Что называется сигналом. Виды электрических сигналов. Что происходит в мобильных телефонах, которые передают информацию по цифровым каналам

Что называется сигналом. Виды электрических сигналов. Что происходит в мобильных телефонах, которые передают информацию по цифровым каналам

Что такое электрический сигнал и с чем его едят? Давайте обсудим в этой статье.

Сигнал – это что-то такое, что можно передать через пространство и время. Итак, какие условия должны быть, чтоб назвать сигнал “сигналом”?

Во-первых, сигнал должен кем-либо создаваться (генерироваться).

Во-вторых, сигнал должен для кого предназначаться.

В-третьих, кто-то должен принять этот сигнал и сделать для себя какие-либо выводы, то есть правильно трактовать сигнал.

Окунемся в Дикий Запад.

Думаю, не секрет, что индейцы разжигали костер, и дым от костра использовался для передачи сигнала. Значит, в нашем случае костер – генератор сигнала. Итак, первый пункт работает). Для кого же был предназначен дым от костра? Для ковбоев? Конечно же нет! Для своих же индейцев. Значит, работает пункт два. Ну ладно, вы увидели два столба дыма, возвышающихся в небо. Вам это что-то говорит? Кто-то, наверное, жарит шашлыки? Может быть. Но если вы подойдете к этим кострам, то шашлык сделают именно из вас). Для индейцев эти два столба дыма означали, что их отряд благополучно поохотился на ковбоев;-). Ну вот и выполнилось третье правило;-).

Но что же из себя представляет электрический сигнал? Терзают меня смутные сомнения, что где-то здесь замешан электрический ток :-). Чем характеризуется электрический ток? Ну конечно же, напряжением и силой тока . Самое примечательное, что электрический ток очень удобно передавать через пространство с помощью проводов. В этом случае его скорость распространения будет равна скорости света. Хотя и электроны в проводнике движутся со скоростью всего несколько миллиметров в секунду, электрические поле охватывает сразу весь провод со скоростью света! А как вы помните, скорость света равна 300 000 километров в секунду! Поэтому, электрон на другом конце провода практически сразу придет в движение.

Передача электрических сигналов

Итак, для передачи сигнала через пространство мы будем использовать провода. Чуть выше мы разобрали условия возникновения сигнала. Значит, первым делом, нам нужен генератор этих сигналов! То есть это может быть какая-либо батарея или схемка, которая бы генерировала электрический ток. Далее, должен быть кто-то, кто бы принимал этот сигнал. Это может быть какая-нибудь нагрузка, типа лампочки, нагревательного элемента или целой схемы, которая бы принимала этот сигнал. Ну и в-третьих, нагрузка должна как-то среагировать на этот сигнал. Лампочка должна источать свет, нагревательный элемент – греться, а схема исполнять какую-либо функцию.

Как вы поняли из всего выше сказанного, главный козырь сигнала – это его генератор. Итак, как мы уже разобрали, по проводам можно передавать два параметра электрического тока – это напряжение и сила тока . То есть мы можем создать генератор, который бы менял или свое напряжение или силу тока в нагрузке, которая бы цеплялась через провода к этому генератору. В основном в электронике используют именно параметр “напряжение”, так как напряжение легко получить и менять его значение.

Время и электрический сигнал

Как я уже сказал, сигнал передается во времени и в пространстве. То есть время – важный параметр для электрического сигнала. Сейчас нам придется немного попотеть и вспомнить курс математики и физики за среднюю школу. Вспоминаем декартову систему координат. Как вы помните, по вертикали мы откладывали ось Y, по горизонтали Х:

В электронике и электротехнике по Х мы откладываем время, назовем его буквой t, а по вертикали мы отложим напряжение, обозначим его буквой U. В результате наша система координат будет выглядеть вот таким образом:

Прибор, который показывает нам изменение напряжения во времени называется осциллографом , а график этого напряжения называется осциллограммой . Осциллограф может быть :


или аналоговым :


Виды электрических сигналов

Постоянный ток

Какой же электрический сигнал является самым простым сигналом в электронике? Я думаю, это сигнал постоянного тока . А что значит постоянный ток? Это ток, значение напряжения которого не меняется с течением времени.Как же он выглядит на нашем графике? Примерно вот так:

Здесь мы видим сигнал постоянного тока в 3 вольта.

По вертикали у нас напряжение в вольтах, а по горизонтали – ну, скажем, в секундах. Постоянный ток с течением времени всегда имеет одно и то же значение напряжения, поэтому, неважно, в секундах или в часах у нас идет отсчет по времени. Напряжение ни прыгнуло, ни упало. Оно как было 3 Вольта, так и осталось. То есть можно сказать, что сигнал постоянного тока представляет из себя прямую линию, параллельную оси времени t.

Вот так выглядит сигнал постоянного тока на аналоговом осциллографе


Какие же генераторы электрического тока могут выдать такой сигнал постоянного напряжения?

Это, конечно же различные батарейки


аккумуляторы для мобильного телефона


для ноутбука


автомобильные аккумуляторы


и другие химические источники тока.

В лабораторных условиях проще получить постоянное напряжение из переменного . Прибор, который это умеет делать, называется лабораторным блоком питания постоянного напряжения.


Шумовой сигнал или просто шум

А что будет, если напряжение будет принимать хаотическое значение? Получится что-то типа этого:


Такой электрический сигнал называется шумом .

Думаю, некоторые из вас впервые видят осциллограмму шума, но я уверен на 100%, что все слышали звучание этого сигнала;-). Ну-ка нажмите на Play ;-)

Шипение радиоприемника или старого ТВ, не настроенного на станцию или на какой-нибудь канал – это и есть шум;-) Как бы странно это не звучало, но такой сигнал тоже очень часто используется в электронике. Например, можно собрать схемку глушителя частот, который бы гасил все телевизионные и радиоприемники в радиусе километра). То есть генерируем шумовой сигнал, усиливаем его и подаем в эфир;-) В результате глушим всю приемопередающую аппаратуру.

Синусоидальный сигнал

Синусоидальный сигнал – самый любимый сигнал среди электронщиков.

Все любят качаться на качелях?


Здесь мы видим девочку, которая с радостью на них качается. Но предположим, она не знает фишку, что можно раскачаться самой, вовремя сгибая и разгибая ноги. Поэтому, пришел папа девочки и толкнул дочку вперед.

Ниже на графике как раз показан этот случай


Как вы видите, траектория движения девочки во времени получилась очень забавной. Такой график движения носит название “синусоида “. В электронике такой сигнал называют синусоидальным . Вроде бы до боли самый простой график, но вы не поверите, именно на такой простой синусоиде строится вся электроника.

Так как синусоидальный сигнал повторяет свою форму на протяжении всего времени, то его можно назвать периодическим. То есть вы периодически обедаете – периодами – равными отрезками времени. Тут то же самое. Этот сигнал периодически повторяется. Важные параметры периодических сигналов – это амплитуда, период и частота.


Амплитуда (A) – максимальное отклонение напряжения от нуля и до какого-то значения.

Период (T) – время, за которое сигнал снова повторяется. То есть если вы сегодня обедаете в 12:00, завтра тоже в такое же время, в 12:00, и послезавтра тоже в это же самое время, значит ваш обед идет с периодом в 24 часа. Все элементарно и просто;-)

Частота (F) – это просто единичка, поделенная на период, то есть

Измеряется в Герцах. Объясняется как “столько-то колебаний в секунду”. Ну пока для начала хватит;-).

Как я уже сказал, в электронике синусоида играет очень большую роль. Даже не надо далеко ходить. Достаточно сунуть паль… щупы осциллографа в свою домашнюю розетку, и можно уже наблюдать синусоидальный сигнал, частотой в 50 Герц и амплитудой в 310 Вольт.


Прямоугольный сигнал

Очень часто в электронике используется и прямоугольный сигнал:


Прямоугольный сигнал на рисунке ниже, где время паузы и время длительности сигнала равны, называется меандром .


Треугольный сигнал

Близкие друзья синусоидального сигнала – это треугольный сигнал


У треугольного сигнала есть очень близкий кореш – это пилообразный сигнал


Сложный сигнал

В электронике также используются сложные сигналы . Вот, например, один из них (я нарисовал его от балды):


Все эти сигналы относятся к периодическим сигналам , так как для них можно указать период , частоту следования и амплитуду самих сигналов:




Двухполярные сигналы

Для сигналов, которые “пробивают пол”, ну то есть могут иметь отрицательное значение напряжения, типа вот этих сигналов


кроме периода и амплитуды имеют еще один параметр. Называется он размах или двойная амплитуда . На буржуйском языке это звучит как amplitude Peak-to-peak , что в дословном переводе ” амплитуда от пика до пика”.

Вот двойная амплитуда для синусоиды (2А)


а вот для треугольного сигнала:


Чаще всего обозначается как 2А, что говорит нам о том, что это двойная амплитуда сигнала.

Импульсные сигналы

Также существуют сигналы, которые не подчиняются периодическому закону, но тоже играют немаловажную роль в электронике.

Импульсы – это те же самые сигналы, но они не поддаются периодическому закону, и меняют свое значение, в зависимости от ситуации.

Например, вот череда импульсов:


Каждый импульс имеет разную длительность во времени, поэтому мы не можем говорить о какой-то периодичности сигналов.

Звуковой сигнал

Также есть и звуковой сигнал


Хоть он и похож на белый шум, но несет информацию в виде звука. Если такой электрический сигнал подать на динамическую головку, то можно услышать какую-либо запись.

Вывод

В настоящее время электрические сигналы играют очень важную роль в радиоэлектронике. Без них не существовало бы никакой электроники, а тем более цифровой. В настоящее время цифровая электроника достигла своего апогея, благодаря цифровым сигналам и сложной системе кодирования.Скорость передачи данных просто ошеломляющая! Это могут быть гигабайты информации в секунду. А ведь все когда-то начиналось с простого телеграфа…

Рассматривая сигналы и виды сигналов, необходимо сказать, что существуют различное количество данных связей. Каждый день любой человек сталкивается с использованием электронного прибора. Без них современная жизнь уже никому не представляется. Речь идет о работе телевизора, радио, компьютере и так далее. Раньше никто не задумывался о том, какой сигнал используется во многих работоспособных приборах. Сейчас же уже давно на слуху слова аналоговый, цифровой и дискретный.

Не все, однако некоторые из вышеперечисленных сигналов считаются довольно качественными и надежными. Цифровая передача используется не так давно, как аналоговая. Это связано с тем, что техника стала поддерживать данный вид только недавно, открыт был этот вид сигнала также сравнительно не так давно. С дискретностью любой человек сталкивается постоянно. Говоря о видах обработки сигнала, необходимо напомнить, что этот немного прерывистый.

Если углубляться в науку, то следует сказать, что дискретной является передача информации, которая позволяет переносить данные и изменять время среды. Благодаря последнему свойству дискретный сигнал может принимать любое значение. На данный момент этот показатель уходит на второй план, после того как большинство техники начали производить на чипах.

Цифровой и другие сигналы целостные, компоненты взаимодействуют друг с другом на все 100 %. В дискретности же все наоборот. Дело в том, что здесь каждая деталь работает самостоятельно и отвечает за свои функции отдельно.

Сигнал

Рассмотрим виды сигналов связи чуть позже, сейчас же следует познакомиться с том, что же собой представляет в принципе сам сигнал. Это обычный код, который передается по воздуху системами. Это формулировка общего типа.

В сфере информации и некоторых других технологий имеется специальный носитель, который позволяет передавать сообщения. Его можно создать, но принять невозможно. В принципе в некоторых системах его могут принять, но это не обязательно. Если сигнал будет считаться сообщением, то «поймать» его нужно обязательно.

Подобный код передачи данных можно назвать обычной математической функцией. Он описывает любое изменение доступных параметров. Если рассматривать радиотехническую теорию, то следует сказать, что такие опции считаются базовыми. Следует заметить, что понятие «шум» является аналогичным сигналу.

Он искажает его, может накладываться на уже переданный код, а также сам собой представляет функцию времени. В статье будут ниже охарактеризованы сигналы и виды сигналов, речь идет о дискретном, аналоговом и цифровом. Коротко рассмотрим всю теорию по теме.

Виды сигналов

Имеется несколько видов, а также классификации уже имеющихся сигналов. Рассмотрим их.

Первый тип - это электрический сигнал, есть также оптический, электромагнитный и акустический. Имеется еще несколько подобных типов, однако они не являются популярными. Такая классификация происходит по физической среде.

По способу задания сигнала они разделяются на регулярные и нерегулярные. Первый вид имеет аналитическую функцию, а также детерминированный вид передачи данных. Случайные сигналы могут формироваться при помощи некоторых теорий из высшей математики, более того, они способны принимать многие значения в совершенно разные промежутки времени.

Виды передачи сигналов довольно разные, следует отметить, что сигналы по данной классификации разделяются на аналоговые, дискретные и цифровые. Нередко для обеспечения работы электрических приборов используются именно такие сигналы. Для того чтобы разобраться с каждым из вариантов, необходимо вспомнить школьный курс физики и немного почитать теории.

Для чего обрабатывается сигнал?

Сигнал следует обрабатывать для того, чтобы получить информацию, которая в нем зашифрована. Если рассматривать виды модуляции сигнала, то следует отметить, что по амплитудной и частотной манипуляции это довольно сложный процесс, который необходимо полностью понимать. Как только информация будет получена, ее можно использовать совершенно различными способами. В некоторых ситуациях ее форматируют и отправляют далее.

Также нужно отметить другие причины, по которым происходит обработка сигналов. Она заключается в том, чтобы сжать частоты, которые передаются, однако не повредив всю информацию. Далее ее форматируют еще раз и передают. При этом делается это на медленных скоростях. Если говорить о сигналах аналогового и цифрового вида, то здесь используются особенные способы. Имеется фильтрация, свертка и некоторые другие функции. Они нужны для того, чтобы восстановить информацию, если сигнал был поврежден.

Создание и форматирование

Многие виды информационных сигналов, о которых мы поговорим в статье, необходимо создать и после форматировать. Для этого следует иметь цифро-аналоговый преобразователь, а также аналого-цифровой. Как правило, используются они оба в одной ситуации: только в случае использования такой техники как DSP.

В остальных случаях подойдет лишь первый прибор. Для того чтобы создать физические аналоговые коды и потом их переформатировать в цифровые методы, необходимо использовать специальные приборы. Это позволит максимально предотвратить повреждение информации.

Динамический диапазон

Диапазон любого вида аналогового сигнала вычислить несложно. Необходимо использовать разницу большего и меньшего уровня громкости, который показывается в децибелах.

Следует заметить, что информация зависит полностью от особенностей ее исполнения. Причем речь идет как о музыке, так и о разговорах простого человека. Если брать диктора, который будет читать новости, то его динамический диапазон будет составлять не больше 30 децибел. А если читать какое-либо произведение в красках, то этот показатель вырастет до 50.

Аналоговый сигнал

Виды представления сигнала довольный разные. При этом нужно заметить, что аналоговый сигнал является непрерывным. Если говорить о недостатках, то многие отмечают наличие шума, который может, к сожалению, приводить к потери информации.

Довольно часто возникает такая ситуация, что непонятно, где в коде есть действительно важная информация, а где просто искажения. Именно из-за этого аналоговый сигнал стал менее популярен, и на данный момент его вытесняет цифровая технология.

Цифровой сигнал

Нужно заметить, что такой сигнал, как и виды сигналов другие, является потоком данных, который описывается за счет дискретных характеристик.

Нужно заметить, что его амплитуда может повторяться. Если вышеописанный аналоговый вариант способен поступать в конечную точку с огромным количеством шумов, то цифровой подобного не допускает. Он способен самостоятельно ликвидировать большую часть помех, для того чтобы избежать повреждения информации. Также нужно заметить, что данный вид переносит информацию без каких-либо смысловых нагрузок.

Таким образом, через один физический канал пользователь может без труда отправить несколько сообщений. Нужно заметить, что, в отличие от видов звукового сигнала, которые являются максимально распространенными на данный момент, а также аналогового, цифровой не делится на несколько типов. Он является единственным и самостоятельным. Представляет собой двоичный поток. Сейчас является довольно популярным, его просто использовать, о чем свидетельствуют отзывы.

Применение цифрового сигнала

Рассматривая виды передачи сигналов, необходимо сказать о том, где применяется цифровой вариант. Чем же отличается он от многих других при передаче и при использовании? Дело в том, что, поступая в ретранслятор, он полностью регенерируется.

Когда в оборудование поступает сигнал, который в процессе передачи получил шумы и помехи, он сразу же форматируется. Благодаря этому телевышки могут сформировать сигнал заново, избегая использования шумового эффекта.

Аналоговая связь в этом случае будет намного лучше, так как при получении информации с большим количеством искажений, ее можно извлечь хотя бы частично. Если говорить о цифровом варианте, то это невозможно. Если более 50 % сигнала будет иметь шум, то можно считать, что информация полностью утрачена.

Многие люди, обсуждая сотовую связь, причем совершенно разных форматов и способов передачи, говорили, что иногда практически невозможно разговаривать. Люди могут не слышать слова или же фразы. Такое может происходить только на цифровой линии, если имеется шум.

Если говорить об аналоговой связи, то в этом случае разговор будет можно продолжать далее. Из-за таких неполадок ретрансляторы формируют сигнал всегда по новой, для того чтобы сократить разрывы.

Дискретный сигнал

В данный момент человек пользуется различными звонилками или же другими электронными приборами, которые принимают сигналы. Виды сигналы довольно разнообразны, и одним из них является дискретный. Нужно заметить, что, для того чтобы такие приспособления работали, необходимо передавать звуковой сигнал. Именно поэтому необходим канал, который имеет пропускную способность намного большего уровня, чем было описано ранее.

С чем это связано? Дело в том, что, для того чтобы качественно передать звук, необходимо использовать дискретный сигнал. Он создает не волну звука, а его цифровую копию. Соответственно, передача идет от самой техники. Плюсы такого переноса в том, что пакетная отправка будет осуществляться пакетами, а количество передаваемых данных уменьшится.

Тонкости

В работе вычислительной техники уже давно имеется такое понятие, как дискретизация. За счет такого сигнала можно использовать информацию, которая полностью закодирована. Она не является непрерывной, а данные все собранные в блоки. При этом последние являются отдельными частицами, которые полностью завершены и не зависят друг от друга.

Виды модуляции

Описывая виды сигналов и сигналы в целом, необходимо также поговорить и о модуляции. Что это такое? Это процесс изменения сразу нескольких параметров колебаний, которые осуществляются по определенному закону. Нужно заметить, что делится модуляция на цифровую и импульсную, а также на некоторые другие.

В свою очередь, многие из них делятся отдельно на несколько видов, причем их довольно много. Следует сказать об основных характеристиках такого понятия. Например, за счет видов модуляции сигнала можно добиться устойчивой передачи, минимальной потери, однако следует заметить, что для каждого из них требуется особенный усилитель линейности.

1. Основные понятия и определения. Определение радиоэлектроники. Определение радиотехники. Понятие сигнала. Классификационный анализ сигналов. Классификационный анализ радиотехнических цепей. Классификационный анализ радиоэлектронных систем.

Современная радиоэлектроника – это обобщенное название ряда областей науки и техники, связанных с передачей и преобразованием информации на основе использования и преобразования электромагнитных колебанийи волн радиочастотного диапазона; основными из этих областей являются:

радиотехника, радиофизика и электроника.

Основная задача радиотехники состоит в передаче информации на расстояние с помощью электромагнитных колебаний. В более широком смысле современная радиотехника – область науки и техники, связанная с генерацией, усилением, преобразованием, обработкой, хранением, передачей и приемом электромагнитных колебаний радиочастотного диапазона, используемых для передачи информации на расстояние. Как следует из этого, радиотехника и радиоэлектроника тесно связаны и часто эти термины заменяют друг друга.

Науку, занимающуюся изучением физических основ радиотехники, называют радиофизикой.

1. Понятие сигнала.

Сигналом (от лат. signum - знак) называется физический процесс или явление, несущее сообщение о каком-либо событии, состоянии объекта, либо передающее команды управления, оповещения и т.д. Таким образом, сигнал является материальным носителем сообщения. Таким носителем может служить любой физический процесс (свет, электрическое поле, звуковые колебания и т.п.). В радиоэлектронике изучаются и используются в основном электрические сигналы. Сигналы как физические процессы наблюдаются с помощью различных приборов и устройств (осциллографом, вольтметров, приемников). Любая модель отражает ограниченное число наиболее существенных признаков реального физического сигнала. Несущественные признаки сигнала игнорируются для упрощения математического описания сигналов. Общим требованием к математической модели является максимальное приближение к реальному процессу при минимальной сложности модели. Функции, описывающие сигналы могут принимать вещественные и комплексные значения, поэтому часто говорят о вещественных и комплексных моделях сигналов.

Классификация сигналов. По возм-ти предсказания мгн. значений сигнала в любой момент времени разл-ют:

Детерминированные сигналы, т.е. такие сигналы, для которых мгновенные значения для любого момента времени известны и предсказуемы с вероятностью равной единице;

Случайные сигналы, т.е. такие сигналы, значение которых в любой момент времени невозможно предсказать с вероятностью равной единице.

Все сигналы, несущие информацию являются случайными, поскольку полностью детерминированный сигнал (известный) информации не содержит.

Простейшими примерами детерминированного и случайного сигналов являются напряжения сети и напряжения шума соответственно (см. рис.2.1).

В свою очередь случайные и детерминированные сигналы могут подразделяться на непрерывные или аналоговые сигналы и дискретные сигналы, имеющие несколько разновидностей. Если сигнал можно измерять (наблюдать) в любой момент времени, то его называют аналоговым. Такой сигнал существует в любой момент времени. Дискретные сигналы могут наблюдаться и измеряться в дискретные (отдельные) ограниченные по длительности к моменту появления отрезки времени. К дискретным сигналам относятся импульсные сигналы.

На рисунке показаны два вида импульсов. Видеоимпульс и радиоимпульс. При формировании радиоимпульсов видеоимпульс используется как управляющий (модулирующий) сигнал и в этом случае между ними существует аналитическая связь:

При этом называется огибающей радиоимпульса, а функция- его заполнением.

Импульсы принято характеризовать амплитудой A, длительностью , длительностью фронтаи срезаи при необходимости частотойили периодомповторения.

Импульсные сигналы могут быть самых различных видов. В частности различают импульсные сигналы называемые дискретными (см. рис.2.3).

Эта разновидность сигналов может быть представлена математической моделью в виде счетного множества значений функции - где i = 1, 2, 3, ...., k, отсчитываемых в дискретные моменты времени. Шаг дискретизации сигнала по времени и по амплитуде обычно величина постоянная для данного типа сигнала, т.е. минимальное приращение сигнала

Каждое из значений конечного множества S можно представить в двоичной системе исчисления в виде числа: - 10101;- 11001;- 10111. Такие сигналы называют цифровыми.

Классификация радиосистем и решаемых ими задач

По выполняемым функциям информационные радиосистемы могут быть разделены на следующие классы:

    передачи информации (радиосвязь, радиовещание, телевидение);

    извлечения информации (радиолокация, радионавигация, радиоастрономия, радиоизмерения и т.д.);

    разрушения информации (радиопротиводействие);

    управления различными процессами и объектами (беспилотные летательные аппараты и др.);

    комбинированные.

В системе передачи информации имеется источник информации и ее получатель. В радиосистеме извлечения информации информация как таковая не передается, а извлекается или из собственных сигналов, излученных в направлении на исследуемый объект и отраженных от него, или из сигналов других радиосистем, или из собственного радиоизлучения различных объектов.

Радиосистемы разрушения информации служат для создания помех нормальной работе конкурирующей радиосистемы путем излучения мешающего сигнала, или приема, умышленного искажения и переизлучения сигнала.

В радиосистемах управления решается задача выполнения объектом некоторой команды, посылаемой с пульта управления. Командные сигналы являются информацией для следящего устройства, выполняющего команду.

Основными задачами, решаемыми радиосистемой при приеме информации, являются:

    Обнаружение сигнала на фоне помехи.

    Различение сигналов на фоне помехи.

    Оценка параметров сигнала.

    Воспроизведение сообщения.

Наиболее просто решается первая задача, в которой с заданными вероятностями правильного обнаружения и ложной тревоги следует принять решение о наличии известного сигнала в принятом сообщении. Чем выше уровень задачи, тем сложнее становится схема принимающего устройства.

2. Энергия, мощность, ортогональность и когерентность сигналов. Взаимная энергия сигналов (интеграл похожести). Понятие нормы сигнала.

Которое должно быть принято принимающей стороной, иначе оно не является сообщением. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением.

Сигнал, детерминированный или случайный, описывают математической моделью, функцией, характеризующей изменение параметров сигнала. Математическая модель представления сигнала, как функции времени, является основополагающей концепцией теоретической радиотехники, оказавшейся плодотворной как для анализа , так и для синтеза радиотехнических устройств и систем. В радиотехнике альтернативой сигналу, который несёт полезную информацию, является шум - обычно случайная функция времени, взаимодействующая (например, путём сложения) с сигналом и искажающая его. Основной задачей теоретической радиотехники является извлечение полезной информации из сигнала с обязательным учётом шума.

Понятие сигнал позволяет абстрагироваться от конкретной физической величины , например тока, напряжения, акустической волны и рассматривать вне физического контекста явления связанные кодированием информации и извлечением её из сигналов, которые обычно искажены шумами . В исследованиях сигнал часто представляется функцией времени, параметры которой могут нести нужную информацию. Способ записи этой функции, а также способ записи мешающих шумов называют математической моделью сигнала .

В связи с понятием сигнала формулируются такие базовые принципы кибернетики , как понятие о пропускной способности канала связи, разработанное Клодом Шенноном и об оптимальном приеме , разработанная В. А. Котельниковым .

Классификация сигналов

По физической природе носителя информации:

  • электрические;
  • электромагнитные;
  • оптические;
  • акустические

По способу задания сигнала:

  • регулярные (детерминированные), заданные аналитической функцией ;
  • нерегулярные (случайные), принимающие произвольные значения в любой момент времени. Для описания таких сигналов используется аппарат теории вероятностей .

В зависимости от функции, описывающей параметры сигнала, выделяют аналоговые, дискретные, квантованные и цифровые сигналы:

  • непрерывные (аналоговые) , описываемые непрерывной функцией ;
  • дискретные , описываемые функцией отсчётов, взятых в определённые моменты времени;
  • квантованные по уровню;
  • дискретные сигналы, квантованные по уровню (цифровые).

Аналоговый сигнал (АС)

Аналоговый сигнал

Большинство сигналов имеют аналоговую природу, то есть изменяются непрерывно во времени и могут принимать любые значения на некотором интервале. Аналоговые сигналы описываются некоторой математической функцией времени.

Пример АС - гармонический сигнал - s(t) = A·cos(ω·t + φ).

Аналоговые сигналы используются в телефонии, радиовещании, телевидении. Ввести такой сигнал в компьютер и обработать его невозможно, так как на любом интервале времени он имеет бесконечное множество значений, а для точного (без погрешности) представления его значения требуются числа бесконечной разрядности. Поэтому необходимо преобразовать аналоговый сигнал так, чтобы можно было представить его последовательностью чисел заданной разрядности.

Дискретный сигнал

Дискретизация аналогового сигнала состоит в том, что сигнал представляется в виде последовательности значений, взятых в дискретные моменты времени. Эти значения называются отсчётами. Δt называется интервалом дискретизации.

Квантованный сигнал

Основная статья: Квантование (информатика)

При квантовании вся область значений сигнала разбивается на уровни, количество которых должно быть представлено в числах заданной разрядности. Расстояния между этими уровнями называется шагом квантования Δ. Число этих уровней равно N (от 0 до N-1). Каждому уровню присваивается некоторое число. Отсчёты сигнала сравниваются с уровнями квантования и в качестве сигнала выбирается число, соответствующее некоторому уровню квантования. Каждый уровень квантования кодируется двоичным числом с n разрядами. Число уровней квантования N и число разрядов n двоичных чисел , кодирующих эти уровни, связаны соотношением n ≥ log 2 (N).

Цифровой сигнал

Для того, чтобы представить аналоговый сигнал последовательностью чисел конечной разрядности, его следует сначала превратить в дискретный сигнал, а затем подвергнуть квантованию. Квантование является частным случаем дискретизации, когда дискретизация происходит по одинаковой величине называемой квантом. В результате сигнал будет представлен таким образом, что на каждом заданном промежутке времени известно приближённое (квантованное) значение сигнала, которое можно записать целым числом . Если записать эти целые числа в двоичной системе , получится последовательность нулей и единиц, которая и будет являться цифровым сигналом.

Сигнал и событие

Событие (получение записки, наблюдение сигнальной ракеты, прием символа по телеграфу) является сигналом только в той системе отношений, в которой сообщение опознается значимым (например, в условиях боевых действий сигнальная ракета - событие, значимое только для того наблюдателя, которому оно адресовано). Очевидно, что сигнал, заданный аналитически, событием не является и не несет информацию, если функция сигнала и её параметры известны наблюдателю.

В технике сигнал всегда является событием. Другими словами, событие - изменение состояния любого компонента технической системы, опознаваемое логикой системы как значимое, является сигналом. Событие, неопознаваемое данной системой логических или технических отношений как значимое, сигналом не является.

Представление сигнала и спектр

Есть два способа представления сигнала в зависимости от области определения: временной и частотный. В первом случае сигнал представляется функцией времени характеризующей изменение его параметра.

Кроме привычного временного представления сигналов и функций при анализе и обработке данных широко используется описание сигналов функциями частоты. Действительно, любой сколь угодно сложный по своей форме сигнал можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, совокупность которых называется частотным спектром сигнала.

Для перехода к частотному способу представления используется преобразование Фурье :
.
Функция называется спектральной функцией или спектральной плотностью.
Поскольку спектральная функция является комплексной, то можно говорить о спектре амплитуд и спектре фаз . Физический смысл спектральной функции: сигнал представляется в виде суммы бесконечного ряда гармонических составляющих (синусоид) с амплитудами , непрерывно заполняющими интервал частот от 0 до , и начальными фазами .


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Сигнал" в других словарях:

    сигнал - а, м. signal, нем. Signal <ср. лат. signale <лат. signum знак, сигнал. 1. Условный знак для передачи каких л. сведений, распоряжений и т. п. БАС 1. Когда на корабле аншеф командующаго так повредится в бою, что более служить не может, тогда… … Исторический словарь галлицизмов русского языка

    См … Словарь синонимов

    В физике изменение некоторой физической величины, служащее для регистрации события. См. также: Сигналы Системы отсчета Финансовый словарь Финам. Сигнал Сигнал процесс передачи информации через действия компании. По английски: Signal Синонимы:… … Финансовый словарь

Каждый день люди сталкиваются с использованием электронных приборов. Без них невозможна современная жизнь. Ведь речь идет о телевизоре, радио, компьютере, телефоне, мультиварке и прочем. Раньше, еще несколько лет назад, никто не задумывался о том, какой сигнал используется в каждом работоспособном приборе. Сейчас же слова «аналоговый», «цифровой», «дискретный» уже давно на слуху. Некоторые виды сигналов из перечисленных являются качественными и надежными.

Цифровая передача стала использоваться намного позже, чем аналоговая. Это связано с тем, что такой сигнал намного проще обслуживать, да и техника на тот момент не была настолько усовершенствована.

С понятием «дискретность» сталкивается каждый человек постоянно. Если переводить это слово с латинского языка, то означать оно будет «прерывистость». Углубляясь далеко в науку, можно сказать, что дискретный сигнал представляет собой метод передачи информации, который подразумевает изменение во времени среды-переносчика. Последняя принимает любое значение из всех возможных. Сейчас дискретность уходит на второй план, после того, как было принято решение производить системы на чипе. Они являются целостными, а все компоненты тесно взаимодействуют друг с другом. В дискретности же все с точностью наоборот - каждая деталь завершена и связана с другими за счет специальных линий связи.

Сигнал

Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.

В сфере информации и связи сигналом назван специальный носитель каких-либо данных, который используется для передачи сообщений. Он может быть создан, но не принят, последнее условие не обязательно. Если же сигнал является сообщением, то его «ловля» считается необходимой.

Описываемый код задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.

В статье охарактеризованы виды сигналов: дискретный, аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.

Виды сигналов

Существует несколько имеющихся сигналов. Рассмотрим, какие бывают виды.

  1. По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
  2. По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
  3. В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.

Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное - немного подумать и вспомнить школьный курс физики.

Для чего обрабатывается сигнал?

Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.

Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.

В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.

Создание и формирование

Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.

При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.

Динамический диапазон

Вычисляется разностью большего и меньшего уровня громкости, которые выражены в децибелах. Он полностью зависит от произведения и особенностей исполнения. Речь идет как о музыкальных треках, так и об обычных диалогах между людьми. Если брать, например, диктора, который читает новости, то его динамический диапазон колеблется в районе 25-30 дБ. А во время чтения какого-либо произведения он может вырастать до 50 дБ.

Аналоговый сигнал

Аналоговый сигнал является непрерывным во времени способом передачи данных. Недостатком его можно назвать присутствие шума, который иногда приводит к полной потере информации. Очень часто возникают такие ситуации, что невозможно определить, где в коде важные данные, а где обычные искажения.

Именно из-за этого цифровая обработка сигналов приобрела большую популярность и постепенно вытесняет аналоговую.

Цифровой сигнал

Цифровой сигнал является особым он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.

Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.

Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.

Применение цифрового сигнала

Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.

В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.

Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.

Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.

Дискретный сигнал

Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения - это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.

Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.

Сравнение цифрового и аналогового сигналов

Покупая технику, вряд ли кто-то думает о том, какие виды сигналов использованы в том или другом приборе, а об их среде и природе уж тем более. Но иногда все же приходится разбираться с понятиями.

Уже давно стало ясно, что аналоговые технологии теряют спрос, ведь их использование нерационально. Взамен приходит цифровая связь. Нужно понимать, о чем идет речь и от чего отказывается человечество.

Если говорить коротко, то аналоговый сигнал - способ передачи информации, который подразумевает описание данных непрерывными функциями времени. По сути, говоря конкретно, амплитуда колебаний может быть равна любому значению, находящемуся в определенных границах.

Цифровая обработка сигналов описывается дискретными функциями времени. Иначе говоря, амплитуда колебаний этого метода равна строго заданным значениям.

Переходя от теории к практике, надо сказать о том, что аналоговому сигналу характерны помехи. С цифровым же таких проблем нет, потому что он успешно их «сглаживает». За счет новых технологий такой метод передачи данных способен своими силами без вмешательства ученого восстановить всю исходную информацию.

Говоря о телевидении, можно уже с уверенностью сказать: аналоговая передача давно изжила себя. Большинство потребителей переходят на цифровой сигнал. Минус последнего заключается в том, что если аналоговую передачу способен принимать любой прибор, то более современный способ - только специальная техника. Хоть и спрос на устаревший метод уже давно упал, все же такие виды сигналов до сих пор не способны полностью уйти из повседневной жизни.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows