Цифро аналоговый преобразователь принцип работы. Аналого-цифровой и цифро-аналоговый преобразователи

Цифро аналоговый преобразователь принцип работы. Аналого-цифровой и цифро-аналоговый преобразователи

13.05.2019

В этой статье рассмотрены основные вопросы, касающиеся принципа действия АЦП различных типов. При этом некоторые важные теоретические выкладки, касающиеся математического описания аналого-цифрового преобразования остались за рамками статьи, но приведены ссылки, по которым заинтересованный читатель сможет найти более глубокое рассмотрение теоретических аспектов работы АЦП. Таким образом, статья касается в большей степени понимания общих принципов функционирования АЦП, чем теоретического анализа их работы.

Введение

В качестве отправной точки дадим определение аналого-цифровому преобразованию. Аналого-цифровое преобразование – это процесс преобразования входной физической величины в ее числовое представление. Аналого-цифровой преобразователь – устройство, выполняющее такое преобразование. Формально, входной величиной АЦП может быть любая физическая величина – напряжение, ток, сопротивление, емкость, частота следования импульсов, угол поворота вала и т.п. Однако, для определенности, в дальнейшем под АЦП мы будем понимать исключительно преобразователи напряжение-код.


Понятие аналого-цифрового преобразования тесно связано с понятием измерения. Под измерением понимается процесс сравнения измеряемой величины с некоторым эталоном, при аналого-цифровом преобразовании происходит сравнение входной величины с некоторой опорной величиной (как правило, с опорным напряжением). Таким образом, аналого-цифровое преобразование может рассматриваться как измерение значения входного сигнала, и к нему применимы все понятия метрологии, такие, как погрешности измерения.

Основные характеристики АЦП

АЦП имеет множество характеристик, из которых основными можно назвать частоту преобразования и разрядность. Частота преобразования обычно выражается в отсчетах в секунду (samples per second, SPS), разрядность – в битах. Современные АЦП могут иметь разрядность до 24 бит и скорость преобразования до единиц GSPS (конечно, не одновременно). Чем выше скорость и разрядность, тем труднее получить требуемые характеристики, тем дороже и сложнее преобразователь. Скорость преобразования и разрядность связаны друг с другом определенным образом, и мы можем повысить эффективную разрядность преобразования, пожертвовав скоростью.

Типы АЦП

Существует множество типов АЦП, однако в рамках данной статьи мы ограничимся рассмотрением только следующих типов:

  • АЦП параллельного преобразования (прямого преобразования, flash ADC)
  • АЦП последовательного приближения (SAR ADC)
  • дельта-сигма АЦП (АЦП с балансировкой заряда)
Существуют также и другие типы АЦП, в том числе конвейерные и комбинированные типы, состоящие из нескольких АЦП с (в общем случае) различной архитектурой. Однако приведенные выше архитектуры АЦП являются наиболее показательными в силу того, что каждая архитектура занимает определенную нишу в общем диапазоне скорость-разрядность.

Наибольшим быстродействием и самой низкой разрядностью обладают АЦП прямого (параллельного) преобразования. Например, АЦП параллельного преобразования TLC5540 фирмы Texas Instruments обладает быстродействием 40MSPS при разрядности всего 8 бит. АЦП данного типа могут иметь скорость преобразования до 1 GSPS. Здесь можно отметить, что еще большим быстродействием обладают конвейерные АЦП (pipelined ADC), однако они являются комбинацией нескольких АЦП с меньшим быстродействием и их рассмотрение выходит за рамки данной статьи.

Среднюю нишу в ряду разрядность-скорость занимают АЦП последовательного приближения. Типичными значениями является разрядность 12-18 бит при частоте преобразования 100KSPS-1MSPS.

Наибольшей точности достигают сигма-дельта АЦП, имеющие разрядность до 24 бит включительно и скорость от единиц SPS до единиц KSPS.

Еще одним типом АЦП, который находил применение в недавнем прошлом, является интегрирующий АЦП. Интегрирующие АЦП в настоящее время практически полностью вытеснены другими типами АЦП, но могут встретиться в старых измерительных приборах.

АЦП прямого преобразования

АЦП прямого преобразования получили широкое распространение в 1960-1970 годах, и стали производиться в виде интегральных схем в 1980-х. Они часто используются в составе «конвейерных» АЦП (в данной статье не рассматриваются), и имеют разрядность 6-8 бит при скорости до 1 GSPS.

Архитектура АЦП прямого преобразования изображена на рис. 1

Рис. 1. Структурная схема АЦП прямого преобразования

Принцип действия АЦП предельно прост: входной сигнал поступает одновременно на все «плюсовые» входы компараторов, а на «минусовые» подается ряд напряжений, получаемых из опорного путем деления резисторами R. Для схемы на рис. 1 этот ряд будет таким: (1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16) Uref, где Uref – опорное напряжение АЦП.

Пусть на вход АЦП подается напряжение, равное 1/2 Uref. Тогда сработают первые 4 компаратора (если считать снизу), и на их выходах появятся логические единицы. Приоритетный шифратор (priority encoder) сформирует из «столбца» единиц двоичный код, который фиксируется выходным регистром.

Теперь становятся понятны достоинства и недостатки такого преобразователя. Все компараторы работают параллельно, время задержки схемы равно времени задержки в одном компараторе плюс время задержки в шифраторе. Компаратор и шифратор можно сделать очень быстрыми, в итоге вся схема имеет очень высокое быстродействие.

Но для получения N разрядов нужно 2^N компараторов (и сложность шифратора тоже растет как 2^N). Схема на рис. 1. содержит 8 компараторов и имеет 3 разряда, для получения 8 разрядов нужно уже 256 компараторов, для 10 разрядов – 1024 компаратора, для 24-битного АЦП их понадобилось бы свыше 16 млн. Однако таких высот техника еще не достигла.

АЦП последовательного приближения

Аналого-цифровой преобразователь последовательного приближения (SAR, Successive Approximation Register) измеряет величину входного сигнала, осуществляя ряд последовательных «взвешиваний», то есть сравнений величины входного напряжения с рядом величин, генерируемых следующим образом:

1. на первом шаге на выходе встроенного цифро-аналогового преобразователя устанавливается величина, равная 1/2Uref (здесь и далее мы предполагаем, что сигнал находится в интервале (0 – Uref).

2. если сигнал больше этой величины, то он сравнивается с напряжением, лежащим посередине оставшегося интервала, т.е., в данном случае, 3/4Uref. Если сигнал меньше установленного уровня, то следующее сравнение будет производиться с меньшей половиной оставшегося интервала (т.е. с уровнем 1/4Uref).

3. Шаг 2 повторяется N раз. Таким образом, N сравнений («взвешиваний») порождает N бит результата.

Рис. 2. Структурная схема АЦП последовательного приближения.

Таким образом, АЦП последовательного приближения состоит из следующих узлов:

1. Компаратор. Он сравнивает входную величину и текущее значение «весового» напряжения (на рис. 2. обозначен треугольником).

2. Цифро-аналоговый преобразователь (Digital to Analog Converter, DAC). Он генерирует «весовое» значение напряжения на основе поступающего на вход цифрового кода.

3. Регистр последовательного приближения (Successive Approximation Register, SAR). Он осуществляет алгоритм последовательного приближения, генерируя текущее значение кода, подающегося на вход ЦАП. По его названию названа вся данная архитектура АЦП.

4. Схема выборки-хранения (Sample/Hold, S/H). Для работы данного АЦП принципиально важно, чтобы входное напряжение сохраняло неизменную величину в течение всего цикла преобразования. Однако «реальные» сигналы имеют свойство изменяться во времени. Схема выборки-хранения «запоминает» текущее значение аналогового сигнала, и сохраняет его неизменным на протяжении всего цикла работы устройства.

Достоинством устройства является относительно высокая скорость преобразования: время преобразования N-битного АЦП составляет N тактов. Точность преобразования ограничена точностью внутреннего ЦАП и может составлять 16-18 бит (сейчас стали появляться и 24-битные SAR ADC, например, AD7766 и AD7767).

Дельта-сигма АЦП

И, наконец, самый интересный тип АЦП – сигма-дельта АЦП, иногда называемый в литературе АЦП с балансировкой заряда. Структурная схема сигма-дельта АЦП приведена на рис. 3.

Рис.3. Структурная схема сигма-дельта АЦП.

Принцип действия данного АЦП несколько более сложен, чем у других типов АЦП. Его суть в том, что входное напряжение сравнивается со значением напряжения, накопленным интегратором. На вход интегратора подаются импульсы положительной или отрицательной полярности, в зависимости от результата сравнения. Таким образом, данный АЦП представляет собой простую следящую систему: напряжение на выходе интегратора «отслеживает» входное напряжение (рис. 4). Результатом работы данной схемы является поток нулей и единиц на выходе компаратора, который затем пропускается через цифровой ФНЧ, в результате получается N-битный результат. ФНЧ на рис. 3. Объединен с «дециматором», устройством, снижающим частоту следования отсчетов путем их «прореживания».

Рис. 4. Сигма-дельта АЦП как следящая система

Ради строгости изложения, нужно сказать, что на рис. 3 изображена структурная схема сигма-дельта АЦП первого порядка. Сигма-дельта АЦП второго порядка имеет два интегратора и две петли обратной связи, но здесь рассматриваться не будет. Интересующиеся данной темой могут обратиться к .

На рис. 5 показаны сигналы в АЦП при нулевом уровне на входе (сверху) и при уровне Vref/2 (снизу).

Рис. 5. Сигналы в АЦП при разных уровнях сигнала на входе.

Теперь, не углубляясь в сложный математический анализ, попробуем понять, почему сигма-дельта АЦП обладают очень низким уровнем собственных шумов.

Рассмотрим структурную схему сигма-дельта модулятора, изображенную на рис. 3, и представим ее в таком виде (рис. 6):

Рис. 6. Структурная схема сигма-дельта модулятора

Здесь компаратор представлен как сумматор, который суммирует непрерывный полезный сигнал и шум квантования.

Пусть интегратор имеет передаточную функцию 1/s. Тогда, представив полезный сигнал как X(s), выход сигма-дельта модулятора как Y(s), а шум квантования как E(s), получаем передаточную функцию АЦП:

Y(s) = X(s)/(s+1) + E(s)s/(s+1)

То есть, фактически сигма-дельта модулятор является фильтром низких частот (1/(s+1)) для полезного сигнала, и фильтром высоких частот (s/(s+1)) для шума, причем оба фильтра имеют одинаковую частоту среза. Шум, сосредоточенный в высокочастотной области спектра, легко удаляется цифровым ФНЧ, который стоит после модулятора.

Рис. 7. Явление «вытеснения» шума в высокочастотную часть спектра

Однако следует понимать, что это чрезвычайно упрощенное объяснение явления вытеснения шума (noise shaping) в сигма-дельта АЦП.

Итак, основным достоинством сигма-дельта АЦП является высокая точность, обусловленная крайне низким уровнем собственного шума. Однако для достижения высокой точности нужно, чтобы частота среза цифрового фильтра была как можно ниже, во много раз меньше частоты работы сигма-дельта модулятора. Поэтому сигма-дельта АЦП имеют низкую скорость преобразования.

Они могут использоваться в аудиотехнике, однако основное применение находят в промышленной автоматике для преобразования сигналов датчиков, в измерительных приборах, и в других приложениях, где требуется высокая точность. но не требуется высокой скорости.

Немного истории

Самым старым упоминанием АЦП в истории является, вероятно, патент Paul M. Rainey, «Facsimile Telegraph System,» U.S. Patent 1,608,527, Filed July 20, 1921, Issued November 30, 1926. Изображенное в патенте устройство фактически является 5-битным АЦП прямого преобразования.

Рис. 8. Первый патент на АЦП

Рис. 9. АЦП прямого преобразования (1975 г.)

Устройство, изображенное на рисунке, представляет собой АЦП прямого преобразования MOD-4100 производства Computer Labs, 1975 года выпуска, собранный на основе дискретных компараторов. Компараторов 16 штук (они расположены полукругом, для того, чтобы уравнять задержку распространения сигнала до каждого компаратора), следовательно, АЦП имеет разрядность всего 4 бита. Скорость преобразования 100 MSPS, потребляемая мощность 14 ватт.

На следующем рисунке изображена продвинутая версия АЦП прямого преобразования.

Рис. 10. АЦП прямого преобразования (1970 г.)

Устройство VHS-630 1970 года выпуска, произведенное фирмой Computer Labs, содержало 64 компаратора, имело разрядность 6 бит, скорость 30MSPS и потребляло 100 ватт (версия 1975 года VHS-675 имела скорость 75 MSPS и потребление 130 ватт).

Литература

W. Kester. ADC Architectures I: The Flash Converter. Analog Devices, MT-020 Tutorial.

Цифроаналоговые преобразователи (ЦАП) — предназначены для преобразования цифровых сигналов в аналоговые. Такое преобразование необходимо, например, при восстановлении аналогового сигнала, предварительно преобразованного в цифровой для передачи на большое расстояние или хранения (таким сигналом, в частности, может быть звук). Другой пример использования такого преобразования — получение управляющего сигнала при цифровом управлении устройствами, режим работы которых определяется непосредственно аналоговым сигналом (что, в частности, имеет место при управлении двигателями).

{xtypo_quote}К основным параметрам ЦАП относят разрешающую способность, время установления, погрешность нелинейности и др.{/xtypo_quote}

Разрешающая способность — величина, обратная максимальному числу шагов квантования выходного аналогового сигнала. Время установления t уст — интервал времени от подачи кода на вход до момента, когда выход-ной сигнал войдет в заданные пределы, определяемые погрешностью. Погрешность нелинейности — максимальное отклонение графика зависимости выходного напряжения от напряжения, задаваемого цифровым сигналом, по отношению к идеальной прямой во всем диапазоне преобразования.

Как и рассматриваемые , ЦАП являются «связующим звеном» между аналоговой и цифровой электроникой. Существуют различные принципы построения АЦП.

Схема ЦАП с суммированием весовых токов

На рис. 3.88 приведена схема ЦАП с суммированием весовых токов.

Ключ S 5 замкнут только тогда, когда разомкнуты все ключи S 1 …S 4 (при этом u вых = 0). U 0

— опорное напряжение. Каждый резистор во входной цепи соответствует определенному разряду двоичного числа.

По существу этот ЦАП — инвертирующий усилитель на основе операционного усилителя. Анализ такой схемы не представляет затруднений. Так, если замкнут один ключ

S1, то u вых = −U 0 R oc / R

что соответствует в первом и нулям в остальных разрядах.

Из анализа схемы следует, что модуль выходного напряжения пропорционален числу, двоичный код которого определяется состоянием ключей S 1 …S 4 . Токи ключей S 1 …S 4 суммируются в точке «а», причем токи различных ключей различны (имеют разный «вес»). Это и определяет название схемы.

Из вышеизложенного следует, что u вых = − (U 0 R oc / R) · S 1 − (U 0 R oc / (R/2)) · S 2 - − (U 0 R oc / (R/4)) · S 3 − (U 0 R oc / (R/8)) · S 4 = = − (U 0 R oc / R) · (8S 4 + 4S 3 + 2S 2 + S 1)

где S i ,i = 1, 2, 3, 4 принимает значение 1, если соответствующий ключ замкнут, и 0, если ключ разомкнут.

Состояние ключей определяется входным преобразуемым кодом. Схема проста, но имеет недостатки: значительные изменения напряжения на ключах и использование резисторов с сильно отличающимися сопротивлениями. Требуемую точность этих сопротивлений обеспечить затруднительно.

ЦАП на основе резистивной матрицы R — 2R

Рассмотрим ЦАП на основе резистивной матрицы R — 2R(матрицы постоянного сопротивления) (рис. 3.89).

В схеме использованы так называемые перекидные ключи S 1 …S 4 , каждый из которых в одном из состояний подключен к общей точке, поэтому напряжения на ключах невелики. Ключ S 5 замкнут только тогда, когда все ключи S 1 …S 4 подключены к общей точке. Во входной цепи использованы резисторы всего с двумя различными значениями сопротивлений.

Из анализа схемы можно увидеть, что и для нее модуль выходного напряжения пропорционален числу, двоичный код которого определяется состоянием ключей S 1 …S 4 . Анализ легко выполнить, учитывая следующее. Пусть каждый из ключей S 1 …S 4 подключен к общей точке. Тогда, как легко заметить, напряжение относительно общей точки в каждой следующей из точек «a»…«d» в 2 раза больше, чем в предыдущей. К примеру, напряжение в точке «b» в 2 раза больше, чем в точке «а» (напряжения U а, U b , U c и U d в указанных точках определяются следующим образом:

Допустим, что состояние указанных ключей изменилось. Тогда напряжения в точках «a»…«d» не изменятся, так как напряжение между входами операционного усилителя практически нулевое.

Из вышеизложенного следует, что:

u вых = − (U 0 R oc / 2R) · S 4 − ((U 0 /2) R oc / 2R) · S 3 - ((U 0 /4) R oc / 2R) · S 2 − ((U 0 /8) R oc / 2R) · S 1 = − (U 0 R oc / 16R) · (8S 4 + 4S 3 + 2S 2 + S 1)

где S i , i = 1, 2, 3, 4 принимает значение 1, если соответствующий ключ замкнут, и 0, если ключ разомкнут.

ЦАП для преобразования двоично-десятичных чисел

Рассмотрим ЦАП для преобразования двоично-десятичных чисел (рис. 3.90).



Для представления каждого разряда десятичного числа используется отдельная матрица R − 2R (обозначены прямоугольниками). Z 0 …Z 3 обозначают числа, определенные состоянием ключей каждой матрицы R − 2R. Принцип действия становится понятным, если учесть, что сопротивление каждой матрицы R, и если выполнить анализ фрагмента схемы, представленного на рис. 3.91. Из анализа следует, что

U 2 = U 1 · [ (R||9R) / (8,1R + R||9R) ]

R||9R = (R · 9R) / (R + 9R) = 0,9R

Следовательно, U 2 = 0,1 U 1 . С учетом этого получим

u вых = − (U 0 R oc / 16R) · 10 −3 (10 3 · Z 3 + 10 2 · Z 2 + 10 · Z 1 + Z 0)

Наиболее распространенными являются ЦАП серий микросхем 572, 594, 1108, 1118 и др. В табл. 3.2 приведены…

Параметры некоторых ЦАП


Простейшим цифроаналоговым преобразователем (ЦАП) является одноразрядный преобразователь. В качестве такого ЦАП может служить простой усилитель-ограничитель, в качестве которого можно применить . Особенно хорошо подойдет выполненный по КМОП технологии, так как в данной технологии выходные токи единицы и нуля равны. такого цифро-аналогового преобразователя приведена на рисунке 1.


Рисунок 1. Принципиальная схема одноразрядного цифро-аналогового преобразователя (ЦАП)

Одноразрядный ЦАП преобразует в аналоговую форму знак числа. Для цифро-аналогового преобразования на очень высокой частоте дискретизации, во много раз превышающей частоту Котельникова, такого преобразователя вполне достаточно, однако, в большинстве случаев для качественного цифро-аналогового преобразования требуется большее количество разрядов. Известно, что двоичное число описывается следующей формулой:

(1)

Для преобразования цифрового двоичного кода в напряжение можно воспользоваться данной формулой непосредственно, т. е. применить аналоговый сумматор. Токи будем задавать при помощи резисторов. Если резисторы будут отличаться друг от друга в два раза, то и токи тоже будут подчиняться двоичному закону, как показано в формуле (1). Если на выходе регистра будет присутствовать логическая единица, то она будет преобразована в ток, соответствующий двоичному разряду при помощи резистора. В этом случае напряжений будет работать в качестве цифроаналогового преобразователя. Схема ЦАП, работающего по описанному принципу, приведена на рисунке 2.


Рисунок 2. Принципиальная схема четырехразрядного цифро-аналогового преобразователя с суммированием весовых токов

На схеме, приведенной на рисунке 2, потенциал второго вывода равен нулю. Это обеспечивается параллельной отрицательной обратной связью, которая уменьшает входное сопротивление операционного усилителя. Коэффициент передачи выбирается при помощи резистора, включенного с выхода на вход операционного усилителя. Если требуется единичный коэффициент передачи, то это сопротивление должно быть равно параллельному сопротивлению всех резисторов, подключенных к выходам параллельного регистра. В описанном устройстве ток младшего разряда будет в восемь раз меньше тока старшего разряда. Для уменьшения влияния входных токов реального операционного усилителя между его неинвертирующим входом и общим проводом включается резистор с сопротивлением равным параллельному включению всех остальных резисторов.

Учитывая, что на выходе всех разрядов регистра присутствует или нулевое напряжение или равное напряжению питания, на выходе операционного усилителя напряжение будет действовать в диапазоне от нуля до минус напряжения питания. Это не всегда удобно. Если нужно, чтобы устройство работало от одного источника питания, то ее нужно немного изменить. Для этого на неинвертирующий вход операционного усилителя подадим напряжение, равное половине питания. Его можно получить от резистивного делителя напряжения. Ток нуля и ток единицы выходного каскада регистра в новой схеме должны совпадать. Тогда на выходе операционного усилителя напряжение будет меняться в диапазоне от нуля до напряжения питания. Схема цифро-аналогового преобразователя с однополярным питанием приведена на рисунке 3.



Рисунок 3. Цифро-аналоговый преобразователь с однополярным питанием

В схеме, приведенной на рисунке 3, стабильность выходного тока и напряжения обеспечивается стабильностью напряжения питания параллельного регистра. Однако обычно напряжение питания цифровых микросхем сильно зашумлено. Этот шум будет присутствовать и в выходном сигнале. В многоразрядном цифро-аналоговом преобразователе это нежелательно, поэтому его выходные ключи запитываются от высокостабильного малошумящего . В настоящее время подобные микросхемы выпускаются рядом фирм. В качестве примера можно назвать ADR4520 фирмы Analog Devices или MAX6220_25 фирмы Maxim Integrated.

При изготовлении многоразрядных цифро-аналоговых преобразователей необходимо изготавливать резисторы с высокой точностью. Раньше это достигалось лазерной подгонкой резисторов. В настоящее время в качестве источников тока обычно используются не резисторы, а генераторы тока на полевых транзисторах. Применение полевых транзисторов позволяет значительно сократить размеры кристалла ЦАП. При этом для увеличения тока транзисторы соединяют параллельно. Это позволяет добиться высокой точности соответствия токов двоичному закону (i 0 , 2i 0 , 4i 0 , 8i 0 и т.д.). Высокая скорость преобразования достигается при малом сопротивлении нагрузки. Схема преобразователя цифрового кода в выходной ток, работающего по описанному принципу приведена на рисунке 4.



Рисунок 4. Внутренняя схема ЦАП с суммированием токов

Естественно, электронные ключи, показанные на рисунке 4, тоже представляют собой полевые транзисторы. Однако если их показать на схеме, то можно запутаться где ключ, а где генератор тока. Так как полевой транзистор может одновременно работать в качестве генератора тока и электронного ключа, то их часто объединяют, а двоичный закон формируют при помощи , как это показано на рисунке 5.



Рисунок 5. Внутренняя схема ЦАП с суммированием одинаковых токов

В качестве примера микросхем, где используется решение с суммированием тока, можно назвать ЦАП AD7945. В ней суммирование токов применяется для формированиястарших разрядов. Для работы с младшими разрядами используется . Для преобразования выходного тока в напряжение обычно применяется операционный усилитель, однако его скорость нарастания выходного напряжения оказывает существенное влияние на быстродействие цифро-аналогового преобразователя в целом. Поэтому схема ЦАП с операционным усилителем используется только в широкополосных схемах, таких как преобразование звукового или телевизионного сигнала.


Рисунок 6. Цифро-аналоговый преобразователь двоичный код-напряжение

Литература:

Вместе со статьей "Цифроаналоговые преобразователи (ЦАП) с суммированием токов" читают:


http://сайт/digital/R2R/


http://сайт/digital/sigmaadc.php

Применение

ЦАП применяется всегда, когда надо преобразовать сигнал из цифрового представления в аналоговое, например, в проигрывателях компакт-дисков (Audio CD).

Типы ЦАП

Наиболее общие типы электронных ЦАП:

  • Широтно-импульсный модулятор - простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром нижних частот . Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi -аудиотехнике;
  • ЦАП передискретизации , такие как дельта-сигма -ЦАП, основаны на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования; часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным. На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи . Отрицательная обратная связь выступает в роли фильтра верхних частот для шума квантования .
Большинство ЦАП большой разрядности (более 16 бит) построены на этом принципе вследствие его высокой линейности и низкой стоимости. Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчетов в секунду, разрядность - до 24 бит. Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH (англ. Multi stage noise SHaping ). С увеличением частоты передискретизации смягчаются требования, предъявляемые к выходному фильтру низких частот и улучшается подавление шума квантования;
  • ЦАП взвешивающего типа , в котором каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключенный на общую точку суммирования. Сила тока источника (проводимость резистора) пропорциональна весу бита, которому он соответствует. Таким образом, все ненулевые биты кода суммируются с весом. Взвешивающий метод один из самых быстрых, но ему свойственна низкая точность из-за необходимости наличия набора множества различных прецизионных источников или резисторов и непостоянного импеданса . По этой причине взвешивающие ЦАП имеют разрядность не более восьми бит;
  • ЦАП лестничного типа (цепная R-2R-схема). В R-2R-ЦАП значения создаются в специальной схеме, состоящей из резисторов с сопротивлениями R и 2R , называемой матрицей постоянного импеданса, которая имеет два вида включения: прямое - матрица токов и инверсное - матрица напряжений. Применение одинаковых резисторов позволяет существенно улучшить точность по сравнению с обычным взвешивающим ЦАП, так как сравнительно просто изготовить набор прецизионных элементов с одинаковыми параметрами. ЦАП типа R-2R позволяют отодвинуть ограничения по разрядности. С лазерной подгонкой резисторов на одной подложке достигается точность 20-22 бита. Основное время на преобразование тратится в операционном усилителе, поэтому он должен иметь максимальное быстродействие. Быстродействие ЦАП единицы микросекунд и ниже (то есть наносекунды);

Характеристики

ЦАП находятся в начале аналогового тракта любой системы, поэтому параметры ЦАП во многом определяют параметры всей системы в целом. Далее перечислены наиболее важные характеристики ЦАП.

  • Максимальная частота дискретизации - максимальная частота, на которой ЦАП может работать, выдавая на выходе корректный результат. В соответствии с теоремой Найквиста - Шеннона (известной также как теорема Котельникова), для корректного воспроизведения аналогового сигнала из цифровой формы необходимо, чтобы частота дискретизации была не менее, чем удвоенная максимальная частота в спектре сигнала. Например, для воспроизведения всего слышимого человеком звукового диапазона частот, спектр которого простирается до 20 кГц, необходимо, чтобы звуковой сигнал был дискретизован с частотой не менее 40 кГц. Стандарт Audio CD устанавливает частоту дискретизации звукового сигнала 44,1 кГц; для воспроизведения данного сигнала понадобится ЦАП, способный работать на этой частоте. В дешевых компьютерных звуковых картах частота дискретизации составляет 48 кГц. Сигналы, дискретизованные на других частотах, подвергаются передискретизации до 48 кГц, что частично ухудшает качество сигнала.
  • Монотонность - свойство ЦАП увеличивать аналоговый выходной сигнал при увеличении входного кода.
  • THD+N (суммарные гармонические искажения + шум) - мера искажений и шума вносимых в сигнал ЦАПом. Выражается в процентах мощности гармоник и шума в выходном сигнале. Важный параметр при малосигнальных применениях ЦАП.
  • Динамический диапазон - соотношение наибольшего и наименьшего сигналов, которые может воспроизвести ЦАП, выражается в децибелах . Данный параметр связан с разрядностью и шумовым порогом.
  • Статические характеристики:
    • DNL (дифференциальная нелинейность) - характеризует, насколько приращение аналогового сигнала, полученное при увеличении кода на 1 младший значащий разряд (МЗР), отличается от правильного значения;
    • INL (интегральная нелинейность) - характеризует, насколько передаточная характеристика ЦАП отличается от идеальной. Идеальная характеристика строго линейна; INL показывает, насколько напряжение на выходе ЦАП при заданном коде отстоит от линейной характеристики; выражается в МЗР;
    • усиление;
    • смещение.
  • Частотные характеристики:
    • SNDR (отношение сигнал/шум +искажения) - характеризует в децибелах отношение мощности выходного сигнала к суммарной мощности шума и гармонических искажений;
    • HDi (коэффициент i-й гармоники) - характеризует отношение i-й гармоники к основной гармонике;
    • THD (коэффициент гармонических искажений) - отношение суммарной мощности всех гармоник (кроме первой) к мощности первой гармоники.

См. также

Литература

  • Жан М. Рабаи, Ананта Чандракасан, Боривож Николич. Цифровые интегральные схемы. Методология проектирования = Digital Integrated Circuits. - 2-е изд. - М .: Вильямс, 2007. - 912 с. - ISBN 0-13-090996-3
  • Mingliang Liu. Demystifying Switched-Capacitor Circuits. ISBN 0-75-067907-7 .
  • Phillip E. Allen, Douglas R. Holberg. CMOS Analog Circuit Design. ISBN 0-19-511644-5 .

Ссылки

  • Цифро-аналоговые преобразователи (ЦАП), теория и принципы работы на сайте Рынок микроэлектроники
  • Цифро-аналоговые преобразователи для задач цифровой обработки сигналов
  • INL/DNL Measurements for High-Speed ADCs объясняет, как вычисляются INL и DNL
  • Алексей Стахов . Компьютер Фибоначчи Ч. 1 , Ч. 2 , Ч. 3 // PCweek.ru, 2002
  • R-2R Ladder DAC explained содержит схемы (англ.)


© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows