Понятие динамической устойчивости системы. Основные допущения при упрощенном анализе. Динамическая устойчивость станции, работающей на шины бесконечной мощности. Анализ динамической устойчивости при отключении короткого замыкания. Области статической усто

Понятие динамической устойчивости системы. Основные допущения при упрощенном анализе. Динамическая устойчивость станции, работающей на шины бесконечной мощности. Анализ динамической устойчивости при отключении короткого замыкания. Области статической усто

Устойчивость электрической системы, устойчивость электроэнергетической системы, способность электрической системы (ЭС) восстанавливать исходное (или практически близкое к нему) состояние (режим) после какого-либо его возмущения, проявляющегося в отклонении значений параметров режима ЭС от исходных (начальных) значений. В ЭС источниками электрической энергии обычно являются синхронные генераторы, связанные между собой электрически общей сетью, причём роторы всех генераторов вращаются синхронно; такой режим, называется нормальным, установившимся, должен быть устойчив, т. е. ЭС должна возвращаться в исходное (или практически близкое к нему) состояние всякий раз после отклонений от установившегося режима. Отклонения могут быть связаны, например, с изменением мощности нагрузки, короткими замыканиями, отключениями линий электропередачи и т.п. Устойчивость системы, как правило, уменьшается при увеличении нагрузки (мощности, отдаваемой генераторами) и понижении напряжения (росте мощности потребителей, снижении возбуждения генераторов); для каждой ЭС могут быть определены некоторые предельные (критические) значения этих или связанных с ними величин, характеризующих предел устойчивости. Надёжное функционирование ЭС возможно, если обеспечен определённый запас устойчивости ЭС, т. е. если параметры режима работы и параметры самой ЭС достаточно отличаются от критических. Для обеспечения У. э. с. предусматривают ряд мероприятий, таких, как обеспечение должного запаса устойчивости при проектировании ЭС, использование автоматического регулирования возбуждения генераторов, применение противоаварийной автоматики и т.д.

При анализе У. э. с. различают статическую, динамическую и результирующую устойчивость. Статическая устойчивость характеризует У. э. с. при малых возмущениях, т. е. таких возмущениях, при которых исследуемая ЭС может рассматриваться как линейная. Изучение статической устойчивости проводится на основе общих методов, разработанных А. М. Ляпуновым для решения задач об устойчивости. В инженерной практике исследование У. э. с. иногда проводят упрощённо, ориентируясь на практические критерии устойчивости, определяющие её наличие или отсутствие при некоторых вытекающих из практики допущениях (например, о невозможности т. н. самораскачивания системы, о неизменности частоты электрического тока в системе и др.). При исследовании статической устойчивости применяют цифровые и аналоговые вычислительные машины.



Динамическая устойчивость определяет поведение ЭС после сильных возмущений, возникающих вследствие коротких замыканий, отключении линий электропередач и т. и. При анализе динамической устойчивости (система, как правило, рассматривается как нелинейная) возникает необходимость интегрировать нелинейные трансцендентные уравнения высоких порядков. Для этого применяют аналоговые вычислительные машины и т. н. расчётные модели переменного тока; наиболее часто создают специальные алгоритмы и программы, позволяющие производить расчёты на ЦВМ. Состоятельность составленных программ проверяется сопоставлением результатов расчётов с результатами экспериментов на реальной ЭС либо на физической (динамической) модели ЭС.

Результирующая устойчивость характеризует У. э. с. при нарушении синхронизма части работающих генераторов. Последующее восстановление нормального режима работы происходит при этом без отключения основных элементов ЭС. Расчёты результирующей устойчивости производятся весьма приближённо (из-за их сложности) и имеют целью выявить недопустимые воздействия на оборудование, а также найти комплекс мероприятий, ведущих к ликвидации асинхронного режима работы ЭС.

Статическая У. э. с. может быть повышена в основном использованием сильного регулирования, динамическая – форсированием возбуждения генераторов, быстрым отключением аварийных участков, применением специальных устройств для торможения генераторов, отключением части генераторов и части нагрузки. Повышение результирующей устойчивости, обычно рассматриваемое как повышение живучести ЭС, достигается в первую очередь регулированием мощности, вырабатываемой выпавшими из синхронизма генераторами, и автоматическим отключением части потребителей (автоматической разгрузкой ЭС).

Метод площадей. Рассмотрим в качестве примера переход из нормального в аварийный и послеаварийный режимы простейшей системы, которая содержит генератор, работающий через трансформатор и двухцепную ЛЭП на шины бесконечной мощности (рис. 5.1). Смена состояний рассматриваемой системы представлена на рисунке через угловые характеристики активной мощности. Рабочая точка в нормальном установившемся режиме соответствует координатам (Р 0 , δ 0), отражающим равенство мощности, развиваемой первичным двигателем генератора, и мощности Р=Р m sin δ 0 , передаваемой генератором в сеть со сдвигом на угол δ 0 между эдс Е " и напряжением U. При появлении КЗ происходит сброс передаваемой мощности с Р доав (δ 0) до Р ав (δ 0) (на рисунке рабочий режим переходит из точки а в точку b), вследствие чего появляется избыточная мощность ∆Р ав =Р 0 – Р b , которая вызывает ускорение ротора генератора. Под действием этой избыточной мощности рабочая точка режима перемещается по угловой характеристике Р ав в направлении увеличения угла δ. На рис. 5.1 доаварийная, аварийная и послеаварийная мощности обозначены соответственно Р І ,Р ІІ ,Р ІІІ . . Если отключению повреждённой цепи соответствует угол δ откл, то ротор генератора во время ускорения запасает кинетическую энергию которая соответствует заштрихованной на рис. 5.1 площадке F авсd называемой площадью ускорения . Отключение повреждённого участка цепи электропередачи к возрастанию передаваемой в сеть мощности с Р с до Р е (на угловой характеристике Р Послеав). Так как Р е >Р с, то появляется тормозной момент на роторе генератора, соответствующий мощности ∆Рп. ав (δ)= Р п. ав – Р 0 , где δ >δ откл. Однако угол δ продолжает увеличиваться до тех пор, пока не будет израсходована запасённая во время ускорения кинетическая энергия ротора генератора. Рис. 5. 1. Угловые характеристики мощности для нормального, аварийного и послеаварийного режимов работы системы. Предельное значение энергии для изменения угла δ, равного δ откл – δ кр, определяется выражением Заштрихованная на рисунке площадь F def , называемая площадью торможения, соответствует кинетической и энергии, которая может быть израсходована вращающимся ротором во время торможения. Если рабочая точка режима возвратится в точку а , то говорят, что система динамически устойчива. Это возможно, если энергия ускорения меньше (равна) энергии торможения: А уск <А торм, Вытекающее из сравнения площади F abcd ускорения и площади торможения F def . Предельный угол отключения и предельное время отключения. Математически выражение равенства площадей ускорения и торможения записывается следующим образом: Из равенства (5.1) можно найти предельное по условию сохранения динамической устойчивости значения угла отключения повреждённого участка цепи ЛЭП: Предельное время отключения КЗ t откл.пред. соответствует полученному выше уравнению по предельному углу отключения. Для произвольного момента времени связь этих величин отражается уравнением движения Р т – Р эл =Т j (dω/dt)=T j α, Р т – Р эл =T j (d 2 δ/dt 2), где ω – угловая частота вращения ротора; α – угловое ускорение вращающихся масс. Аналитическое решение его возможно только для частного случая, а именно полного разрыва связи генератора с шинами приёмной системы, когда Р=Р ав (δ)=0, что происходит при трёхфазном КЗ на одной из цепе ЛЭП. При этом уравнение движения упрощается и принимает вид T j (d 2 δ/dt 2)=P 0 . Решение этого уравнения методом последовательного интегрирования при постоянных с 1 =(d δ/ dt) t=0 и с 2 = δ 0 позволяет получить выражение δ=Р 0 /(2Т j t 2)+ δ 0 , (5.3) откуда можно найти значение предельного времени отключения трёхфазного КЗ:

Динамическая устойчивость -способность сист.возвращаться в исходное состояние после большого возмущения. Предельный р-м - р-м, при котором очень малое увеличение нагрузок вызывает нарушение его устойчивости. Пропускной способностью элемента системы называют наибольшую мощность, кот. можно передать через элемент с учетом всех ограничивающих факторов. Позиционная система -такая система, в кот. пар-ры р-ма зависят от текущего состояния, взаимного положения независимо от того как было достигнуто это состояние. При этом реальные динамич.хар-ки эл-ов сист. заменяются статическими. Статические хар-ки -это связи параметров р-ма системы, представленные аналитически или графически не зависящие от времени. Динамические хар-ки –связи пар-ов,полученных при условии,что они зависят от времени. Запас по напряжению: k u =. Запас по мощности: k р =. Допущения,принимаемые при анализе устойчивости : 1.Скорость вращения роторов синхр.машин при протекании электромеханич. ПП изменяется в небольших пределах(2-3%)синхронной скорости. 2.Напряжение и токи статора и ротора генератора изменяются мгновенно. 3.Нелинейность пар-ов сист.обычно не учитывается. Нелинейность же пар-ов р-ма-учитывается, когда от такого учета отказываются, это оговаривают и сист.называется линеаризованной. 4.Перейти от одного р-ма эл.сист. к др. можно,изменив собственные и взаимные сопротивл.схемы, ЭДС генераторов и двигателей. 5.Исследование динамич.устойчивости при несимметричных возмущениях производится в схеме прямой послед-ти.Движение роторов генераторов и двигателей обусловлено моментами,создаваемыми токами прямой послед-ти. Задачи анализа динамической устойчивости связаны с переходом системы от одного установившегося р-ма к др. а) расчет пар-ов динамич. перехода при эксплуатационном или аварийном отключ.нагруженных эл-ов эл.системы. б) определение пар-ов динамич. переходов при КЗ в системе с учетом: - возможного перехода 1 несимметричного КЗ в др.; - работы автоматического повторного включения эл-та,отключившегося после КЗ. Результатами расчета динамич. устойчивости являются: - предельное время отключения расчетного вида КЗ в наиболее опасных точках сист.; - паузы сист. АПВ, установленных на различных эл-ах эл.системы; - пар-ры сист. автоматического ввода резерва(АВР).

Электроэнергетическая система динамически устойчива , если при каком-либо сильном возмущении сохраняется синхронная работа всех её элементов. Для выяснения принципиальных положении динамической устойчивости рассмотрим явления, происходящие при внезапном отключении одной из двух параллельных цепей ЛЭП (рис.а ). Результирующее сопротивление в нормальном режиме определяется выражением , а после отключения одной из цепей – выражением Так как , то справедливо отношение

При внезапном отключении одной из цепей ЛЭП ротор не успевает из-за инерции мгновенно изменить угол δ. Поэтому режим будет характеризоваться точкой b на другой угловой характеристике генератора – характеристике 2 на рис.

После уменьшения его мощности возникает избыточный ускоряющий момент, под действием которого угловая скорость ротора и угол δ увеличиваются. С увеличением угла мощность генератора возрастает по характеристике 2 . В процессе ускорения ротор генератора проходит 61.1. точку с , после которой его вращающий момент становится опережающим. Ротор начинает заторможиваться и, начиная с точки d его угловая скорость уменьшается. Если угловая скорость ротора возрастает до значения= точке е , то генератор выпадает из синхронизма. Об устойчивости системы можно судить по изменению угла δ во времени. Изменение δ, показанное на рис. а , соответствует устойчивой работе системы. При изменении δ по кривой, изображенной на рис. б , система неустойчива.

отличительные признаки статической и динамической устойчивости: при статической устойчивости в процессе появления возмущений мощность генератора меняется по одной и той же угловой характеристике, а после их исчезновения параметры системы остаются такими же, как и до появления возмущений; для динам.уст наоборот.

Анализ динамической устойчивости простейших систем графическим методом. Если статическая устойчивость характеризует установившийся режим системы, то при анализе динамической устойчивости выявится способность системы сохранять синхронный режим работы при больших его возмущениях. Большие возмущения возникают при различных КЗ, отключении ЛЭП, генераторов, трансформаторов и пр. Одним из следствий возникшего возмущения является отклонение скоростей вращения роторов генераторов от синхронной. Если после какого-либо возмущения взаимные углы роторов примут определённые значения (их колебания затухнут около каких-либо новых значений), то считается, что динамическая устойчивость сохраняется. Если хотя бы у одного генератора ротор начинает проворачиваться относительно поля статора, то это признак нарушения динамической устойчивости. В общем случае о динамической устойчивости системы можно судить по зависимостям б= f (t ), полученным в результате совместного решения уравнений движения роторов генераторов. Анализ динамической устойчивости простейшей системы графическим методом. Рассмотрим простейший случай, когда электростанция G работает через двухцепную линию на шины бесконечной мощности (см. рис. а). а - принципиальная схема; б - схема замещения в нормальном режиме; в - схема замещения в послеаварийном режиме; г - графическая иллюстрация динамического перехода: характеристики нормального и аварийного режимов (кривые 1, 2 соответственно).Условие постоянства напряжения на шинах системы (U = const ) исключает качания генераторов приёмной системы и значительно упрощает анализ динамической устойчивости. Характеристика мощности, соответствующая нормальному (доаварийному) режиму, может быть получена из выражения без учета второй гармоники, что вполне допустимо в практических расчетах. Принимая E q = E , тогде . Предположим, что линия L 2 внезапно отключается. Рассмотрим работу генератора после её отключения. Схема замещения системы после отключения линии показана на рис.,в. Суммарное сопротивление послеаварийного режима увеличится по сравнению сX dZ (суммарное сопротивление нормального режима). Это вызовет уменьшение максимума характеристики мощности послеаварийного режима (кривая 2, рис. г). После внезапного отключения 61.2. линии происходит переход с характеристики мощности 1 на характеристику 2. Из-за инерции ротора угол не может измениться мгновенно, поэтому рабочая точка перемещается из точкиа в точку b.На валу возникает избыточный момент, определяемый разностью мощности турбины и новой мощности генератора (Р = Р 0 - Р(0)). Под влиянием этой разности ротормашины начинает ускоряться, двигаясь в сторону больших углов . Это движение накладывается на вращение ротора с синхронной скоростью, и результирующая скорость вращения ротора будетw = w 0 + , гдеw 0 - синхронная скорость вращения; - относительная скорость. В результате ускорения ротора рабочая точка начинает движение по характеристике 2. Мощность генератора возрастает, а избыточный момент - убывает. Относительная скорость возрастает до точки с. В точке с избыточный момент становится равным нулю, а скорость - максимальной. Движение ротора со скоростьюне прекращается в точкес , ротор по инерции проходит эту точку и продолжает движение. Но избыточный момент при этом меняет знак и начинает тормозить ротор. Относительная скорость вращения начинает уменьшаться и в точке d становится равной нулю. Угол в этой точке достигает своего максимального значения. Но и в точкеd относительное движение ротора не прекращается, так как на валу агрегата действует тормозной избыточный момент, поэтому ротор начинает движение в сторону точки с , относительная скорость при этом становится отрицательной. Точку с ротор проходит по инерции, около точки b угол становится минимальным, и начинается новый цикл относительного движения. Колебания угла (t ) показаны на рис., г. Затухание колебаний объясняется потерями энергии при относительном движении ротора.Избыточный момент связан с избытком мощности выражением , где ω - результирующая скорость вращения ротора.

Установившийся режим работы энергосистемы является квазиустановившемся, так как характеризуется малыми изменениями перетоков активной и реактивной мощности, значений напряжений и частоты. Таким образом, в энергосистеме постоянно один установившийся режим работы переходит к другому установившемуся режиму работы. Малые изменения режима работы энергосистемы возникают вследствие увеличения или снижения потребления электроустановок потребителя. Малые возмущения, вызывают реакцию системы в виде колебаний скорости вращения роторов генераторов, которые могут быть нарастающими или затухающими, колебательными или апериодическими. Характер получаемых колебаний определяет статическую устойчивость данной системы. Статическая устойчивость проверяется при перспективном и рабочем проектировании, разработке специальных устройств автоматического регулирования (расчеты и эксперименты), вводе в эксплуатацию новых элементов системы, изменении условий эксплуатации (объединение систем, ввод новых электростанций, промежуточных подстанций, линий электропередачи).

Под понятием статической устойчивости понимают способность энергосистемы восстанавливать исходный или близкий к исходному режим работы энергосистемы после малого возмущения или медленных изменениях параметров режима.

Статическая устойчивость является необходимым условием существования установившегося режима работы системы, но не предопределяет способность системы продолжать работу при возникновении конечных возмущений, например, коротких замыканий, включения или отключения линий электропередачи.

Различают два вида нарушений статической устойчивости: апериодическое (сползание) и колебательное (самораскачивание).

Статическая апериодическая (сползание) устойчивость связана с изменением баланса активной мощности в энергосистеме (изменение разности между электрической и механической мощностями), что приводит к росту угла δ, в результате может произойти выпадение машины из синхронизма (нарушение устойчивости). Угол δ изменяется без колебаний (апериодически), сначала медленно, а затем всё быстрее, как бы сползая (см. рис. 1,а).

Статическая периодическая (колебательная) устойчивость связана с настройками автоматических регуляторов возбуждения (АРВ) генераторов. АРВ должны быть настроены таким образом, чтобы исключить возможность самораскачивания системы в широком диапазоне режимов работы. Однако, при некоторых сочетаниях ремонтов (схемно-режимной ситуации) и настройках регуляторов возбуждения могут возникнуть колебания в системе регулирования, вызывающие нарастающие колебания угла δ вплоть до выпадения машины из синхронизма. Это явление и называется самораскачиванием (см. рис. 1,б).

Рис.1. Характер изменения угла δ при нарушении статической устойчивости в виде сползания (а) и самораскачивания (б)

Статическая апериодическая (сползание) устойчивость

Первый этап исследования статической устойчивости – это исследование статической апериодической устойчивости. При исследовании статической апериодической устойчивости предполагается, что вероятность колебательного нарушения устойчивости при увеличении перетока по межсистемным связям очень мала и можно пренебречь самораскачиванием. Для определения области апериодической устойчивости энергосистемы производят утяжеление режима работы энергосистемы. Метод утяжеления заключается в последовательном изменении параметров узлов или ветвей, или их групп заданными шагами с последующим расчетом нового установившегося режима на каждом шаге изменения и выполняется до тех пор, пока обеспечивается возможность расчета.

Рассмотрим простейшую схему сети, которая состоит из генератора, силового трансформатора, линии электропередачи и шин бесконечной мощности (см. рис.2).

Рис.2. Схема замещения расчетной цепи

В рассматриваемом простейшем случае электромагнитная мощность, которую можно передать от генератора к шинам бесконечной мощности, описывается следующим выражением:

В записанном выражении переменная представляет собой модуль линейного напряжения на шинах станции, приведенный к стороне ВН, а переменная - модуль линейного напряжения в точке шин бесконечной мощности.

Рис.3. Векторная диаграмма напряжений

Взаимный угол между вектором напряжения и вектором напряжения обозначается через переменную - , для которого в качестве положительного направления принимается направление против часовой стрелки от вектора напряжения .

Следует отметить, что формула для электромагнитной мощности написана в предположении, что генератор снабжен автоматическим регулятором возбуждения, который контролирует напряжение на стороне генераторного напряжения (), а также для простоты выкладок пренебрегли активным сопротивлением в элементах расчетной схемы.

Анализируя формулу для электромагнитной мощности можно сделать вывод, что величина передаваемой мощности в энергосистему зависит от угла между напряжениями. Данная зависимость получила название угловой характеристикой мощности электропередачи (см. рис.4).

Рис.4. Угловая характеристика мощности

Установившийся (синхронный) режим работы генератора определяется равенством двух моментов, действующих на вал турбогенератора (считаем, что можно пренебречь моментом сопротивления, обусловленным трением в подшипниках и сопротивлением охлаждающей среды): момент турбины Мт , вращающий ротор генератора и стремящийся ускорить его вращение, и синхронный электромагнитный момент Мэм , противодействующий вращению ротора.

Допустим, что в турбину генератора поступает пар, который создает крутящий момент на валу турбины (при некотором приближении он равен внешнему моменту Мвн , передаваемому от первичного двигателя). Установившийся режим работы генератора может быть в двух точках: А и Б, так как в данных точках соблюдается баланс между моментом турбины и электромагнитным моментом с учетом потерь.

точке А увеличение/уменьшение мощности турбины на величину ΔP приведет к увеличению/уменьшению угла d, соответственно. Таким образом, сохраняется равновесие моментов, действующих на вал ротора (равенство момента турбины и электромагнитного момента с учетом потерь), и тем самым нарушение синхронной машины с сетью не происходит.

При работе синхронной машины в точке В увеличение/уменьшение мощности турбины на величину ΔP приведет к уменьшению/ увеличению угла d, соответственно. Таким образом, равновесие моментов, действующих на вал ротора, нарушается. В результате либо генератор выпадает из синхронизма (т. е. ротор начинает вращаться с частотой, отличающейся от частоты вращения магнитного поля статора), либо синхронная машина переходит в точку устойчивой работы (точка А).

Таким образом, из рассмотренного примера видно, что простейшим критерием сохранения статической устойчивости является положительный знак у выражения, которое определяет отношение приращения мощности к приращению угла:

Таким образом, область устойчивой работы определяется диапазоном углов от 0 до 90 градусов, а в области углов от 90 до 180 градусов, устойчивая параллельная работа невозможна.

Максимальное значение мощности, которая может быть передана в энергосистему, называется пределом статической устойчивости, и соответствует значению мощности при взаимном угле 90 градусов:

Работа на предельной мощности, соответствующей углу 90 градусов, не производится, так как малые возмущения, всегда имеющиеся в энергосистеме (например, колебания нагрузки), могут вызвать переход в неустойчивую область и нарушение синхронизма. Максимальное допустимое значение передаваемой мощности принимается меньшим предела статической устойчивости на величину коэффициента запаса статической апериодической устойчивости по активной мощности.

Запас статической устойчивости для электропередачи в нормальном режиме должен составлять не менее 20%. Значение допустимого перетока активной мощности в контролируемом сечении по данному критерию определяется по формуле:

Запас статической устойчивости для электропередачи в послеаварийном режиме должен составлять не менее 8%. Значение допустимого перетока активной мощности в контролируемом сечении по данному критерию определяется по формуле:

Статическая периодическая (колебательная) устойчивость

Неправильно выбранный закон управления или неправильная настройка параметров автоматического регулятора возбуждения (АРВ) может привести к нарушению колебательной устойчивости. При этом нарушение колебательной устойчивости может происходить в режимах не превышающих предельного режима по апериодической устойчивости, что неоднократно наблюдалось в действующих электроэнергетических системах.

Исследование колебательной статической устойчивости сводится к следующим этапам:

1. Составление системы дифференциальных уравнений, которая описывает рассматриваемую электроэнергетическую систему.

2. Выбор независимых переменных и выполнение линеаризации записанных уравнений с целью формирования системы линейных уравнений.

3. Составление характеристического уравнения и определение области статической устойчивости в пространстве регулируемых (независимых) параметров настройки АРВ.

Об устойчивости нелинейной системы судят по затуханию переходного процесса, который определяется корнями характеристического уравнения системы. Для обеспечения устойчивости необходимо и достаточно, чтобы корни характеристического уравнения имели отрицательные вещественные части.

Для оценки устойчивости применяют различные методы анализа характеристического уравнения:

1. алгебраические методы (метод Рауса, метод Гурвица), основанные на анализе коэффициентов характеристического уравнения.

2. частотные методы (метод Михайлова, Найквиста, D-разбиения), основанные на анализе частотных характеристик.

Мероприятия по повышению предела статической устойчивости

Мероприятия по повышению предела статической устойчивости определяются при анализе формулы для определения электромагнитной мощности (формула записана в предположении, что генератор снабжен автоматическим регулятором возбуждения):

1. Применение АРВ сильного действия на генерирующем оборудовании.

Одним из эффективных средств повышения статической устойчивости является применение АРВ генераторов сильного действия. При использовании устройств АРВ генераторов сильного действия угловая характеристика видоизменяется: максимум характеристики смещается в область значений углов больших 90° (с учетом относительного угла генератора).

2. Поддержание напряжения в точках сети с помощью устройств компенсации реактивной мощности.

Установка устройств компенсации реактивной мощности (СК, УШР, СТК и т.п.) для поддержания напряжения в точках сети (устройства поперечной компенсации). Устройства позволяют поддерживать напряжения в точках сети, что благоприятно сказывается на пределе статической устойчивости.

3. Установка устройств продольной компенсации (УПК).

При увеличении длины линии соответственно возрастает ее реактивное сопротивление и вследствие этого существенно ограничивается предел передаваемой мощности (ухудшается устойчивость параллельной работы). Уменьшение реактивного сопротивления длинной линии электропередачи повышает ее пропускную способность. Для уменьшения индуктивного сопротивления линии электропередачи в рассечку линии устанавливают устройство продольной компенсации (УПК), которое представляет собой батарею статических конденсаторов. Таким образом результирующее сопротивление линии уменьшается, тем самым увеличивается пропускная способность.

Цель лекции: рассмотрение режимов работы системы при внезапном отключении одной из двух параллельных цепей электропередачи.

Рассмотрим простейших случай, когда электростанция работает через двухцепную линию на шины бесконечной мощности. Условие постоянства напряжения на шинах системы (U = соnst) исключает качания генераторов приемной системы и значительно упрощает анализ динамической устойчивости.

Для выяснения принципиальных положений динамической устойчивости рассмотрим явления, возникающие при внезапном отключении одной из двух параллельных цепей электропередачи (см. рисунок 12.1), связывающей удаленную станцию с шинами неизменного напряжения.

Рисунок 12.1

Схема замещения в нормальном режиме (до отключения цепи) представлена на рисунке 12.2,а. Индуктивное сопротивление системы

Х с = Х г + Х т1 + 0,5Х л + Х т2 ,

определяет амплитуду характеристики мощности в этих условиях:

Рисунок 12.2

При отключении одной цепи линии электропередачи индуктивное сопротивление системы получает новое значение

Х с1 = Х г + Х т1 + Х л + Х т2 ,

которое больше, чем в нормальном режиме. Амплитуда характеристики мощности при отключении цепи соответственно уменьшается до значения ЕU/Х с1 .

Характеристики мощности в условиях нормального режима и при отключенной цепи показаны на рисунке 12.3.

Рисунок 12.3

Нормальному режиму соответствует кривая I , режиму после отключения – кривая II . Точка а и угол δ 0 при мощности Р 0 определяют режим работы до отключения. Точка b определяет режим работы после отключения при том же значении угла δ = δ 0 , что и в нормальном режиме.

Таким образом, в момент отключения цепи режим работы изменяется и характеризуется не точкой а , а точкой b на новой характеристике, что обусловливает внезапное уменьшение мощности генератора. Мощность турбины остается при этом неизменной и равной Р 0 , так как регуляторы турбин реагируют на изменение частоты вращения агрегата, которая в момент отключения цепи сохраняет свое нормальное значение.

Неравенство мощностей, а следовательно, и моментов на валу турбины и генератора вызывает появление избыточного момента, под влиянием которого агрегат турбина – генератор начинает ускоряться. Связанный с ротором генератора вектор ЭДС начинает вращаться быстрее, чем вращающийся с неизменной синхронной скоростью ω 0 вектор напряжения шин приемной системы .

Изменение относительной скорости вращения приводит к увеличению угла δ, и на характеристики мощности генератора при отключенной цепи рабочая точка перемещается из точки b по направлению к точке с . При этом мощность генератора начинает возрастать. Однако вплоть до точки с мощность турбины все еще превышает мощность генератора и избыточный момент, хотя и уменьшается, но сохраняет свой знак, благодаря чему относительная скорость вращения непрерывно возрастает. В точке с мощность турбины и генератора вновь уравновешивают друг друга и избыточный момент равен нулю. Однако процесс не останавливается в этой точке, так как относительная скорость вращения ротора достигает здесь наибольшего значения и ротор проходит точку с по инерции.


При дальнейшем росте угла δ мощность генератора уже не превышает мощность турбины и избыточный момент изменяет свой знак. Он начинает тормозить агрегат. Относительная скорость вращения v теперь уменьшается и в некоторой точке d становится равной нулю. Это означает, что в точке d вектор ЭДС вращается с той же угловой скоростью, что и вектор напряжения и угол δ между ними больше не возрастает. Однако процесс еще не останавливается, так как вследствие неравенства мощностей турбины и генератора на валу агрегата существует избыточный момент тормозящего характера, под влиянием которого частота вращения продолжает уменьшаться, и рабочая точка, характеризующая процесс на характеристике мощности, перемещается в обратном направлении к точке с . Эту точку ротор вновь проходит по инерции, и около точки b угол достигает своего нового минимального значения, после чего вновь начинает возрастать. После ряда постепенно затухающих колебаний в точке с устанавливается новый установившийся режим с прежним значением передаваемой мощности Р 0 и новым значением угла δ уст. Картина колебаний угла δ во времени показана на рисунке 12.4.

Рисунок 12.4

Возможен и другой исход процесса (см. рисунок 12.5). Торможение ротора, начиная с точки с , уменьшает относительную скорость вращения ЭДС v . Однако угол в этой фазе процесса все еще возрастает, и если он успеет достигнуть критической величины δ кр в точке с на пересечении падающей ветви синусоиды мощности генератора с горизонталью мощности турбины Р 0 прежде, чем относительная скорость v упадет до нуля, в дальнейшем избыточный момент на валу машины становится вновь ускоряющим, скорость v начнет быстро возрастать и генератор выпадает из синхронизма (см. рисунок 12.6).

Рисунок 12.5

Таким образом, если в процессе качаний будет пройдена точка с " , то возврат к установившемуся режиму уже невозможен.

Рисунок 12.6

Можно сделать вывод, что, несмотря на теоретическую возможность существования нового установившегося (и статически устойчивого) режима в точке с , процесс качания машины при переходе к этому режиму может привести к выпадению машины из синхронизма. Такой характер нарушения устойчивости называется динамическим.

Основной причиной нарушений динамической устойчивости электрических систем являются обычно короткие замыкания, резко уменьшающие амплитуду характеристики мощности.

13 Лекция. Динамическая устойчивость при коротком

замыкании на линии

Цель лекции: анализ колебаний по правилу площадей.

Наиболее распространенным видом возмущений, приводящим к необходимости анализа динамической устойчивости, является короткое замыкание.

Рассмотрим сначала простейший случай работы электростанции через двухцепную линию электропередачи на шины бесконечной мощности (см. рисунок 13.1).

Рисунок 13.1

На рисунке 13.2 приведена упрощенная схема замещения рассматриваемой системы при нормальном режиме, представляющая собой последовательное соединение индуктивных сопротивлений элементов системы

Х с = Х г + Х т1 + 0,5Х л + Х т2 .

Рисунок 13.2

Характеристика мощности в нормальном режиме определяется

Эта зависимость представлена на рисунке 13.4 (кривая I ). Предположим, что в начале одной из цепей линии в точке К произошло несимметричное КЗ. Схема замещения для этого режима представлена на рисунке 13.3 а , где в точке К включено эквивалентное шунтирующее сопротивление КЗ Х к, состоящее из сопротивлений обратной и нулевой последовательностей.

В связи с изменением конфигурации схемы вследствие КЗ при неизменной ЭДС генератора значение передаваемой системе мощности изменяется. Выражение для передаваемой мощности при КЗ можно найти с помощью простых преобразований схемы замещения для аварийного режима. Эта схема представляет собой с лучами Х к, Х а = Х г + Х т1 и Х b = 0,5Х л + Х т2 , причем для однофазного КЗ Х к = Х 2 + Х 0 , для двухфазного КЗ Х к = Х 2 , а для двухфазного замыкания на землю .

После преобразования звезды в треугольник (см. рисунок 13.3 б ), получим

; ; . (13.1)

Индуктивные сопротивления и , подключенные непосредственно к ЭДС Е и напряжению U , не влияют на значение активной мощности генератора в аварийном режиме и могут не учитываться.

Рисунок 13.3

Весь поток активной мощности генератора будет протекать через индуктивное сопротивление , связывающее ЭДС генератора с напряжением приемной системы. В этом случае характеристика мощности генератора имеет вид

где = .

Зависимость от угла имеет синусоидальный характер, но амплитуда ее меньше, чем при нормальном режиме. Обе характеристики приведены на рисунке 13.4.

Рисунок 13.4

Отдаваемая генератором мощность и угол между ЭДС Е и напряжением U в нормальном режиме обозначены соответственно через Р 0 и δ 0 . В момент КЗ в связи с изменением параметров схемы происходит переход с одной характеристики мощности на другую, и так как вследствие инерции ротора угол δ мгновенно измениться не может, то отдаваемая генераторами мощность уменьшается до значения Р (0) , определяемого углом δ 0 на кривой II . Мощность турбины остается неизменной и равной Р 0 .

В результате на валу машины возникает некоторый избыточный момент, обусловленный избытком мощности ΔР (0) = Р 0 – Р (0) . Под влиянием этого момента ротор машины начинает ускоряться, увеличивая угол δ. В дальнейшем процесс протекает качественно так же, как и при внезапном отключении нагруженной линии. После нескольких колебаний с постепенно затухающей амплитудой относительное движение ротора прекратится и его положение будет определяться точкой с , являющейся точкой установившегося режима на новой характеристике мощности. Если бы ротор при первом отклонении прошел угол δ кр, соответствующий мощности Р 0 на подающей ветви характеристики II , то избыточный момент вновь изменил бы свой знак и сделался бы снова ускоряющим. С дальнейшим увеличением угла ускоряющий момент стал бы нарастать и генератор выпал бы из синхронизма.

Приведенные на рисунке 13.4 характеристики дают возможность определить максимальное отклонение угла ротора и установить, сохраняет ли система устойчивость. Действительно, ординаты заштрихованных площадок представляют собой избыток мощности ΔР = Р 0 – Р, создающий избыточный момент того или иного знака. Избыточный момент в относительных единицах может быть принят численно равным избытку мощности, т.е ΔМ = ΔР.

В рассматриваемом случае избыточный момент сначала ускоряет вращение ротора, и работа, совершаемая в период ускорения при перемещении ротора от δ 0 до δ уст, равна:

,

где - заштрихованная на рисунке 13.4 площадка abc .

Таким образом, кинетическая энергия, запасенная ротором в период его ускорения, равна площадке . Эта площадка называется площадью ускорения.

После того как ротор пройдет точку своего установившегося положения на новой характеристике мощности, избыточный момент меняет свой знак и начинает тормозить вращение ротора. Изменение кинетической энергии в период торможения при перемещении ротора от δ уст до δ m равно:

.

Площадка называется площадь торможения.

В период торможения ротор возвращает запасенную им ранее избыточную кинетическую энергию. Когда вся запасенная ротором избыточная энергия будет израсходована, т.е когда работа торможения А торм уравновесит работу ускорения А уск, относительная скорость становится равной нулю, т.к кинетическая энергия пропорциональна квадрату скорости. В этот момент ротор останавливается в своем относительном движении и достигнутый им при этом угол δ m является максимальным углом отклонения ротора машины. Таким образом, для определения угла δ m оказывается достаточным равенство , или то же самое,

Уравнение (13.3) показывает, что при максимальном угле отклонения площадь торможения должна быть равна площади ускорения и, следовательно, задача сводиться к тому, чтобы найти положение точки d , удовлетворяющее этому условию (см. рисунок 13.4), что может быть сделано графически.

Максимально возможная площадь торможения равна площадке . Если бы эта площадь оказалась меньше площади ускорения , то система выпала бы из синхронизма. Отношение возможной площади торможения к площади ускорения называется коэффициентом запаса устойчивости .

Когда возможная площадь торможения получается меньше площади ускорения, иногда возможно добиться устойчивой работы, достаточно быстро отключив поврежденную цепь. Мощность, которую можно передать по второй, оставшейся в работе цепи, обычно больше мощности, передаваемой по двум цепям при КЗ. Уравнение мощности при отключении поврежденной цепи имеет следующий вид:

Эта зависимость показана на рисунке 13.5 в виде кривой III . Кривые I и II представляют собой характеристики при нормальном режиме и при КЗ.

Рисунок 13.5

В момент КЗ передаваемая мощность падает, и ротор начинает ускоряться. Пусть в некоторой точке d происходит отключение поврежденной цепи. В момент выключения работа переходит в точку е на кривой III , и отдаваемая генераторами мощность значительно повышается. Благодаря этому максимально возможная площадь торможения получается значительно больше, чем при длительном неотключенном КЗ, и это увеличение тем больше, чем раньше происходит отключение, т.е. чем меньше угол отключения δ отк. Таким образом, быстрая ликвидация аварий может значительно повысить устойчивость системы.

С помощью рисунка 13.5, пользуясь правилом площадей, можно графически найти предельное значение угла δ отк, при котором нужно произвести отключение поврежденной для того, чтобы добиться устойчивой работы. Значение этого угла определяется равенством площади ускорения и максимальной возможной площади торможения.

Однако для практических целей этого недостаточно. Необходимо знать не угол δ отк, а тот промежуток времени, в течение которого ротор успевает достигнуть этого угла, т.е так называемое предельно допустимое время отключения КЗ, которое определяется методом последовательных интервалов.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows