доказана.

Следствие

Если функцию от переменной x можно представить как сложную функцию от сложной функции
,
то ее производная определяется по формуле
.
Здесь , и есть некоторые дифференцируемые функции.

Чтобы доказать эту формулу, мы последовательно вычисляем производную по правилу дифференцирования сложной функции.
Рассмотрим сложную функцию
.
Ее производная
.
Рассмотрим исходную функцию
.
Ее производная
.

Производная сложной функции от двух переменных

Теперь пусть сложная функция зависит от нескольких переменных. Вначале рассмотрим случай сложной функции от двух переменных .

Пусть функцию , зависящую от переменной x , можно представить как сложную функцию от двух переменных в следующем виде:
,
где
и есть дифференцируемые функции при некотором значении переменной x ;
- функция от двух переменных, дифференцируемая в точке , . Тогда сложная функция определена в некоторой окрестности точки и имеет в производную, которая определяется по формуле:
(2) .

Доказательство

Поскольку функции и дифференцируемы в точке , то они определены в некоторой окрестности этой точки, непрерывны в точке и существуют их производные в точке , которые являются следующими пределами:
;
.
Здесь
;
.
В силу непрерывности этих функций в точке имеем:
;
.

Поскольку функция дифференцируема в точке , то она определена в некоторой окрестности этой точки, непрерывна в этой точке и ее приращение можно записать в следующем виде:
(3) .
Здесь

- приращение функции при приращении ее аргументов на величины и ;
;

- частные производные функции по переменным и .
При фиксированных значениях и , и есть функции от переменных и . Они стремятся к нулю при и :
;
.
Поскольку и , то
;
.

Приращение функции :

. :
.
Подставим (3):



.

Формула доказана.

Производная сложной функции от нескольких переменных

Приведенный выше вывод легко обобщается на случай, когда число переменных сложной функции больше двух.

Например, если f является функцией от трех переменных , то
,
где
, и есть дифференцируемые функции при некотором значении переменной x ;
- дифференцируемая функция, от трех переменных, в точке , , .
Тогда, из определения дифференцируемости функции , имеем:
(4)
.
Поскольку, в силу непрерывности,
; ; ,
то
;
;
.

Разделив (4) на и выполнив предельный переход , получим:
.

И, наконец, рассмотрим самый общий случай .
Пусть функцию от переменной x можно представить как сложную функцию от n переменных в следующем виде:
,
где
есть дифференцируемые функции при некотором значении переменной x ;
- дифференцируемая функция от n переменных в точке
, , ... , .
Тогда
.

См. также:

Пример. Найти , если , где .

Решение. По формуле (1) имеем:

Пример. Найти частную производную и полную производную , если .

Решение. .

На основании формулы (2) получаем .

2°. Случай нескольких независимых переменных.

Пусть z = f(x;y) - функция двух переменных х и у, каждая из которых является функцией

независимой переменной t: х = x(t), у = y(t). В этом случае функция z=f(x(t);y(t)) является

сложной функцией одной независимой переменной t; переменные х и у - промежуточные переменные.

Теорема . Если z == f (x; у) - дифференцируемая в точке М(х;у) D функция

и х = x(t) и у =y(t) - дифференцируемые функции независимой переменной t,

то производная сложной функции z(t) == f (x(t);y(t)) вычисляется по формуле

(3)

Частный случай: z = f(x; у), где у = у(х), т.е. z = f(x;y(x)) - сложная функция одной

независимой переменной х. Этот случай сводится к предыдущему, причем роль переменной

t играет х. Согласно формуле (3) имеем:

.

Последняя формула носит название формулы полной производной.

Общий случай: z = f(x;y), где х = x(u;v), y=y(u;v). Тогда z = f{x(u;v);y(u;v)) - сложная

функция независимых переменных и и v. Ее частные производные и можно найти,

используя формулу (3) следующим образом. Зафиксировав v, заменяем в ней ,

соответствующими частными производными

Таким образом, производная сложной функции (z) по каждой независимой переменной и v)

равна сумме произведений частных производных этой функции (z) по ее промежуточным

переменным (x и у) на их производные по соответствующей независимой переменной (u и v).

Во всех рассмотренных случаях справедлива формула

(свойство инвариантности полного дифференциала).

Пример. Найти и , если z=f (x,y), где x=uv, .

Теорема. Пусть u = f (х, у) задана в области D и пусть х = х(t) и у = у(t) определены в области , причём, когда , то х и у принадлежат области D . Пусть функция u дифференцируема в точке M 0 (x 0 , y 0 , z 0), а функции х (t) и у (t) дифференцируемы в соответствующей точке t 0 , то сложная функция u = f [x (t ), y (t )]=F (t ) дифференцируема в точке t 0 и имеет место равенство:

.

Доказательство. Так как u дифференцируема по условию в точке (x 0 , y 0), то её полное приращение представляется в виде

Разделив это соотношение на , получим:

Перейдём к пределу при и получим формулу

.

Замечание 1. Если u = u (x, y ) и x = x , y = y (x ), то полная производная функции u по переменной х

или .

Последнее равенство можно использовать для доказательства правила дифференцирования функции одной переменной, заданной неявно в виде F (x , y ) = 0, где y = y (x ) (см. тему № 3 и пример 14).

Имеем: . Отсюда . (6.1)

Вернёмся к примеру 14 темы № 3:

;

.

Как видим, ответы совпали.

Замечание 2. Пусть u = f (х, у ), где х = х (t , v ), у = у (t , v ). Тогда u есть в конечном счёте сложная функция двух переменных t и v . Если теперь функция u дифференцируема в точке M 0 (x 0 , y 0), а функции х и у дифференцируемы в соответствующей точке (t 0 , v 0), то можно говорить о частных производных по t и v от сложной функции в точке (t 0 , v 0). Но если мы говорим о частной производной по t в указанной точке, то вторая переменная v считается постоянной и равной v 0 . Следовательно, речь идёт о производной только от сложной функции по t и, следовательно, мы можем воспользоваться выведенной формулой. Таким образом, получим.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows