Все о структурах в c. Структуры. Что такое структура в языке Си

Все о структурах в c. Структуры. Что такое структура в языке Си

14.03.2019


CTE(обобщенное табличное выражение) может ссылаться на себя, создавая рекурсивное CTE.
Рекурсивное CTE многократно выполняется, чтобы возвращать подмножество данных до тех пор, пока не получится конечный результирующий набор.
Обычно рекурсивные запросы используются для возвращения иерархических данных, например: отображение сотрудников в структуре организации или генерация последовательности.

Структура рекурсивного CTE

WITH cte_name (column_name [,...n]) AS (CTE_query_definition –- Anchor member is defined. UNION ALL CTE_query_definition –- Recursive member is defined referencing cte_name.) -- Statement using the CTE SELECT * FROM cte_name
CTE разбивается на закрепленный и рекурсивный элементы. Запускается закрепленный элемент с созданием первого вызова. Рекурсивный элемент ссылается на закрепленный и вызывается пока не вернет пустой набор.


Классический пример с сотрудниками

DECLARE @Employees TABLE (ID int NOT NULL, nvarchar(200) NOT NULL, ManagerID int NULL) INSERT INTO @Employees VALUES (1, N"Ken", NULL) ,(2, N"Brian",1) ,(3, N"Stephen", 2) ,(4, N"Michael", 2) ,(5, N"Linda", 3) ,(6, N"Syed", 4) ,(7, N"Lynn", 5) ,(8, N"David", NULL) ,(9, N"Mary", 8);
ManagerID - прямой руководитель.
В данном случае у нас два босса Ken и David, необходимо получить всех сотрудников отдела Кена.
WITH DirectReports (ID, , ManagerID, Level) AS (-- Anchor member definition SELECT e.ID, e., ManagerID, 0 AS Level FROM @Employees AS e WHERE e.ID = 1 UNION ALL -- Recursive member definition SELECT e.ID, e., e.ManagerID, Level + 1 FROM @Employees AS e INNER JOIN DirectReports AS d ON e.ManagerID = d.ID) -- Statement that executes the CTE SELECT ID, , ManagerID, Level FROM DirectReports

Прописные латинские буквы

Так же часто появляется необходимость в генерации различных последовательностей.
;WITH Letters AS(SELECT ASCII("A") code, CHAR(ASCII("A")) letter UNION ALL SELECT code+1, CHAR(code+1) FROM Letters WHERE code+1 <= ASCII("Z")) SELECT letter FROM Letters;

Числовая последовательность

DECLARE @startnum INT=1 DECLARE @endnum INT=55 ; WITH gen AS (SELECT @startnum AS num UNION ALL SELECT num+1 FROM gen WHERE num+1<=@endnum) SELECT * FROM gen option (maxrecursion 55)

Подсказка MAXRECURSION может использоваться для предотвращения входа в бесконечный цикл из-за неверно сформированного рекурсивного CTE-выражения.

Объединение временных интервалов

Есть справочник с ценами на продукты, для оптимизации объедением смежные интервалы
DECLARE @ProductPrice TABLE (ProductID int, Price money, BeginDate date, EndDate date NULL) INSERT INTO @ProductPrice VALUES (1, 11.11, "20170101", "20170215") ,(1, 11.11, "20170216", "20170615") ,(1, 22.1, "20170616", null) ,(2, 33, "20170101", "20170201") ,(2, 33, "20170501", "20170601") ,(3, 12, "20170101", "20170215") ,(3, 12, "20170216", null);
Нужно получить в таком виде
--1 11 "20170101" "20170615" --1 22.1 "20170616" null --2 33 "20170101" "20170201" --2 33 "20170501" "20170601" --3 12 "20170101" null
Одно из решений это рекурсия в CTE
;with cte as (select a.ProductID, a.Price, a.BeginDate, a.EndDate from @ProductPrice a left join @ProductPrice b on a.ProductID=b.ProductID and dateadd(day,-1,a.BeginDate)=b.EndDate and a.Price=b.Price where b.BeginDate is null union all select a.ProductID, a.Price, a.BeginDate, b.EndDate from cte a join @ProductPrice b on a.ProductID=b.ProductID and dateadd(day,-1,b.BeginDate)=a.EndDate and a.Price=b.Price) select ProductID, Price, BeginDate, nullif(max(isnull(EndDate,"32121231")),"32121231") EndDate from cte group by ProductID, Price, BeginDate

Объединение однотипных запросов

Вывести номера продавцов с меткой «сильный продавец» или «слабый». Сильным считается продавец со средней стоимостью сделки больше 500, слабым – меньше 500 (запрос приведен на Лист. 39, результат - Табл. 51):

GROUP BY N_Продавца

HAVING avg(Стоимость)<500

GROUP BY N_Продавца

HAVING avg(Стоимость)>500;

Табл. 51. Результат запроса с оператором Union

Вывести номера продавцов с меткой «сильный продавец» или «слабый». Сильным считается продавец со средней стоимостью сделки больше 500, слабым – меньше 500, отсортировать по активности (запрос приведен на Лист. 40, результат - Табл. 52):

SELECT N_Продавца, "Слабый продавец" as Активность FROM Сделки

GROUP BY N_Продавца

HAVING avg(Стоимость)<500

UNION SELECT N_Продавца, "Сильный продавец" as Активность FROM Сделки

GROUP BY N_Продавца

HAVING avg(Стоимость)>500

ORDER BY Активность;

Табл. 52. Результат запроса с Union и Order by

Аналогично работают операторы intersect и except, соответствующие операциям пересечения и разности в реляционной алгебре. Для предметной области «продажи» списки городов покупателей и продавцов могут не совпадать, поэтому мы можем решить разнообразные задачи с этими списками, как показано в Табл. 53.

Табл. 53. Использование операторов соединения однотипных запросов

На Лист. 25 был приведен пример запроса, в котором ищутся подчиненные Иванова. Возникает вопрос, как построить всю иерархию подчиненных, а не только его непосредственных подчиненных. Фактически мы должны применить этот же самый запрос Лист. 25 к результату выполнения его самого, затем еще раз и т.д., пока будут находиться подчиненные на всё более низких уровнях иерархии.

Построить иерархию всех подчиненных Иванова в «в длину» (запрос приведен на Лист. 41, результат - Табл. 54).

Рекурсивные запросы можно опознать по ключевому слову WITH RECURSIVE. Чтобы быть вызванным рекурсивно, запрос фактически должен иметь имя (в данном случае - Прод ). Запрос состоит из двух частей, объединяемых с помощью UNION. В первой части – начальники, во второй части – их подчиненные. Запрос находит первого подчиненного, затем первого подчиненного первого и т.д. Такие запросы называются запросами на поиск «в длину»

Лист. 41. Рекурсивный запрос «в длину»

(SELECT N, Имя

FROM Продавцы

WHERE Имя = ‘Иванов’

SELECT Продавцы. N, Продавцы.Имя

FROM Продавцы, Прод

SELECT * FROM Прод;

Табл. 54. Результат рекурсивного запроса «в длину»

Если нам нужно сперва перечислить всех подчиненных Иванова, затем подчиненных подчиненных Иванова и т.д., то нам нужно использовать рекурсивные запросы «в ширину», используя оператор SEARCH BREADTH FIRST. В запросе с помощью оператора SET устанавливается номер итерации.

Построить иерархию всех подчиненных Иванова «в ширину» (запрос приведен на Лист. 42, результат - Табл. 55).

Лист. 42. Рекурсивный запрос «в ширину»

WITH RECURSIVE Прод (N, Имя, N_Начальника) as

(SELECT N, Имя

FROM Продавцы

WHERE Имя = ‘Иванов’

FROM Продавцы, Прод

WHERE Прод.N = Продавцы.N_Начальника);

SEARCH BREADTH FIRST BY N_Начальника, N

SET order_column

SELECT * FROM Прод

ORDER BY order_column;

Табл. 55. Результат запроса «в ширину»

При рекурсивном запросе возможна ситуация зацикливания. Хотя этого и нет в нашем примере, можно предположить, что бывают ситуации, когда один коллектив работает над двумя проектами, причем один человек в первом проекте – начальник, а во втором – подчиненный и наоборот, второй человек в первом проекте – подчиненный. А во втором – начальник. В этом случае предыдущие рекурсивные запросы зациклятся.

Построить иерархию всех подчиненных Иванова, учесть возможность зацикливания (Лист. 43).

Лист. 43. Рекурсивный запрос с учетом зацикливания

WITH RECURSIVE Прод (N, Имя) as

(SELECT N, Имя

FROM Продавцы

WHERE Имя = ‘Иванов’

SELECT Продавцы. N, Продавцы. Имя

FROM Продавцы, Прод

WHERE Прод.N = Продавцы.N_Начальника);

SET cyrclemark to “Y” default “N”

USING cyrclepath

SELECT * FROM Прод

Д/З 6. Для примера из Д/З 4 придумайте следующие запросы:

  1. Запрос по одной таблице, вычисляющий агрегатную функцию с использованием операторов where, having, order by.
  2. Запрос соединения нескольких таблиц с использованием оператора where, одна таблица должна использоваться в запросе несколько раз под псевдонимами.
  3. Запрос по правому, левому или полному соединению.
  4. Запрос с двумя вложенными запросами в конструкциях where и having
  5. Запрос с вложенным запросом, используя all, any или exists.
  6. Вложенный запрос с объединением двух таблиц (одна из разновидностей join), опосредованно связанных третьей.
  7. Объединение однотипных запросов.
  8. Рекурсивный запрос.

Вопросы для самопроверки :

1. Чем отличается использование операторов group by, group by rollup, group by rollup cube, grouping, orger by, partition?

2. Чем отличается использование операторов where и having?

3. Какому запросу join … on соответствует оператор where?

4. Какой операции реляционной алгебры соответствует оператор where?

5. Какой операции реляционной алгебры соответствует оператор join?

Тип переменной определяет: её размер в памяти, тип данных, которые она может хранить и операции, которые можно производить с этой переменной.

Тип данных является категорией. В языке С++ программист может создать любой тип данных на основе базовых типов. Новые типы данных необходимо создавать для решения конкретных практических задач. Например: реализация работы деканата.

Успех программы часто зависит от удачного выбора способа представления данных. С помощью структур возможно моделировать сложные объекты, возникающие при решении задач. Структуры представляют средство для доступа к записям, которые содержат поля одного или нескольких типов.

Для использования структуры необходимо:
1. установить шаблон для структуры
2. объявить переменную, соответствующую этому шаблону
3. осуществить доступ к компонентам структуры.

Шаблон структуры

Шаблон - это схема, описывающая содержание структуры. Установка структурного шаблона телефонный справочник:

struct sprav {
char fio;
long num;
};

Данный шаблон описывает структуру с именем типа структуры sprav, состоящую из двух компонентов: строки fio и целой переменной num типа long. Имя типа структуры sprav необязательно и используется для ссылки на эту структуру. Компоненты структуры - данные любого типа, включая и другие структуры. Имя внутри структуры может быть таким же, как имя объекта вне структуры. Если шаблон описан внутри функции - он доступен только этой функции, если шаблон описан вне функции - он доступен любой функции программы. Установка шаблона не вызывает никаких действий в программе.

Структурные переменные

Объявление структурных переменных приводит к выделению памяти для компонент структуры, куда можно записать данные или откуда можно прочитать их. Для объявления структурных переменных имеются несколько способов.

1. Установить структурный шаблон:

struct sprav {
char fio;
long num;
};

Объявить простую переменную, массив структур, указатель на структуру: struct sprav tel1, tel2, *tel3;

2. Установить структурный шаблон с помощью макроопределения:

#define SPRAV struct sprav
SPRAV {
char fio;
long num;
};

Объявить переменные:

SPRAV sp1, sp2, *sp3;

3. Объявить переменные одновременно с установкой шаблона (если на данную структуру вы больше не ссылаетесь):

struct {
char fio;
long num;
} tel1, tel2, *tel3;

4. Ввести новый тип данных (TEL)-структура определенного вида:

typedef struct {
char fio;
long num;
} TEL;

Объявить переменные нового типа:

TEL tel1, tel2, *tel3;

Если программа достаточно объемна, представляется более удобным четвертый способ.

Инициализация структуры

Инициализировать можно только внешние или статические структуры.

static struct {
char fio;
long num;
} tel={
"Иванов Ф.А.", 456756,
"Петров В.П.", 632345
};

Доступ к компонентам структуры

Доступ к компонентам структуры продемонстрируем с помощью примеров.

/* Обращение к элементам структуры через имя переменной */
#include
#include
void main(void)
{
struct{
char fio; /* фамилия */
long num; /* телефон */
} tel1, tel2;

puts("введите фио абонента-");
gets(tel1.fio);
puts("введите его номер-");
scanf("%ld",&tel1.num);
tel2=tel1; /* нельзя так же сравнивать структуры */
puts("Введено:");
printf("Фамилия:%s номер: %ld\n",tel2.fio,tel2.num);
}

/* Динамическое выделение памяти для структуры */

#include
#include
#include
struct sprav {
char fio;
long num;
};

void main(void)
{
struct sprav *tel1, *tel2;

clrscr();
/* Выделение памяти для структуры */
tel1=(struct sprav *)malloc(sizeof(struct sprav));
tel2=(struct sprav *)malloc(sizeof(struct sprav));

gets(tel1->fio);
puts("введите его номер-");
scanf("%ld",&tel1->num);
*tel2= *tel1;
puts("Введено:");
printf("Фамилия:%s номер: %ld\n",(*tel2).fio,(*tel2).num);
}

Массив структур

/* Массив структур. Обращение к элементам структуры через */
/* имя элемента массива */
#include
#include
#include
#define SPRAV struct sprav

void main(void)
{
SPRAV{
char fio;
long num;
};

SPRAV tel; /* массив структур - 5 элементов */
char fio_tek;
int i;

clrscr();
/* ввод данных в массив структур */
for(i=0; i<5; i++)
{
puts("введите фио абонента-");
gets(tel[i].fio);
puts("введите его номер-");
scanf("%ld",&tel[i].num);
getchar();
}

gets(fio_tek);
/* поиск структуры по фамилии абонента */
for(i=0; i<5; i++)
if(!strcmp(fio_tek,tel[i].fio)) break;
if(i!=5) /* цикл закончен по break */

tel[i].num);
else /* цикл выполнился полностью */
puts("Абонент не найден");
}

/* Массив структур. Память выделяется динамически. */
/* Обращение к элементам структуры через указатель */
#include
#include
#include
#include

typedef struct{
char fio;
long num;
} TEL;

void main(void)
{
TEL *tel;
char fio_tek;
int i;

clrscr();
/* Выделение памяти для массива - 3 элемента */
tel=(TEL *)malloc(sizeof(TEL)*3);
for(i=0; i<3; i++)
{
puts("введите фио абонента-");
gets((tel+i)->fio);
puts("введите его номер-");
scanf("%ld",&(tel+i)->num);
getchar();
}
puts("Выбор телефона по фамилии");
gets(fio_tek);
for(i=0; i<5; i++,tel++)
if(!strcmp(fio_tek,tel->fio)) break;
if(i!=5)
printf("номер абонента %s равен %ld\n",fio_tek, \
tel->num);
else
puts("Абонент не найден");
}

Передача структуры в функцию

Непосредственный доступ к компонентам структуры - плохой стиль программирования. Все операции, которые разрешены применительно к структуре, должны быть при этом реализованы в виде отдельных функций. Не все компиляторы языка Си позволяют передавать структуры в функцию по значению, поэтому в примерах передача структуры идет через указатель.

/* Передача структуры в функцию через указатель на структуру */
/* Определение комплексного числа через структуру и действия */
/* над комплексными числами (ввод, вывод, вычисление суммы) */

#include
typedef struct { float a; /* действительная часть */
float b; /* мнимая часть */
} COMPLEX;
void vvod(COMPLEX *,float,float);
void sum(COMPLEX *,COMPLEX *,COMPLEX *);
void out(COMPLEX *);
void main(void)
{
COMPLEX x,y,z;
vvod(&x,2.5,6.7);
vvod(&y,6.89,8.45);
puts("Введены числа:");
out(&x);
out(&y);
sum(&x,&y,&z);
puts("Сумма комплексных чисел равна:");
out(&z);
}
/* Вывод комплексного числа */
void out(COMPLEX *p)
{
printf("(%.2f,%.2f)\n", (*p).a,(*p).b);
return;
}

/* Вычисление суммы двух комплексных чисел */
void sum(COMPLEX *p1,COMPLEX *p2,COMPLEX *p3)
{
(*p3).a=(*p1).a+(*p2).a;
(*p3).b=(*p1).b+(*p2).b;
return;
}

/* Ввод значений для элементов структуры */
void vvod(COMPLEX *p,float a, float b)
{
p->a=a;
p->b=b;
return;
}

Вложенные структуры

Структура, являющаяся компонентом другой структуры, называется вложенной.

/* Даны четыре точки - центры четырех окружностей. Заполнить структуру окружность, если все окружности проходят через начало координат. */

#include
#include
#include
#include
struct POINT {
float x;
float y;
};
struct CIRCLE {
struct POINT point; /* вложенная структура */
double r;
} circle, *p;
void main (void)
{
int i,j;
float a,b,c,d;
clrscr();
gotoxy(17,1);
cputs("ВВЕДИТЕ КООРДИНАТЫ ТОЧЕК:\r\n");
for(i=0;i<2;i++)
{
cprintf ("\n\n ВВЕДИТЕ X: ");
cprintf ("X[%d]= ",i+1);
cscanf("%f",&circle[i].point.x);
cprintf ("\n ВВЕДИТЕ Y: ");
cprintf ("Y[%d]= ",i+1);
cscanf ("%f",&circle[i].point.y);
}
p=circle;
gotoxy(17,12);
cputs("РЕЗУЛЬТАТ:\r\n\n");
for(i=0;i<2;i++)
{
a=p->point.x;
b=p->point.y;
c=sqrt(a*a+b*b);
p->r=c;
cprintf("\nРАДИУС: %lf ЦЕНТР (%f,%f)\r\n",p->r,a,b);
p++;
}

Структура - это удобное хранилище для разнородных данных, которые хочется объединить. К примеру, вы можете создать структуру, описывающую параметры вашего устройства - сетевые настройки, таймаут спящего режима, его идентификатор и прочее подобное, типа какой-нибудь строки приветствия и состояния светодиода. Раз все параметры будут храниться в одном месте - они всегда будут на виду, да и нормальные IDE будут вам подсказывать поля структуры при обращении к ним. Ещё мы рассмотрим хранение и восстановление структур из архива, а также их передачу по сети.

Объявление такой структуры:

Struct { uint32_t ID; char IP; uint16_t timeout; bool led; char text; } params;

Как это работает?

В си довольно удобный синтаксис, в том плане что многие вещи записываются как «тип_данных переменная», начиная с «int i» заканчивая «void main() {}». Так и здесь, кодовое слово struct начинает объявление структуры, и весь кусок кода «struct { … }» просто задаёт новый тип. Соответственно, params - это уже готовая переменная (экземпляр типа), которую можно использовать. Внутри фигурных скобок перечислены все поля структуры, которые потом будут доступны так: params.ID или params.IP. Длина полей должна быть фиксированной, поэтому нельзя использовать строки вида *text, только массивы вида text.

Можно было сделать немного иначе: объявить только тип, а переменную завести позже. Для этого мы использовали бы ключевое слово typedef и написали так:

Typedef struct { uint32_t ID; char IP; uint16_t timeout; bool led; char text; } params_struct; params_struct params;

Так появляется возможность оставить все объявления структурных типов в отдельном файле (header), а в главном файле просто использовать уже готовые структурные типы для объявления структур прямо по месту.

Конечно, в обоих вариантах вы можете объявить сколько угодно экземпляров структур, или создать массив из них:

Struct { uint32_t ID; char IP; uint16_t timeout; bool led; char text; } params1, params2, params;

Вариант с массивом особенно удобен для сервера в клиент-серверной топологии сети - на каждом клиенте хранятся в структуре его собственные параметры, а на мастер-устройстве располагается таблица параметров всех клиентов в виде массива структур.

В принципе, ничего сложного в структурах нет, а с темой серверов и клиентов мы плавно подошли к более интересной теме:

Хранение, передача и синхронизация структур

Для многих будет удивлением то, что данные структуры хранятся в памяти в виде плоского списка, все поля структуры просто идут в памяти друг за другом. Поэтому становится возможным обращаться с этой структурой как с простым массивом байт! Проверим, создадим массив «поверх» этой структуры.

Начальное смещение получим так:

Char *Bytes = ¶ms;

мы объявили указатель char и поместили в него адрес params. Теперь Bytes указывает на первый байт структуры, и при последовательном чтении мы побайтно прочитаем всю структуру. Но сколько байт нужно прочитать? Для этого рассмотрим две интересных функции.

sizeof и offsetof

Это даже не функции, а встроенные макросы языка Си. Начнём с более простой, sizeof .

Компилятор заменяет все записи вида sizeof X на значение длины Х. В качестве X может выступать как тип, так и экзмепляр типа, т.е. в нашем случае можно подставить в sizeof и тип структуры (если мы его заводили с помощью typedef), и саму переменную структуры так: sizeof params_struct или sizeof params. Она пройдёт по всем полям структуры, сложит их длины и отдаст сумму, которая и будет длиной структуры.

offsetof - настоящий макрос, который принимает два параметра (структуру _s_ и поле _m_ в ней) и отдаёт положение этого поля в структуре, его смещение относительно начала структуры. Выглядит этот макрос очень просто:

Offsetof(s, m) (size_t)&(((s *)0)-›m).

Как он работает?

  1. Берём число 0
  2. Преобразуем его к типу «указатель на структуру s»: (s*)0
  3. Обращаемся к полю m из этой структуры: ((s*)0)->m
  4. Вычисляем его адрес: &(((s*)0)->m)
  5. Преобразуем адрес к целому числу: (size_t)&(((s*)0)->m)

Магия именно в первом шаге, в котором мы берём 0. Благодаря этому на четвёртом шаге абсолютный адрес поля, вычисленный компилятором, оказывается отсчитан относительно начала структуры - структуру-то мы положили в адрес 0. Таким образом, после выполнения этого макроса мы реально имеем смещение поля относительно начала структуры. Понятно, что этот макрос правильно определит смещения даже в сложных и вложенных структурах.

Здесь нужно сделать небольшое отступление. Дело в том, что я рассматривал самый простой случай, когда поля упакованы точно вслед друг за другом. Есть и другие методы упаковки, которые называются «выравнивание». К примеру, можно выдавать каждому полю «слот», кратный 4 байтам, или 8 байтам. Тогда даже char будет занимать 8 байт, и общий размер структуры вырастет, а все смещения сдвинутся и станут кратны выравниванию. Эта штука полезна при программировании для компьютера, поскольку из-за грануляции ОЗУ процессор гораздо быстрее умеет извлекать из памяти выровненные данные, ему требуется на это меньше операций.

Работа с массивом из структуры

Окей, теперь мы умеем представлять любую структуру в виде массива байт, и обратно. Вы поняли фишку? У нас теперь одна и та же область памяти имеет роли «структура» и «массив». Изменяем что-то в структуре - меняется массив, меняем массив - меняется структура.

В этом - суть процесса! У нас нет отдельного массива, потому что сама структура - это уже массив, и мы просто обращаемся к памяти разными методами. И у нас нет никаких копирующих циклов по полям или по байтам, этот цикл будет уже сразу в функции передачи.

Теперь осталось лишь научиться удобно с этим всем работать.

Хранение и передача структуры

Чтобы создать архивную копию структуры, для передачи по сети или для складывания её в надёжное место - отдайте в вашу функцию передачи данных адрес этого массива. К примеру, моя функция записи массива данных в EEPROM выглядит так: I2C_burst_write (I2Cx, HW_address, addr, n_data, *data). Вам просто нужно вместо n_data передать sizeof params, а вместо *data - ¶ms:

I2C_burst_write (I2Cx, HW_address, addr, sizeof params, ¶ms)

Функции передачи данных по сети обычно выглядят примерно так же. В качестве данных передавайте ¶ms, а в качестве длины данных - sizeof params.

Приём и восстановление структуры

Всё точно так же. Моя функция чтения массива из EEPROM: I2C_burst_read (I2Cx, HW_address, addr, n_data, *data). n_data = sizeof params, *data = ¶ms:

I2C_burst_read (I2Cx, HW_address, addr, sizeof params, ¶ms)

Не забывайте, что вы сразу пишете принятые байты непосредственно в структуру. При медленной или ненадёжной передаче имеет смысл записать данные во временный буфер, и после их проверки передать их в структуру через

Memcpy(¶ms, &temp_buffer, sizeof params).

Реализовав эти методы, мы воплотим удобную синхронизацию двух структур, находящихся на разных компьютерах: клиент-микроконтроллер может быть хоть на другой стороне земного шара от сервера, но передать структуры будет всё так же просто.

Хранение/восстановление отдельных полей

И зачем же мы так долго рассматривали макрос offsetof? Его очень удобно использовать для чтения и записи отдельных полей структуры, например так:

I2C_burst_write (I2Cx, HW_address, addr + offsetof(params, IP), sizeof params.IP, ¶ms.IP) I2C_burst_read (I2Cx, HW_address, addr + offsetof(params, IP), sizeof params.IP, ¶ms.IP)

Ну и вообще, было бы неплохо сделать удобные макросы-обёртки для этой цели.

#define store(structure, field) I2C_burst_write (I2Cx, HW_address, addr + offsetof(structure, field), sizeof(structure.field), &(structure.field)) #define load(structure, field) I2C_burst_read (I2Cx, HW_address, addr + offsetof(structure, field), sizeof(structure.field), &(structure.field))

А теперь только представьте — вы сами можете создавать, своего рода, типы данных, которые вам необходимы и с которыми вам будет удобно работать! И это несложно!

Структура — это, некое объединение различных переменных (даже с разными типами данных), которому можно присвоить имя. Например можно объединить данные об объекте Дом: город (в котором дом находится), улица, количество квартир, интернет(проведен или нет) и т.д. в одной структуре. В общем, можно собрать в одну совокупность данные обо всем, что угодно, точнее обо всем, что необходимо конкретному программисту. Всем сразу стало понятно:)

Если вы только приступаете к знакомству со структурами в С++, сначала, вам необходимо ознакомиться с синтаксисом структур в языке С++ . Рассмотрим простой пример, который поможет познакомиться со структурами и покажет, как с ними работать. В этой программе мы создадим структуру, создадим объект структуры, заполним значениями элементы структуры (данные об объекте) и выведем эти значения на экран. Ну что же, приступим!

#include using namespace std; struct building //Создаем структуру! { char *owner; //здесь будет храниться имя владельца char *city; //название города int amountRooms; //количество комнат float price; //цена }; int main() { setlocale (LC_ALL, "rus"); building apartment1; //это объект структуры с типом данных, именем структуры, building apartment1.owner = "Денис"; //заполняем данные о владельце и т.д. apartment1.city = "Симферополь"; apartment1.amountRooms = 5; apartment1.price = 150000; cout << "Владелец квартиры: " << apartment1.owner << endl; cout << "Квартира находится в городе: " << apartment1.city << endl; cout << "Количество комнат: " << apartment1.amountRooms << endl; cout << "Стоимость: " << apartment1.price << " $" << endl; return 0; }

В строках 4 — 10 мы создаем структуру. Чтобы ее объявить используем зарезервированное слово struct и даем ей любое, желательно логичное, имя. В нашем случае — building . С правилами именования переменных, вы можете ознакомиться в этой статье . Далее открываем фигурную скобку { , перечисляем 4 элемента структуры через точку с запятой; , закрываем фигурную скобку } и в завершении ставим точку с запятой; . Это будет нашим шаблоном (формой) структуры.

В строке 16 объявляем объект структуры. Как и для обычных переменных, необходимо объявить тип данных. В этом качестве выступит имя нашей созданной структуры — building .

Как же заполнить данными (инициализировать) элементы структуры? Синтаксис таков: Имя объекта далее оператор точка. и имя элемента структуры. Например: apartment1.owner . Таким образом, в строках 18-21 присваиваем данные элементам структуры.

И так, данные мы внесли. Следующий вопрос: «Как к ним обратиться, как работать и использовать их в программе?» Ответ — «Очень просто — так же, как и при инициализации, используя точку. и имя элемента структуры». В строках 23 — 26 выводим заполненные элементы структуры на экран.

И вот что мы увидим в результате, когда скомпилируем нашу программу:

Владелец квартиры: Денис Квартира находится в городе: Симферополь Количество комнат: 5 Стоимость: 150000 $

Что ещё важно знать:

  • Объект структуры можно объявить до функции main() . Это выглядело бы так:
struct building { char *owner char *city; int amountRooms; float price; }apartment1; //объявление объекта типа building
  • Инициализировать структуру можно и таким способом:
building apartment1 = {"Денис", "Симферополь", 5, 150000};

но так делают крайне редко;

  • Структуру можно вкладывать в другие структуры (это мы рассмотрим в следующем примере).

Дополним предыдущий пример, чтобы увидеть дополнительные возможности работы со структурами.

Пример:

#include using namespace std; struct date //создаем еще одну структуру, чтобы вложить ее в структуру building // дата постройки { char *month; // Месяц постройки дома int year; // Год }; struct building { char *owner; char *city; int amountRooms; float price; date built; //вкладываем одну структуру в определение второй }; void show(building object) //создаем функцию, которая принимает структуру, как параметр { cout << "Владелец квартиры: " << object.owner << endl; cout << "Квартира находится в городе: " << object.city << endl; cout << "Количество комнат: " << object.amountRooms << endl; cout << "Стоимость: " << object.price << " $" << endl; cout << "Дата постройки: " << object.built.month << " " << object.built.year << endl; } int main() { setlocale (LC_ALL, "rus"); building apartment1; apartment1.owner = "Денис"; apartment1.city = "Симферополь"; apartment1.amountRooms = 5; apartment1.price = 150000; apartment1.built.month = "январь"; apartment1.built.year = 2013; struct building *pApartment; //это указатель на структуру pApartment = &apartment1; //Обратите внимание, как нужно обращаться к элементу структуры через указатель //используем оператор -> cout << "Владелец квартиры: " << pApartment->owner << endl; cout << "Квартира находится в городе: " << pApartment->city << endl; cout << "Количество комнат: " << pApartment->amountRooms << endl; cout << "Стоимость: " << pApartment->price << " $" << endl; cout << "Дата постройки: " << pApartment->built.month << " " << pApartment->built.year << "\n\n\n"; building apartment2; //создаем и заполняем второй объект структуры apartment2.owner = "Игорь"; apartment2.city = "Киев"; apartment2.amountRooms = 4; apartment2.price = 300000; apartment2.built.month = "январь"; apartment2.built.year = 2012; building apartment3 = apartment2; //создаем третий объект структуры и присваиваем ему данные объекта apartment2 show(apartment3); cout << endl << endl; return 0; }

Коментарии по коду программы:

Строка 17 — создание объекта built типа date в определении структуры building . Строки 42 — 43 : создаем указатель на структуру struct building *pApartment; и далее присваиваем ему адрес уже созданного и заполненного данными объекта pApartment = &apartment1; . Обращаясь к элементам структуры через указатель мы используем оператор -> (тире и знак >) . Это видно в строках 47 — 51.

В строке 62 показано, как можно инициализировать структуру. А именно, можно создать новый объект структуры и присвоить ему одним целым, уже созданный и заполненный данными, объект. В функцию show() передаем объект структуры, как параметр — строка 64. Результат:

Владелец квартиры: Денис
Квартира находится в городе: Симферополь
Количество комнат: 5
Стоимость: 150000 $
Дата постройки: январь 2013
Владелец квартиры: Игорь
Квартира находится в городе: Киев
Количество комнат: 4
Стоимость: 300000 $
Дата постройки: январь 2012
Для продолжения нажмите любую клавишу. . .

Разобрав этот пример, мы увидели на практике следующее:

  • структуру можно вкладывать в другую структуру;
  • увидели, как создаётся указатель на структуру;
  • как нужно обращаться к элементу структуры через указатель. А именно, используя оператор -> ; В примере это было так: apartment0->owner , но можно и так (*apartment0).owner . Круглые скобки, во втором случае, обязательны.
  • данные одной структуры можно присвоить другой структуре;
  • можно структуру передать в функцию, как параметр (кстати, элементы структуры так же можно передавать в функцию, как параметры).

В дополнение ко всему, следует отметить, что функции могут так же возвращать структуры в результате своей работы. Например:

Building Set() { building object; // формирование объекта //... код функции return object; }

Вот так, вкратце, мы познакомились со структурами в языке С++, попрактиковались на примерах и узнали основы. Это только начало!



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows