Принцип работы и назначение вч-каналов связи высоковольтных линий электропередач. Оборудование вл для обмена командами по вч каналам Каналы связи по линиям электропередач

Принцип работы и назначение вч-каналов связи высоковольтных линий электропередач. Оборудование вл для обмена командами по вч каналам Каналы связи по линиям электропередач

01.03.2022

Третий

Второй

Первый

Схема защиты трансформатора , в которой имеется дифференциальная и газовая защиты (ДЗ), реагирующие на отключение трансформатора с двух сторон и максимальная токовая защита (СЗ), которая должна производить отключение только с одной стороны.

При составлении принципиальной схемы релейной защиты в свернутом виде может быть не обнаружена электрическая связь цепей отключения двух выключателей. Из развернутой схемы (Схема 1)следует, что при такой связи (поперечная цепь) неизбежна ложная цепь. Необходимы два оперативных контакта у защитных реле (Схема 2), действующие на два выключателя или разделительное промежуточное реле (Схема 3).

Рис. – Схема защиты трансформатора: 1 – неправильная; 2,3 – правильные

Неразделенные цепи высшего и низшего напряжения трансформатора.

Из рисунка (1) видна невозможность независимого отключения одной из сторон трансформатора без отключения другой.

Указанная ситуация исправляется включением промежуточного реле КL.

Рис. – Схемы защиты трансформатора: 1 – неправильная; 2 – правильная

Защиты генератора и трансформатора блока на электростанции действуют, как и требуется, на отключение выключателя и автомата гашения поля через разделительные промежуточные реле КL1 и КL2, но реле присоединены к разным секциям шинок питания, т.е. через разные предохранители.

Ложная цепь, показанная стрелками, образовалась через лампу контроля HL предохранителей в результате перегорания предохранителя FU2.

Рис. – Образование ложной цепи при перегорании предохранителя

1, 2, 3 – оперативные контакты реле

Схемы с питанием цепей вторичных соединений оперативным постоянным и переменным током

При хорошо изолированных от земли полюсах источника питания замыкание на землю в одной какой-либо точке цепи вторичных соединений обычно не влечет за собой вредных последствий. Однако второе замыкание на землю может вызвать ложное включение или отключение, неправильную сигнализацию и др. Профилактическими мерами в этом случае могут быть:

а) сигнализация о первом замыкании на землю в одном из полюсов; б) двухполюсное (двухстороннее) отделение элементов цепей управления – практически не применяется из-за сложности.

При изолированных полюсах (Рис.) заземление в точке а при разомкнутых замыкающих контактах 1 еще не вызовет ложного действия катушки командного органа К, но как только появится второе повреждение изоляции на землю в разветвленной сети положительного полюса, неминуема ложная работа аппарата, так как контакт 1 оказывается зашунтированным. Вот почему необходима сигнализация о замыкании на землю в оперативных цепях, и прежде всего на полюсах источника питания.



Рис. – Ложное срабатывание аппарата при втором замыкании на землю

Однако в сложных цепях с большим числом последовательно включенных оперативных контактов такая сигнализация может и не выявить возникшего замыкания на землю (Рис.).

Рис. – Неэффективность контроля изоляции в сложных цепях

При появлении заземления между контактами в точке а сигнализация невозможна.

В практике эксплуатации автоматических установок со слаботочной аппаратурой (до 60 В) прибегают иногда к намеренному заземлению одного из полюсов, например положительного (он более запыляется и подвержен электролитическим явлениям, т.е. и без того имеет ослабленную изоляцию). Это облегчает обнаружение и ликвидацию аварийного очага. В таком случае рекомендуется подсоединять катушку цепей управления одним концом к тому полюсу, который заземлен.

Все сказанное о питании цепей на постоянном оперативном токе, может быть отнесено и к оперативному переменному току с питанием цепей линейным напряжением. При этом следует учесть вероятность ложной работы (из-за емкостных токов) и резонансных явлений. Поскольку предусмотреть условия надежной работы в этом случае затруднительно, то иногда применяются вспомогательные изолирующие промежуточные трансформаторы с заземлением одного из зажимов на вторичной стороне.

Как видно из схемы, в этом случае при повреждении изоляции на землю в точке 2 перегорает предохранитель FU1 и замыкание на землю в точке 1 не вызывает ложного включения контактора К.

Схема включения конденсаторов с разделительными диодами

Высокочастотная (ВЧ) связь по линиям высокого напряжения получила значительное распространение во всех странах. В Украине этот вид связи широко используется в энергосистемах для передачи информации различного характера. Высокочастотные каналы используются для передачи сигналов релейной защиты линий, телеотключения выключателей, телесигнализации, телеуправления, телерегулирования и телеизмерения, для диспетчерской и административно-хозяйственной телефонной связи, а также для передачи данных.

Каналы связи по линиям электропередачи дешевле и надежнее каналов по специальным проводным линиям, так как не расходуются средства на сооружение и эксплуатацию собственно линии связи, а надежность линии электропередачи значительно выше надежности обычных проводных линий. Осуществление высокочастотной связи по линиям электропередачи связано с особенностями, не встречающимися в проводной связи.

Для подключения аппаратуры связи к проводам линий электропередачи необходимы специальные устройства обработки и присоединения, позволяющие отделить высокое напряжение от слаботочной аппаратуры и осуществить тракт для передачи ВЧ сигналов (рис. 1).

Рис. – Присоединение высокочастотной аппаратуры связи к линиям высокого напряжения

Одним из основных элементов схемы присоединения аппаратуры связи к линиям электропередачи является конденсатор связи высокого напряжения. Конденсатор связи, включаемый на полное напряжение сети, должен обладать достаточной электрической прочностью. Для лучшего согласования входного сопротивления линии и устройства присоединения емкость конденсатора должна быть достаточно большой. Выпускаемые сейчас конденсаторы связи дают возможность иметь емкость присоединения на линиях любого класса по напряжению не меньше 3000 пФ, что позволяет получить устройства присоединения с удовлетворительными параметрами. Конденсатор связи подключают к фильтру присоединения, который заземляет нижнюю обкладку этого конденсатора для токов промышленной частоты. Для токов высокой частоты фильтр присоединения совместно с конденсатором связи согласует сопротивление высокочастотного кабеля с входным сопротивлением линии электропередачи и образует фильтр для передачи токов высокой частоты от ВЧ кабеля в линию с малыми потерями. В большинстве случаев фильтр присоединения с конденсатором связи образуют схему полосового фильтра, пропускающего определенную полосу частот.

Ток высокой частоты, проходя через конденсатор связи по первичной обмотке фильтра присоединения на землю, .наводит во вторичной обмотке L2 напряжение, которое через конденсатор С1 и соединительную линию попадает на вход аппаратуры связи. Ток промышленной частоты, проходящий через конденсатор связи, мал (от десятков до сотен миллиампер), и падение напряжения на обмотке фильтра присоединения не превышает нескольких вольт. При обрыве или плохом контакте в цепи фильтра присоединения он может оказаться под полным напряжением линии, и поэтому в целях безопасности все работы на фильтре производят при заземлении нижней обкладки конденсатора специальным заземляющим ножом.

Согласованием входного сопротивления ВЧ аппаратуры связи и линии достигают минимальных потерь энергии ВЧ сигнала. Согласование с воздушной линией (ВЛ), имеющей сопротивление 300–450 Ом, не всегда удается выполнить полностью, так как при ограниченной емкости конденсатора связи фильтр с характеристическим сопротивлением со стороны линии, равным характеристическому сопротивлению ВЛ, может иметь узкую полосу пропускания. Для получения.нужной полосы пропускания в ряде случаев приходится допускать повышенное (до 2 раз) характеристическое сопротивление фильтра со стороны линии, мирясь с несколько большими потерями вследствие отражения. Фильтр присоединения, устанавливаемый у конденсатора связи, соединяют с аппаратурой высокочастотным кабелем. К одному кабелю может быть подключено несколько высокочастотных аппаратов. Для ослабления взаимных влияний между ними применяют разделительные фильтры.

Каналы системной автоматики – релейной защиты и телеотключения, которые должны быть особо надежны, требуют обязательного применения разделительных фильтров для отделения других каналов связи, работающих через общее устройство присоединения.

Для отделения ВЧ тракта передачи сигнала от оборудования высокого напряжения подстанции, которое может иметь низкое сопротивление для высоких частот канала связи, в фазный провод линии высокого напряжения включается высокочастотный заградитель. Высокочастотный заградитель состоит из силовой катушки (реактора), по которой проходит рабочий ток линии, и элемента настройки, присоединяемого параллельно катушке. Силовая катушка заградителя с элементом настройки образуют двухполюсник, который имеет достаточно высокое сопротивление на рабочих частотах. Для тока промышленной частоты 50 Гц заградитель имеет очень малое сопротивление. Находят применение заградители, рассчитанные на запирание одной или двух узких полос (одно- и двухчастотные заградители) и одной широкой полосы частот в десятки и сотни килогерц (широкополосные заградители). Последние получили наибольшее распространение, несмотря на меньшее сопротивление в полосе заграждения по сравнению с одно- и двухчастотными. Эти заградители дают возможность запирать частоты нескольких каналов связи, подключенные к одному и тому же проводу линии. Высокое сопротивление заградителя в широкой полосе частот можно обеспечить тем легче, чем больше индуктивность реактора. Получить реактор с индуктивностью в несколько миллигенри сложно, так как это приводит к значительному увеличению размеров, массы и стоимости заградителя. Если ограничить активное сопротивление в по­лосе запираемых частот до 500–800 Ом, что достаточно для большинства каналов, то индуктивность силовой катушки может быть не более 2 мГ.

Заградители выпускаются с индуктивностью от 0,25 до 1,2 мГ на рабочие токи от 100 до 2000 А. Рабочий ток заградителя тем выше, чем выше напряжение линии. Для распределительных сетей выпускают заградители на 100–300 А, а для линий 330 кВ и выше наибольший рабочий ток заградителя 2000 А.

Различные схемы настройки и необходимый диапазон запираемых частот получают, используя конденсаторы, дополнительные катушки индуктивности и резисторы, имеющиеся в элементе настройки заградителя.

Присоединение к линии можно осуществить различными способами. При несимметричной схеме ВЧ аппаратуру включают между проводом (или несколькими проводами) и землей по схемам «фаза – земля» или «две фазы – земля». При симметричных схемах ВЧ аппаратуру подключают между двумя или несколькими проводами линий («фаза – фаза», «фаза – две фазы»). На практике применяют схему «фаза – фаза». При включении аппаратуры между проводами разных линий используют лишь схему «фаза – фаза разных линий».

Для организации ВЧ каналов по линиям высокого напряжения применяют диапазон частот 18–600 кГц. В распределительных сетях используют частоты, начиная от 18 кГц, на магистральных линиях 40–600 кГц. Для получения удовлетворительных параметров ВЧ тракта на низких частотах необходимы большие значения индуктивностей силовых катушек заградителей и емкостей конденсаторов связи. Поэтому нижняя граница по частоте ограничена параметрами устройств обработки и присоединения. Верхняя граница частотного диапазона определяется допустимым значением линейного затухания, которое растет с увеличением частоты.

1. ВЫСОКОЧАСТОТНЫЕ ЗАГРАДИТЕЛИ

Схемы настройки заградителей . Высокочастотные заградители обладают высоким сопротивлением для токов рабочей частоты канала и служат для отделения шунтирующих ВЧ тракт элементов (подстанций и ответвлений), которые при отсутствии заградителей могут привести к увеличению затухания тракта.

Высокочастотные свойства заградителя характеризуются полосой заграждения, т. е. полосой частот, в которой сопротивление заградителя не меньше некоторого допустимого значения (обычно 500 Ом). Как правило, полоса заграждения определяется по допустимому значению активной составляющей сопротивления заградителя, но иногда по допустимому значению полного сопротивления.

Заградители отличаются по значениям индуктивностей, допустимым токам силовых катушек и по схемам настройки. Применяются одно- и двухчастотные резонансные или притуплённые схемы настройки и широкополосные схемы (по схеме полного звена и полузвена полосового фильтра, а также по схеме полузвена фильтра верхних частот). Заградители с одно- и двух-частотными схемами настройки часто не дают возможности заградить нужную полосу частот. В этих случаях применяют заградители с широкополосными схемами настройки. Такие схемы настройки применяют при организации каналов защиты и связи, имеющих общую аппаратуру присоединения.

При протекании тока через катушку заградителя возникают электродинамические усилия, действующие вдоль оси катушки, и радиальные, стремящиеся разорвать виток. Осевые усилия неравномерны по длине катушки. Большие усилия возникают на краях катушки. Поэтому шаг витков на краю делают больше.

Электродинамическая стойкость заградителя определяется максимальным током КЗ, который он выдерживает. В заградителе КЗ-500 при токе 35 кА возникают осевые усилия в 7 тонн (70 кН).

Защита элементов настройки от перенапряжений . Волна перенапряжения, возникающая на воздушной линии, попадает на заградитель. Напряжение волны распределяется между конденсаторами элемента настройки и входным сопротивлением шин подстанции. Силовая катушка представляет собой большое сопротивление для волны с крутым фронтом и при рассмотрении процессов, связанных с перенапряжениями, ее можно не учитывать. Для защиты конденсаторов настройки и силовой катушки параллельно силовой катушке подсоединяют разрядник, ограничивающий напряжение на элементах заградителя до безопасного для них значения. Пробивное напряжение разрядника по условиям деионизации искрового промежутка должно быть в 2 раза больше сопровождающего напряжения, т. е. падения напряжения на силовой катушке от максимального тока кз U сопр =I к.з. ωL.

При большом предразрядном времени пробивное напряжение конденсаторов значительно больше пробивного напряжения разрядников; при малом (менее 0,1 мкс) пробивное напряжение конденсаторов становится меньше пробивного напряжения разрядника. Поэтому необходимо задерживать рост напряжения на конденсаторах до момента срабатывания разрядника, что достигают включением добавочной катушки индуктивности L д последовательно с конденсатором (рис. 15). После пробоя разрядника напряжение на конденсаторе поднимается медленно и дополнительный разрядник, включенный параллельно конденсатору, хорошо его защищает.

Рис. – Схемы высокочастотных заградителей с устройством защиты от перенапряжений: а) одночастотная; б) двухчастотная

2. КОНДЕНСАТОРЫ СВЯЗИ

Общие сведения . Конденсаторы связи служат для подключения ВЧ аппаратуры связи, телемеханики и защиты к линиям высокого напряжения, а также для отбора мощности и измерения напряжения.

Сопротивление конденсатора обратно пропорционально частоте напряжения, прикладываемого к нему, и емкости конденсатора. Реактивное сопротивление конденсатора связи для токов промышленной частоты, следовательно, значительно больше, чем для частоты 50 – 600 кГц каналов связи телемеханики и защиты (в 1000 раз и более), что позволяет с помощью этих конденсаторов разделить токи высокой и промышленной частоты и предотвратить попадание высокого напряжения на электроустановки. Токи промышленной частоты отводятся на землю через конденсаторы связи, минуя аппаратуру ВЧ. Конденсаторы связи рассчитаны на фазное (в сети с заземленной нейтралью) и на линейное напряжение (в сети с изолированной нейтралью).

Для отбора мощности применяют специальные конденсаторы отбора, включаемые последовательно с конденсатором связи.

В названиях элементов конденсаторов буквы обозначают последовательно характер применения, вид заполнителя, исполнение; цифры – номинальное фазное напряжение и емкость. СМР – связи, маслонаполненный, с расширителем; СММ – связи, маслонаполненный, в металлическом кожухе. Для различных напряжений конденсаторы связи комплектуют из отдельных элементов, соединенных последовательно. Элементы конденсаторов СМР-55/√3-0,0044 рассчитаны на нормальную работу при напряжении 1,1 U иом, элементы СМР-133/√3-0,0186 – на 1,2U иом. Емкость конденсаторов для классов изоляции 110, 154, 220, 440 и 500 кВ принимается с допуском от -5 до +10%.

3. ФИЛЬТРЫ ПРИСОЕДИНЕНИЯ

Общие сведения и расчетные зависимости. Высокочастотную аппаратуру подключают к конденсатору не непосредственно через кабель, а через фильтр присоединения, который компенсирует реактивное сопротивление конденсатора, согласовывает волновые сопротивления линии и ВЧ кабеля, заземляет нижнюю обкладку конденсатора, чем образуется путь для токов промышленной частоты и обеспечивается безопасность работ.

При обрыве цепи линейной обмотки фильтра на нижней обкладке конденсатора появляется фазное напряжение по отношению к земле. Поэтому все переключения в цепи линейной обмотки фильтра присоединения производят при включенном заземляющем ноже.

Фильтр ОФП-4 (рис. ,) предназначен для работы на линиях 35, 110 и 220 кВ по схеме «фаза – земля» с конденсатором связи 1100 и 2200 пФ и с кабелем, имеющим волновое сопротивление 100 Ом. Фильтр имеет три частотных диапазона. Для каждого диапазона имеется отдельный воздушный трансформатор, залитый изоляционной массой.

Рис. – Принципиальная схема фильтра-присоединения ОФП-4

6. ОБРАБОТКА ГРОЗОЗАЩИТНЫХ ТРОСОВ, АНТЕННЫ

Грозозащитные тросы линий высокого напряжения могут быть также использованы в качестве каналов передачи информации. Тросы изолированы от опор с целью экономии электроэнергии, при атмосферных перенапряжениях они заземляются через пробиваемые искровые промежутки. Стальные тросы имеют высокое затухание для сигналов высокой частоты и позволяют передавать информацию лишь на коротких линиях на частотах не более 100 кГц. Биметаллические тросы (стальные тросы с алюминиевым покрытием), тросы алюмовелд (из скрученных сталеалюминевых проволок), одноповивные тросы (один повив – алюминиевые проволоки, остальные повивы – стальные) дают возможность организовать каналы связи с малыми затуханиями и уровнями помех. Помехи меньше, чем в каналах связи по фазным проводам, а аппаратура ВЧ обработки и присоединения проще и дешевле, так как токи, текущие по тросам, и напряжения на них невелики. Биметаллические провода дороже стальных, поэтому их применение может быть оправдано, если ВЧ каналы по фазным проводам не могут быть выполнены. Это может быть на сверхдальних, а иногда на дальних электропередачах.

Каналы по тросам можно включать по схемам «трос – трос», «трос – земля» и «два троса – земля». На ВЛ переменного тока тросы меняют местами через каждые 30 – 50 км для уменьшения в них наводок токов промышленной частоты, что вносит дополнительное затухание в 0,15 Нп на каждое скрещивание в схемах «трос – трос», не влияя на схему «два троса – земля». На передачах постоянного тока можно применять схему «трос – трос», так как здесь скрещивания не нужно.

Связь по грозозащитным тросам не прерывается при заземлении фазных проводов, не зависит от схемы коммутации линий.

Антенная связь применяется для присоединена к ВЛ передвижной ВЧ аппаратуры. Провод подвешивают вдоль проводов ВЛ или используют участок грозозащитного троса. Такой экономичный способ присоединения не нуждается в заградителях и конденсаторах связи.

Технологические комплекс предназначен для организации цифровых высокочастотных каналов: связи, ТМ, передачи данных АСКУЭ, АСУ ТП и Ethernet по высоковольтным линиям электропередач (6 – 10) кВ.

Система защиты и согласования предназначена для присоединения всех типов каналообразующего оборудования связи, РЗ и ПА к ВЧ тракту ВЛ

Технологический комплекс EPW9 предназначен для организации цифровых и аналоговых высокочастотных каналов: связи, ТМ, РЗА, ПА, передачи данных АСКУЭ, АСУ ТП и Ethernet по высоковольтным линиям электропередач.

ET9 | DZ9 | CCP-4 | CSP-9 Организация высокочастотной связи по линиям электропередачи

Технологический комплекс ЕТТ9 предназначен для организации высокочастотных каналов связи, ТМ, РЗА, ПА, передачи данных АСКУЭ и АСУ ТП по высоковольтным линиям электропередач.

Аппаратура высокочастотной связи

ESV6 фильтр присоединения

Фильтры присоединения предназначены для присоединения аппаратуры ВЧ связи к воздушным и кабельным ВЛ по схемам фаза-земля или фаза-фаза.

ET8 аппаратура ВЧ связи по ЛЭП

Аппаратура ВЧ связи по ВЛ типа ЕТ8 дает возможность организации от одного до шести надежных аналоговых и цифровых каналов связи в диапазоне частот от 20 до 1000 кГц.

ECS8 система параметрирования и диагностики

Система контроля ECS8 предназначена для местного и удаленного управления (параметрирование и диагностика) оборудованием ВЧ связи семейства PLC2000.

TG8 узкополосный FSK модем

G8 это узкополосной модем с бинарной FSK модуляцией. Его использование является отличным решением для надежной передачи данных по речевым каналам связи даже при плохих условиях передачи. Тип применяемой модуляции (бинарная FSK) обеспечивает высокую устойчивость при воздействии помех и других влияющих факторов.

NF8 терминал НЧ доступа

Терминал НЧ доступа NF8 обеспечивает одновременную передачу речи, сигналов вызова и данных телемеханики, а также сигналов-команд телезащиты в диапазоне тональных частот от 300 Гц до 3720 Гц. Терминал NF8 обеспечивает самое еффективное (как с техничекой так и экономической точки зрения) использование полосы тональных частот.

DZ9 Устройство передачи сигналов команд РЗ

Устройство DZ9 позволяет передачу до 8 независимых команд РЗ по различным цифровым каналам связи и до 4 независимых команд РЗ по аналоговому каналу связи. Кодирование каналов и адаптивные алгоритмы обнаружения команд гарантируют оптимальные комбинации времени передачи, безопасности и надежности передачи команд в реальных условиях передачи.

DPA8 Устройство для передачи команд РЗ и ПА

DPA8 предназначено для передачи сигналов РЗ и ПА по любым аналоговым речевым каналам, но максимальная надежность и безопасность при минимальном времени передачи сигналов достигается при работе по каналам связи, организованным по ВЛ с помощью аппаратуры ЕТ8. DPA8 - это цифровое программируемое устройство, параметры которого позволяют оптимально приспособить утройства и характеристики команд РЗ и ПА в соответствии с требованиями систем защиты и пожеланиями потребителей.

Оптическая передача

SparkLight NG SDH STM 1/4/16/xWDM
ADM-16 | ADM-4/1 | HSP

SparkLight является компактным, мощным, высокоплотным и удобным для пользования SDH мультисервисным узлом нового поколения для предоставления услуг PCM (речи, данных), PDH (E1, E3), SDH (STM-1, STM-4, STM-16) и Ethernet (FE, ГбE) по SDH.

Радиорелейное оборудование

SparkWave
SDR HSP | SDR ADM | SDR STM | SDR GE | SDR AR

Многоскоростной многофункциональный радиорелейный узел для сетей нового поколения, работающий в диапазоне частот от 5 до 38 ГГц.

Оборудование SparkWave SDR HSP предназначено для радиорелейной передачи PDH и Ethernet сигналов, работающих в 5, 6, 7, 8, 11, 13, 15, 18, 23 и 26 ГГц частотных диапазонах.

Оборудование SparkWave SDR ADM

Оборудование SparkWave SDR STM-1 предназначено для радиорелейной передачи STM-1 трафика, работающего в 5, 6, 7, 8, 11, 13, 15, 18, 23 и 26 ГГц частотных диапазонах.

Оборудование SparkWave SDR GE является высокоэффективной, удобной для использования split-mount, точка-точка беспроводной радиорелейной линией радиосвязи, предназначенной для применений Gigabit Ethernet большой емкости.

SparkWave AR-18/23G активный ретранслятор обеспечивает весьма привлекательным решением радиотрассы на 18/23 ГГц.


Телекоммуникации в энергетике

PowerLink

Система ВЧ связи PowerLink позволяет передавать по высоковольтным линиям электропередачи сигналы РЗ и ПА, голос и данные. Технологии, использованные при разработке оборудования, полностью соответствуют последним стандартам и требованиям телекоммуникационных систем...

SWT 3000

Скомбинировав возможности цифровой и аналоговой перед ачи в одном устройстве, SWT 3000 образовало собой новый класс оборудования. Основными существенными характеристиками эффективной системы являются безопасность, надежность и время передачи команд. Система SWT 3000 в полной мере удовлетворяет этим требованиям...

Правительственная "ВЧ связь" в годы Великой Отечественной войны

П. Н. Воронин

Правительственная связь играет важную роль в управлении государством, его Вооруженными силами, в общественно-политической и хозяйственной жизни. Ее основа была заложена в 1918 г., при переезде Советского Правительства в Москву. Вначале в Москве был установлен коммутатор ручной связи на 25 номеров, затем он был расширен и впоследствии заменен на АТС.

Междугородная правительственная связь (в мемуарах и художественных произведениях ее называют "ВЧ связь") была организована в 30-е годы как оперативная связь органов госбезопасности. Она обеспечивала определенную секретность переговоров, и поэтому ее абонентами стали также руководители высших органов управления государства и Вооруженных сил. В мае 1941 г. распоряжением Совнаркома СССР эта связь была определена как "Правительственная ВЧ связь" и утверждено соответствующее "Положение". В соответствии с принятой терминологией "ВЧ связь" может быть отнесена к одной из вторичных сетей ЕАСС и должна удовлетворять дополнительным требованиям по защите передаваемой информации, надежности и живучести. Однако полностью реализовать эти требования до начала Великой Отечественной войны не удалось. Как средство управления Вооруженными силами в боевой обстановке ВЧ связь оказалась неподготовленной.

Осложнение обстановки в начале 1941 г. чувствовалось по увеличивающемуся количеству заданий на организацию ВЧ связи для крупных объединений и соединений Красной Армии в приграничной полосе. Ночь с 21 на 22 июня застала меня за выполнением одного из таких заданий. Примерно в 4 часа утра позвонил дежурный техник из Бреста и сообщил, что немцы начали обстрел города. Началась эвакуация. Что делать с оборудованием ВЧ станции? Было дано указание связаться с местным руководством и действовать по его указанию, но при всех условиях демонтировать и вывезти засекречивающую аппаратуру. Затем такие звонки поступили из Белостока, Гродно и других городов, расположенных вдоль западной границы. Так началась война, которая сразу поставила ряд неотложных задач.

Ввиду возможной бомбардировки противником Москвы, необходимо было срочно перенести в защищенное помещение московскую ВЧ станцию. Было выделено помещение на платформе метро "Кировская". Станция была закрыта для пассажиров. Монтаж вели собственными силами. Работа осложнялась тем, что приходилось переносить действующую аппаратуру, не прерывая работы ВЧ станции. Резервного оборудования у нас не было.

Аналогичная работа велась и Наркоматом (НК) связи. Оборудование телеграфа, междугородную станцию переносили в защищенные помещения. Возглавлял работу И. С. Равич (в то время начальник Центрального управления магистральных связей). Мы с ним работали в тесном контакте. Необходимые для ВЧ связи каналы предусматривалось получать только с защищенных узлов НК связи.

Сразу же сказалась общая неподготовленность средств связи к войне. Вся сеть страны базировалась на воздушных линиях, чрезвычайно подверженных влиянию климатических условий, а с развертыванием военных действий и разрушению противником как путем бомбежки с воздуха, так и диверсионными группами. Для разрушения многопроводных линий связи немцы применяли даже специальные бомбы "с крючьями". Падая, такая бомба зацеплялась крючьями за провода и взрывалась, разрушая сразу весь пучок проводов.

Серьезные недостатки были и в построении используемой междугородной сети связи. Ее создавали по строго радиальному принципу. Не было кольцевых линий связи и обходных направлений, не были подготовлены резервные узлы связи, защищенные от бомбежек противника, не окольцованы даже вводы в Москву основных междугородных направлений. В случае разрушения одного из них невозможно было переключить линии связи на другое направление. НК связи принял решение о срочном строительстве в сентябре 1941 г. обходной кольцевой линии связи вокруг Москвы по трассе Люберцы – Химки – Пушкино – Чертаново. В 1941 г. это было кольцо, отстоящее от Москвы примерно на 20 км. НК связи проводились и другие работы по повышению надежности междугородной сети.

Была поставлена задача обеспечить ВЧ связь с фронтами, а после битвы под Москвой – и с армиями. Сразу возник ряд вопросов и, в первую очередь, кто будет строить линии связи и эксплуатировать их, как обеспечить фронтовые ВЧ станции техникой связи – аппаратурой уплотнения, коммутаторами, аккумуляторами, засекречивающей аппаратурой связи (ЗАС) и другой техникой, приспособленной к работе в полевых условиях.

Первый вопрос решился быстро. Государственный Комитет обороны (ГКО) обязал НК связи и НК обороны строить и обслуживать линии Правительственной связи. Но, как показал опыт, это было не лучшее решение. НК связи для обслуживания линий имел надсмотрщиков – одного на десятки километров. При массовых повреждениях воздушных линий в результате боевых действий, бомбежек с воздуха и разрушений диверсионными группами противника физически не было возможности быстро устранять повреждения и обеспечивать бесперебойную работу связи.

Связисты НК обороны были заняты обслуживанием линий боевого управления и также не могли сосредоточить основное внимание на линиях Правительственной связи. В результате Правительственная связь в отдельные моменты работала неустойчиво, что приводило к справедливым жалобам абонентов. После каждой жалобы начинались разборы, выяснение причин, взаимные обвинения. Кто виноват? Дело доходило до высшего руководства НКВД, НК связи и НК обороны. Необходимо было кардинальное решение этого вопроса.

В отделе Правительственной ВЧ связи НКВД было решено создать линейно-эксплуатационную службу, для чего сформировать 10 линейно-эксплуатационных рот, затем еще 35. Правительственная связь стала работать устойчивее. Но уже во время битвы под Москвой, когда наши войска стали наступать и штабы фронтов и армий пошли вперед, возникли трудности со строительством линий связи.

Особенно остро этот вопрос встал в 1942 г., когда немцы подошли к Волге и начали окружать Сталинград. Вспоминается один из осенних вечеров 1942 г. Немцы яростно рвались к городу. Бои шли на ближних подступах. Штаб фронта размещался в убежище на правом берегу Волги. Связь с фронтом из-за усиленной бомбежки линий связи прервалась. Линейные подразделения Правительственной связи прилагали героические усилия к восстановлению линий, но противник бомбил, и связь вновь нарушалась. Обходные линии также были нарушены. В это время И. В. Сталину потребовалась связь со Сталинградским фронтом. Мне позвонил А. Н. Поскребышев, помощник Сталина, и спросил, что ему доложить – когда будет связь. Я ответил – через 2 часа (в надежде, что за это время удастся восстановить линию). Связался с нашим подразделением и получил ответ, что бомбежка усилилась. Дал команду делать "времянку" – прокладывать полевой кабель ПТФ-7 по земле. Через 2 часа снова позвонил Поскребышев. Я сообщил ему, что потребуется еще 40 минут. Через 40 минут Поскребышев предложил лично доложить Сталину, когда будет связь. Но в это время линию восстановили. Сталин переговорил со штабом, и личного доклада не потребовалось. Вскоре к Сталину были вызваны нарком внутренних дел Берия и заместитель наркома обороны нарком связи И. Т. Пересыпкин. Сталин высказал большое неудовольствие, что со Сталинградом нет устойчивой связи и напомнил, что еще в 1918 г. он имел надежную связь с Лениным будучи на Царицынском фронте.

Было поручено внести предложения, предусматривающие ответственность одного органа за безусловную надежность действия связи. Такие предложения были разработаны. Вышло Постановление ГКО от 30 января 1943 года. Были созданы войска Правительственной связи, в задачу которых входило обеспечение строительства, обслуживания и войсковой охраны линий Правительственной связи от Ставки Верховного Главнокомандования к фронтам и армиям. Другие линии, идущие по территории страны к республикам, краям и областям, используемые для Правительственной связи, остались на обслуживании НК связи.

В НКВД было создано Управление войск Правительственной связи. Возглавил его П. Ф. Угловский, который до этого был начальником связи погранвойск. Руководитель линейной службы в Отделе Правительственной связи К. А. Александров, крупный специалист-линейщик, стал его заместителем. На фронтах были созданы Отделы Правительственной связи, которым были подчинены подразделения войск Правительственной связи – отдельные полки, батальоны, роты. Кажется несколько странным решение о создании в НКВД двух подразделений, ведающих Правительственной связью, – Отдела и Управления войск. Однако это диктовалось спецификой работы органов госбезопасности: были оперативные подразделения и войска, выполняющие специфические войсковые задачи по указанию оперативных органов.

Подобно этой структуре в НКВД существовали оперативный орган – Отдел Правительственной связи, который ведал вопросами организации связи, ее развитием, техническим оснащением, станционной службой, вопросами сохранения секретности – и войска, которые строили линии связи, обеспечивали их бесперебойное действие и несли охрану парными нарядами и секретными засадами в уязвимых местах, исключая возможность подключения к линиям для подслушивания, пресекали возможные диверсии.

Отдел и Управление войск всю войну работали в тесном контакте, и каких-либо недоразумений в их взаимоотношениях не было. Объединились они в 1959 г.; структура Правительственной связи получила логическое завершение. Органы и войска способны были комплексно выполнять задачи по организации и обеспечению связи в сложных условиях боевой обстановки.

Связь организовывалась по "осям" и направлениям. Осевую линию тянули к штабу фронта. Как правило, старались строить две осевые линии по разным трассам, к армиям прокладывалось направление – одна линия связи. На ней подвешивались две цепи: одна – уплотнялась ВЧ аппаратурой, а другая -служебная – предназначалась для связи с постами обслуживания.

На армейских направлениях при строительстве линий связи мы часто контактировали со связистами НК обороны. Тянули одну линию, которую использовали для уплотнения, а "среднюю точку" передавали армейским связистам для телеграфной связи по системе Бодо. ВЧ связь организовывалась на основном командном пункте (КП), запасном (ЗКП) и передовом (ПКП) пунктах. При выезде командующего фронтом в войска его сопровождал офицер Правительственной связи с аппаратурой ЗАС. Связь ВЧ организовывалась в месте нахождения командующего, с учетом имеющихся армейских линий связи или линий НК связи.

Боевое крещение войска Правительственной связи получили в битве на Орловско-Курской дуге, где одновременно действовали пять фронтов и было развернуто несколько десятков ВЧ станций. Связисты успешно справились с поставленными задачами, обеспечив непрерывную связь Ставки со всеми фронтами, армиями и двумя представителями Ставки -Г. К. Жуковым и A. M. Василевским, которые имели свои ВЧ станции.

После Орловско-Курской битвы войска начали стремительное наступление, освобождая наши территории от немецких оккупантов. Скорость наступления общевойсковых армий достигала 10-15 км в сутки, а танковых – до 20-30 км. При таких темпах войска не успевали строить постоянные воздушные линии. Пришлось вооружить их так называемыми кабельно-шестовыми линиями, которые разворачивались при быстром продвижении войск как временные и в последующем заменялись на постоянные, если требовалось сохранить это направление. Так была создана линейная служба.

Решались вопросы и технического оснащения фронтовых и армейских станций ВЧ связи. В Правительственной связи для организации высокочастотных каналов использовалась принятая в то время на междугородной сети НК связи система уплотнения в спектре 10-40 кГц типа СМТ-34. Это была чисто стационарная аппаратура. Стойки высотой 2, 5 м весили более 400 кг. На автомашине стойку можно было перевозить, положив ее на бок. Никакой тряски она не выдерживала. Зачастую после перевозки приходилось сутками восстанавливать монтаж. Не было также приспособленных к полевым условиям коммутаторов, аккумуляторов, блокстанций и другого оборудования. Все надо было создавать заново.

Единственной базой для производства аппаратуры дальней связи в то время был цех на заводе "Красная Заря" в Ленинграде. Но к концу 1941 г. Ленинград оказался в блокаде. Были приняты экстренные меры к эвакуации этого цеха в Уфу, где был создан завод № 697 по производству аппаратуры дальней связи и научно-исследовательский институт.

Благодаря напряженной работе коллективов, возглавляемых крупными специалистами А, Е. Плешаковым и М. Н. Востоковым, была создана (в спектре 10-40 кГц) аппаратура СМТ-42, а затем СМТ-44 (полевые варианты аппаратуры СМТ-34; высота – 60 см, масса – 50 кг). Она была удобна для быстрого развертывания и свертывания ВЧ станций, выдерживала тряску при перевозке. Была также разработана аппаратура НВЧТ в спектре до 10 кГц и в аппаратуре СМТ добавлен четвертый канал в спектре свыше 40 кГц, созданы в полевом исполнении коммутаторы и аппаратура ЗАС. За создание этого комплекса авторы были удостоены Государственной премии. Правительственная связь получила законченный комплекс средств связи в полевом исполнении, который давал возможность оперативно решать вопросы организации ВЧ связи.

Была сделана попытка резервировать радиосвязью проводную связь с фронтами. Для радиосвязи в то время можно было использовать только KB диапазон. Взяты были выпускаемые промышленностью станции РАФ и PAT. Но широкого применения они не нашли. Аппаратура ЗАС, применяемая на радиоканалах, предъявляла высокие требования к качеству канала, чего на KB линиях добиться было трудно. Кроме того, абоненты, предупрежденные о том, что им предоставляется связь по радио, зачастую отказывались говорить. Вспоминается такой случай. После окончания войны в Париже собралась мирная конференция. Советскую делегация возглавлял В. М. Молотов. Нами была организована проводная связь до Берлина по собственным линиям связи, а от Берлина до Парижа линию предоставляли американцы. Пока мы вели открытые разговоры, связь работала отлично, как только включали ЗАС – связь прекращалась. Предусмотрели мы и резервирование по радио, используя стационарные средства радиосвязи НК связи. Но Молотов отказался говорить по радио, заявив, что должен по голосу узнавать абонента, с которым говорит. При той аппаратуре ЗАС, которая применялась, этого добиться было трудно. Пришлось поскандалить с американцами и добиться устойчивой работы проводной связи.

Характеристика деятельности Правительственной связи в период Великой Отечественной войны будет не полной, если не остановиться на отдельных наиболее значительных операциях и мероприятиях.

Когда в конце 1941 г. Ленинград был блокирован немцами, остро встал вопрос о ВЧ связи с Ленинградским фронтом и городом. НК связи организовал связь по радио. Мы воспользоваться этой связью не могли из-за отсутствия соответствующей аппаратуры ЗАС. Нужна была проводная линия. НК связи и НК обороны приняли решение в экстренном порядке проложить кабель по единственно возможному направлению – по дну Ладожского озера. Прокладка велась уже под обстрелом противника. В результате была организована проводная связь по "воздушке" с Ленинградом через Вологду на Тихвин, далее по кабелю до Всеволожской, затем опять по воздушной линии до Ленинграда. Ставка всю войну имела с Ленинградом устойчивую ВЧ связь.

К лету 1942 г. немцы оправились после поражения под Москвой, началось наступление на Южном направлении. Создался Воронежский фронт. Я с группой сотрудников вылетел в Поворино, куда должен был переехать штаб Воронежского фронта. Вскоре туда прибыл и первый заместитель наркома связи А. А. Конюхов. Развернули работы по монтажу узлов и организации связи. Немцы бомбили Поворино ежедневно. Во время бомбежки мы скрывались в ближайшем овраге, а потом вновь продолжали работы. Но однажды, вернувшись из укрытия, увидели догорающие обломки зданий, где мы разместили наши узлы. Погибло и все оборудование. Нашлись "когти" и телефонный аппарат. Влезли на вводной столб с сохранившимися проводами. А. А. Конюхов и я доложили своим руководителям о случившемся. Но к этому времени обстановка изменилась и ВЧ связь развернули в деревне Отрадное, куда вскоре переместился и штаб фронта. Вскоре мне было приказано срочно выехать в Сталинград.

В Сталинграде сложилась очень тяжелая обстановка. Все основные линии связи Москвы со Сталинградом шли по правому берегу Волги. После того, как немцы вышли на ее берег выше Сталинграда, в местечке Рынок, и ниже Сталинграда, в районе Красноармейска, город оказался в окружении. 23 августа 1943 г. немцы произвели массированный налет. Весь город горел. Связисты НК связи в тяжелейших условиях вывезли все оборудование междугородной станции на левый берег и смонтировали резервный узел в местечке Капустин Яр, с выходом на Астрахань и Саратов. В Сталинграде действующих линий связи не осталось. Штаб Сталинградского фронта был на правом берегу. Связь с ним можно было организовать только с левого берега. ВЧ станция Сталинграда также была вывезена на левый берег в местечко Красная слобода. Вместе с И. В. Клоковым, ответственным представителем НК связи, мы дали указание тянуть линию через Волгу.

В первую очередь проверили, нельзя ли использовать имеющийся кабельный переход в районе Рынка. Подъехать к кабельной будке было сложно – немцы контролировали все подходы. И все же по-пластунски мы подползли к ней и проверили исправность кабеля. Он работал, но на другом конце отвечали немцы. Использовать этот кабель в наших целях было нельзя. Оставался один выход – прокладывать новый кабельный переход через Волгу. Речного кабеля у нас не было. Решили класть полевой кабель ПТФ-7, не приспособленный для работы под водой (замокал через 1-2 суток). Позвонили в Москву, чтобы срочно прислали речной кабель.

Прокладку приходилось вести под непрерывным минометным обстрелом. Большой вред наносили плывущие по реке нефтеналивные баржи. Пробитые снарядами, они плыли по течению, постепенно погружаясь в воду, и перерезали наши кабели. Каждый день приходилось класть все новые и новые пучки. Коммутатор ВЧ связи был установлен в блиндаже, где размещалось командование фронта. На этот коммутатор связь по НЧ передавалась с ВЧ станции, находящейся на левом берегу.

Наконец, прибыл речной кабель. Барабан весил больше тонны. Подходящей лодки не нашлось. Сделали специальный плот. Ночью начали прокладку, но немцы нас засекли и минометным огнем разбили плот. Пришлось начинать все сначала. Наконец кабель был проложен. До ледостава он работал надежно. Позднее, в дополнение к нему, по льду проложили и воздушную линию. Столбы вмораживали в лед.

В феврале немцы были разгромлены. Со Сталинградом связь начала работать по довоенной схеме.

Большие трудности встретились при организации Правительственной связи на Тегеранской конференции трех союзных держав. Проводной связи в мирное время у Советского Союза с Тегераном не было. Надо было ее организовывать. Задача осложнялась тем, что Сталину, как Верховному Главнокомандующему, связь нужна была не только с Москвой, но и со всеми фронтами и армиями.

Я с группой специалистов выехал в Тегеран за два месяца до встречи, чтобы изучить обстановку, принять решение и организовать необходимые работы по монтажу ВЧ станции и подготовке линий связи. Ознакомившись с ситуацией, понял, что единственная линия, которая может решить задачу, – это воздушная линия связи Ашхабад – Кзыл-Арават – Астара -Баку, проложенная по берегу Каспийского моря. По договоренности с Ираном, эта линия была построена НК связи как обходная для связи с Закавказьем, поскольку немцы прорывались к Кавказу и могли перерезать линии, идущие на Баку, Закавказский фронт, Грузию, Армению. Нужно было найти выход из Тегерана на обходную линию. Имевшиеся на этом направлении иранские линии связи находились в отвратительном состоянии: шли по рисовым полям и были недоступны для обслуживания. Столбы покосились, изоляторы на многих столбах отсутствовали, провода висели на крючьях или были просто прибиты к столбам.

Более или менее сохранилась так называемая индо-европейская линия связи, идущая через Иран. Ее и решили использовать. В свое время она была построена англичанами на металлических столбах для связи Лондона с Индией. Линия по прямому назначению не использовалась и находилась в ведении иранских связистов. Было принято решение разместить советскую делегацию в здании посольства СССР, там же намечалось расположить ВЧ станцию. В посольство была заведена указанная линия связи. В пунктах Сари и Астара сделали переприемы на нашей линии. Теперь из Тегерана имелось два выхода на Баку через Астару и на Ашхабад -Ташкент через Кзыл-Арават (Туркмения). Таким образом, хотя и с большими трудностями, удалось обеспечить устойчивую ВЧ связь на все время работы Тегеранской конференции.

Стремительное наступление наших войск в 1943-1945 гг. потребовало полного напряжения в работе органов и войск Правительственной связи. Характерной чертой стратегического наступления было непрерывное увеличение его территории, постепенно охватившее полосу до 2000 км. Глубина ударов по врагу достигала 600-700 км. Штабы фронтов за одну операцию перемещались до трех раз, а армий – до восьми. Между органами и войсками Правительственной связи и связистами НК связи и НК обороны было установлено самое тесное взаимодействие. Общими усилиями велась разведка уцелевших постоянных линий связи. Тщательно согласовывались вопросы совместного строительства и восстановления линий. За время летне-осенних операций 1943 г. войсками Правительственной связи было построено 4041 км новых постоянных линий, восстановлено 5612 км линий, подвешено 32836 км проводов, построено 4071 км шестовых линий. Отделы и войска набирались опыта, им уже было по силам решение сложных задач по организации ВЧ связи в любой обстановке.

Если оценивать выполненные задания, следует остановиться на предполагавшихся перемещениях Ставки Верховного Главнокомандования из Москвы в другие города. Как известно, Ставка всю войну находилась в Москве, а Верховный Главнокомандующий выезжал на фронт лишь один раз – в район Ржева. ВЧ связь с ним поддерживалась подвижными средствами. Однако решение о перемещении Ставки принималось дважды – в 1941 и 1944 гг. В 1941 г., когда немцы вплотную подошли к Москве и до линии фронта оставалось 20-30 км, руководство Генерального Штаба обратилось к Сталину с предложением о перемещении Ставки вглубь страны. Согласно положениям о ведении военных операции, Верховное Главнокомандование должно находиться от линии фронта на расстоянии 200-300 км. Ситуация требовала определить пункт, куда может быть перемещена Ставка.

Как рассказывал мне маршал И. Т. Пересыпкин, Сталин подошел к карте и сказал: "Когда Иван Грозный брал Казань, у него ставка была в Арзамасе, остановимся и мы на этом городе". С группой специалистов я выехал в Арзамас и стал организовывать работы по монтажу ВЧ станции. Для Сталина был выбран двухэтажный дом, первый этаж которого отдали для ВЧ станции. При монтаже была предусмотрена возможность выхода на фронты, минуя Москву. Однако в Арзамас приехал только начальник Генштаба маршал Б. М. Шапошников и вскоре уехал обратно в Москву. Вместо Арзамаса для размещения Ставки и Правительства стали готовить помещение в Горьком. Но и ему был дан отбой. Работы прекратились, и мы вернулись в Москву.

Второй раз решение о перемещении Ставки было принято в 1944 г., после успешного проведения операции "Багратион" и освобождения Минска. Маршал И. Т. Пересыпкин сообщил мне об этом и предложил поехать в Минск. Мы выехали вместе с К. А. Александровым. По дороге, обсуждая ситуацию в Минске, пришли к выводу о необходимости усиления связи между Минском и Москвой. На этом направлении действовала всего одна цепь, уплотненная трехканалыюй аппаратурой. Решено было подвесить еще три, из них две – силами НК связи и НК обороны и одну – войсками Правительственной связи. В Минске были развернуты узлы связи и проведены большие работы по строительству обходных линий вокруг города. Через некоторое время опять был дан отбой. Ставка осталась в Москве.

Придавая особое значение организации Правительственной связи с фронтами и армиями, мы не должны были забывать о работе всей сети связи с республиками, краями и областями, тем более, что в тылу было открыто значительное количество новых ВЧ станций – на заводах оборонных отраслей промышленности, изготавливающих вооружение для армии, на местах формирования резервных армий – и ряд других, связанных с нуждами фронта. Большую роль в успешной работе Правительственной связи играло состояние общегосударственной сети НК связи. Подчас были необходимы дополнительные затраты НК связи. И, надо сказать, что мы встречали полное понимание руководства наркомата связи, наркома И. Т. Пересыпкина, а также его заместителей И. С. Равича и И. В. Клокова, тесно с нами взаимодействовавших.

Накануне Дня Победы в 1965 г. газета "Правда" писала: "На фронтах Отечественной войны успешно действовали специальные войска связи. В сложных условиях боевой обстановки связисты органов госбезопасности обеспечивали устойчивую закрытую связь руководителей Партии и Правительства, Ставки Верховного Главнокомандования с фронтами и армиями, умело пресекали попытки вражеских диверсантов нарушить связь".

Маршал Советского Союза И. С. Конев в своих воспоминаниях так отзывался о ВЧ связи: "Надо вообще сказать, что эта связь ВЧ, как говорится, нам была Богом послана. Она так выручала нас, была настолько устойчива в самых сложных условиях, что надо воздать должное нашей технике и нашим связистам, специально обеспечивавшим эту связь ВЧ и в любой обстановке буквально по пятам сопровождавших при передвижении всех, кому положено пользоваться этой связью".

Органы и войска Правительственной связи отлично справились с возложенными на них задачами, внеся большой вклад в Победу над фашистской Германией.

В течение 12 лет занимавший должность заместителя председателя Межведомственного координационного совета по созданию Единой автоматизированной сети связи страны, Петр Николаевич Воронин в годы Великой Отечественной войны обеспечивал связь Ставки Верховного Главнокомандования со штабами фронтов и армий. Занимался строительством резервных узлов и линий связи в Москве и вокруг столицы. Принимал активное участие в организации связи в дни обороны Москвы, в период Сталинградской битвы, снятия блокады Ленинграда, проведения Орловско-Курской, Берлинской и других операций. Обеспечивал связь Верховного Главнокомандующего во время Тегеранской и Потсдамской Конференций. Награжден орденом Октябрьской Революции, орденами Отечественной войны I и II степеней, тремя орденами Красного Знамени, тремя орденами Трудового Красного Знамени, двумя орденами Красной Звезды, другими боевыми и трудовыми орденами и медалями.

Канал связи - совокупность устройств и физических сред, передающих сигналы. С помощью каналов сигналы передаются из одного места в другое, а также переносятся во времени (при хранении информации).

Наиболее распространенные устройства, входящие в состав канал: усилители, антенные системы, коммутаторы и фильтры. В качестве физической среды часто используются пара проводов, коаксиальный кабель, волновод, среда, в которой распространяются электромагнитные волны.

С точки зрения техники связи наиболее важными характеристиками каналов связи являются искажения, которым подвергаются передаваемые по нему сигналы. Различают искажения линейные и нелинейные. Линейные искажения состоят из частотных и фазовых искажений и описываются переходной характеристикой или, что эквивалентно, комплексным коэффициентом передачи канала. Нелинейные искажения даются нелинейными зависимостями, указывающими, как изменяется сигнал при прохождении по каналу связи.

Канал связи характеризуется совокупностью сигналов, которые посылаются на передающем конце, и сигналами, которые принимаются на приемном конце. В случае, когда сигналы на входе и выходе канала являются функциями, определенными на дискретном множестве значений аргумента, канал называется дискретным. Такими каналами связи пользуются, например, при импульсных режимах работы передатчиков, в телеграфии, телеметрии, радиолокации.

Несколько различных каналов могут использовать одну и ту же техническую линию связи. В этих случаях (например, в многоканальных линиях связи с частотным или временным разделением сигналов) каналы объединяются и разъединяются с помощью специальных коммутаторов или фильтров. Иногда, наоборот, один канал использует нескольких технических линий связи.

Высокочастотная связь (ВЧ-связь) - это вид связи в электрических сетях, который предусматривает использование высоковольтных линий электропередач в качестве каналов связи. По проводам линии электропередач электросетей протекает переменный ток частотой 50 Гц. Суть организации ВЧ-связи заключается в том, что те же провода используются в качестве передачи сигнала по линии, но на другой частоте.

Диапазон частоты ВЧ-каналов связи – от десятков до сотен кГц. Высокочастотная связь организуется между двумя смежными подстанциями, которые соединены линией электропередач напряжением 35кВ и выше. Для того чтобы попадал на шины распределительного устройства подстанции, а сигналы связи на соответствующие комплекты связи, используют высокочастотные заградители и конденсаторы связи.

ВЧ-заградитель имеет небольшое сопротивление на токе промышленной частоты и большое сопротивление на частоте каналов высокочастотной связи. Конденсатор связи - наоборот: имеет большое сопротивление при частоте 50 Гц, а на частоте канала связи – малое сопротивление. Таким образом, обеспечивается попадание на шины подстанции исключительно тока частотой 50 Гц, на комплект ВЧ-связи – только сигналов на большой частоте.

Для приема и обработки сигналов ВЧ-связи на обеих подстанциях, между которыми организована ВЧ-связь, устанавливают специальные фильтры, приемопередатчики сигналов и комплекты оборудования, которые осуществляют определенные функции. Ниже рассмотрим, какие именно функции могут реализовываться с применением ВЧ-связи.


Наиболее важная функция – использование ВЧ-канала в устройствах релейной защиты и автоматики оборудования подстанции. ВЧ-канал связи используется в защитах линий 110 и 220кВ – диференциально-фазной защиты и направленно-высокочастотной защиты. По обоим концам ЛЭП устанавливают комплекты защит, которые имеют связь между собой по ВЧ-каналу связи. Благодаря надежности, быстродействию и селективности, защиты с использованием ВЧ-канала связи используются в качестве основных для каждой ВЛ 110-220кВ.

Канал для передачи сигналов релейной защиты линий электропередач (ЛЭП) называется канал релейной защиты . В технике РЗА получили наибольшее распространения три типа ВЧ защит:

    фильтровая направленная,

    дистанционная с ВЧ блокировкой,

    дифференциально-фазовая.

В первых двух типах защит по ВЧ каналу при внешнем коротком замыкании передается сплошной сигнал ВЧ блокировки, в дифференциально-фазовой защите по каналу релейной защиты передаются импульсы напряжения ВЧ. Длительность импульсов и пауз примерно одинакова и равна половине периода промышленной частоты. При внешнем коротком замыкании передатчики, расположенные по обоим концам линии, работают в разные полупериоды промышленной частоты. Каждый из приемников принимает сигналы обоих передатчиков. Вследствие этого при внешнем коротком замыкании оба приемника принимают сплошной блокирующий сигнал.

При коротком замыкании на защищаемой линии происходит сдвиг фаз манипулирующих напряжений и появляются интервалы времени, когда оба передатчика остановлены. При этом в приемнике возникает прерывистый ток, используемый для создания сигнала, действующего на отключение выключателя данного конца защищаемой линии.

Обычно передатчики на обоих концах линии работают на одной частоте. Однако на линиях большой протяженности иногда выполняются каналы релейной защиты с передатчиками, работающими на разных ВЧ или па частотах с малым интервалом (1500-1700 гц). Работа на двух частотах дает возможность избавиться от вредного влияния сигналов, отраженных от противоположного конца линии. Каналы релейной защиты используют специальный (выделенный) ВЧ канал.

Существуют также устройства, которые с использованием ВЧ-канала связи, определяют место повреждения линий электропередач. Кроме того, ВЧ-канал связи может использоваться для передачи сигналов , SCADA, САУ и других систем оборудования АСУ ТП. Таким образом, по каналу высокочастотной связи можно осуществлять контроль над режимом работы оборудования подстанций, а также передавать команды управления выключателями и различными функциями .

Еще одна функция – функция телефонной связи . ВЧ-канал можно использовать для оперативных переговоров между смежными подстанциями. В современных условиях данная функция не актуальна, так как существуют более удобные способы связи между обслуживающим персоналом объектов, но ВЧ-канал может служить резервным каналом связи в случае возникновения чрезвычайной ситуации, когда будет отсутствовать мобильная или проводная телефонная связь.

Канал связи по линиям электропередачи - канал, используемый для передачи сигналов в диапазоне от 300 до 500 кгц. Используются различные схемы включения аппаратуры канала связи. Наряду со схемой фаза - земля (рис. 1), встречающейся наиболее часто благодаря своей экономичности, применяются схемы: фаза - фаза, фаза - две фазы, две фазы - земля, три фазы - земля, фаза - фаза разных линий. ВЧ заградитель, конденсатор связи и фильтр присоединения, используемые в этих схемах, являются оборудованием обработки ЛЭП для организации по их проводам ВЧ каналов связи.


Рис. 1. Структурная схема простого канала связи по линии электропередачи между двумя смежными подстанциями: 1 - ВЧ заградитель; 2 - конденсатор связи; 3 - фильтр присоединения; 4 - ВЧ кабель; 5 - устройство ТУ - ТС; в - датчики телеизмерений; 7 -приемники телеизмерений; 8 - устройства релейной зашиты или (и) телеавтоматики; 9 - АТС; 10 - абонент АТС; 11 - прямые абоненты.

Обработка линий нужна для получения стабильного канала связи. Затухание ВЧ канала по обработанным ЛЭП почти не зависит от схемы коммутации линий. В случае отсутствия обработки связь будет прерываться при отключении или заземлении концов ЛЭП. Одной из важнейших проблем связи по линиям электропередачи является нехватка частот, обусловленная малым переходным затуханием между линиями, имеющими соединение через шины подстанций .

ВЧ-каналы могут использовать для связи с оперативно-выездными бригадами, которые осуществляют ремонт участков поврежденных линий электропередач, ликвидируют повреждения в электроустановках. Для этой цели используют специальные переносные приемопередатчики.

Применяется следующая ВЧ аппаратура, подключаемая к обработанной ЛЭП:

    комбинированная аппаратура для каналов телемеханики, автоматики, релейной защиты и телефонной связи;

    специализированная аппаратура для какой-либо одной из перечисленных функций;

    аппаратура дальней связи, подключаемая к ЛЭП через устройство присоединения непосредственно или с помощью дополнительных блоков для сдвига частот и повышения уровня передачи;

    аппаратура импульсного контроля линий.

Серия FOX предлагает современные решения на основе технологий первичных сетей SDH/PDH, спроектированные и испытанные для эксплуатации в жёстких условиях. Никакие другие мультиплексорные решения не обеспечивают такой широкий спектр специализированных продуктов - от телезащиты до гигабитного Ethernet с использованием технологии SDH и спектрального разделения.

Компания AББ уделяет особое внимание возможности модернизации продуктов для защиты капиталовложений и предлагает эффективные инструменты для технического обслуживания.

Комплексное коммуникационное решение серии FOX состоит из:

  • FOX505:Компактный мультиплексор доступа с пропускной способностью до STM-1.
  • FOX515/FOX615: Мультиплексор доступа с пропускной способностью до STM-4, обеспечивающий работу с широким диапазоном пользовательских интерфейсов для систем передачи данных и голоса. Реализация функций телезащиты и другие особенности, характерные для конкретной области применения, обеспечивают соблюдение всех требований по доступу к данным на предприятии.
  • FOX515H: Дополняет линейку FOX и предназначен для высокоскоростных линий связи.
  • FOX660: Мультисервисная платформа для систем передачи данных.

Все элементы серии FOX515 работают под управлением FOXMAN, унифицированной системы управления сетью компании ABB на основе SNMP. Ее открытая архитектура позволяет осуществлять интеграцию с системами управления сторонних поставщиков, как более высокого, так и более низкого уровня. Графическое отображение сети и управление по методу «указания и щелчка» делает систему FOXMAN идеальным решением для управления TDM и Ethernet на уровнях доступа и передачи данных.

Универсальная цифровая система ВЧ-связи ETL600 R4

ETL600 является современным решением вопроса обеспечения ВЧ-связи по ЛЭП для передачи речевых сигналов, данных и команд защиты по линиям высокого напряжения. Универсальная архитектура аппаратных и программных средств системы ETL600 делает беспредметным и устаревшим выбор между традиционным аналоговым и перспективным цифровым ВЧ-оборудованием. Используя те же самые аппаратные компоненты, пользователь может на месте выбрать цифровой или аналоговый рабочий режим посредством всего лишь нескольких нажатий клавиши мыши. В дополнение к удобству пользования, гибкости применения и беспрецедентной скорости передачи данных система ETL600 также гарантирует безусловную совместимость с существующей технологической средой и хорошо интегрируется в современные цифровые инфраструктуры связи.

Преимущества пользователя

  • Экономичное решение вопроса организации связи, обеспечивающее надежное управление и защиту энергосистемы.
  • Снижение затрат посредством общего резерва аппаратного оборудования и запасных частей для аналоговых и цифровых систем ВЧ-связи по ЛЭП.
  • Гибкая архитектура для легкой интеграции как в традиционное, так и в современное оборудование.
  • Надежная передача сигналов защиты
  • Эффективное использование ограниченных частотных ресурсов посредством гибкого выбора полосы передачи.
  • Резервное решение для выбранных критически-важных коммуникаций, которые обычно реализуются через широкополосные средства связи

Фильтр присоединения MCD80

Модульные устройства MCD80 применяются для соединения выводов устройства ВЧ связи, такого как AББ ETL600, через емкостной трансформатор напряжения к высоковольтным линиям.

Фильтр MCD80 обеспечивает оптимальное согласование импедансов для вывода линии ВЧ-связи, разделение частот и безопасную изоляцию частоты сети 50/60 Гц и переходных перенапряжений. Существует возможность конфигурирования для одно- и многофазной связи фильтрацией верхних частот или полосы пропускания. Устройства MCD80 соответствуют последним стандартам IEC и ANSI.

Основные преимущества фильтров MCD80:

  • Предназначены для работы с любыми типами аппаратуры ВЧ связи
  • Вся линейка фильтров: широкополосные, полосовые, разделительные, «фаза-фаза»Ю «фаза-земля»
  • Максимально возможный выбор полосы пропускания (по спецификации заказчика с шагом 1кГц)
  • Возможность присоединения, как к конденсаторам связи, так и трансформаторам напряжения
  • Широкий диапазон емкостей присоединения 1500пФ-20000пФ
  • Возможность перестройки на месте установки при изменении емкости присоединения в пределах рабочего диапазона емкостей (например, при замене конденсаторов на трансформаторы напряжения)
  • Низкое вносимое затухание в полосе пропускания (менее 1дБ)
  • Возможно параллельное подключение к одному ПФ до 9 терминалов мощностью 80 Вт по схеме фаза-земля и до 10 терминалов по схеме фаза-фаза
  • Встроенный однополюсный разъединитель (выключатель заземления)


ВЧ заградители для ВЛ-DLTC

Для защиты ВЧ-заградителей типа доступны два типа DLTC ограничителей перенапряжения.

Малые и среднеразмерные ВЧ-заградители оборудованы стандартными ограничителями перенапряжения AББ Polim-D без дуговых разрядников.

Крупные заградители оборудованы ограничителями ABB MVT, которые не имеют дугового разрядника и специально разработаны для использования с заградителями AББ. В них используются такие же чрезвычайно нелинейные металлооксидные варисторы (MO ограничители), что и в станционных ограничителях.

При проектировании блока настройки учитывается внутренняя утечка MO ограничителя. Металлооксидные ограничители перенапряжения AББ специально спроектированы для эксплуатации в сильных электромагнитных полях, которые часто присутствуют в ВЧ-заградителях линий связи по ЛЭП. В частности, они не содержат лишних металлических частей, в которых магнитное поле может индуцировать вихревые токи и вызвать недопустимое увеличение температуры. Модификация металлооксидных ограничителей перенапряжения для условий эксплуатации в заградителях на линиях ЛЭП была необходимой, так как компания AББ производит такие устройства для станций и полностью осведомлена о проблемах, которые возникают на практике. Ограничители перенапряжения, используемые в заградителях на линиях ЛЭП, имеют номинальный ток 10 кА.


Особенности и преимущества

Принципиальные преимущества ВЧ-заградителей линий ВЧ-связи типа DLTC

Информация с сайта



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows