Электромобиль схема питания электродвигателя от аккумуляторных батарей. Электромотор для электромобиля - как он устроен? Аккумуляторная батарея электромобиля

Электромобиль схема питания электродвигателя от аккумуляторных батарей. Электромотор для электромобиля - как он устроен? Аккумуляторная батарея электромобиля

23.06.2020

Исчерпание углеводородного топлива, ухудшение экологической обстановки и ряд других причин рано или поздно заставят производителей разработать модели электромобилей, которые станут доступны для широких слоев населения. А пока остается только ждать или собственноручно разрабатывать варианты экологически чистой техники.

Если же вы все-таки предпочитаете самостоятельно искать решения, а не дожидаться их со стороны, то вам понадобятся знания о том, какие двигатели для электромобиля уже изобрели, чем они отличаются и какой из них наиболее перспективный.

Тяговый двигатель

Если вы решите поставить обыкновенный электромотор под капот своего автомобиля, то, скорее всего, из этого ничего не выйдет. А все потому, что вам необходим тяговый электрический двигатель (ТЭД). От обычных электромоторов он отличается большей мощностью, способностью выдавать больший крутящий момент, небольшими габаритами и малой массой.

Для питания тягового электродвигателя используются батареи. Они могут подзаряжаться от внешних источников («от розетки»), от солнечных батарей, от генератора, установленного в авто, или в режиме рекуперации (самостоятельное восполнение заряда).

Двигатели для электромобилей чаще всего работают от литий-ионных батарей. ТЭД обычно функционирует в двух режимах - двигательном и генераторном. В последнем случае он восполняет потраченный запас электроэнергии при переходе на нейтральную скорость.

Принцип работы

Стандартный электродвигатель состоит из двух элементов - статора и ротора. Первый компонент является неподвижным, имеет несколько катушек, а второй совершает вращательные движения и передает усилие на вал. На катушки статора с определенной периодичностью подается переменный электрический ток, что вызывает появление магнитного поля, которое начинает вращать ротор.

Чем чаще катушки «включаются-выключаются», тем быстрее вращается вал. В двигатели для электромобилей могут устанавливать два вида ротора:

  • короткозамкнутый, на котором возникает магнитное поле, противоположное полю статора, за счет чего и происходит вращение;
  • фазный - используется для уменьшения тока запуска и контроля скорости вращения вала, является наиболее распространенным.

Кроме того, в зависимости от скорости вращения магнитного поля и ротора двигатели могут быть асинхронными и синхронными. Тот или иной тип необходимо выбирать из имеющихся средств и поставленных задач.

Синхронный двигатель

Синхронный двигатель - это ТЭД, у которого скорость вращения ротора совпадает со скоростью вращения магнитного поля. Такие двигатели для электромобилей целесообразно использовать только в тех случаях, когда имеется источник повышенной мощности - от 100 кВт.

Одной из разновидностей является Обмотка статора такой установки разбита на несколько секций. В определенный момент ток подается на определенную секцию, возникает магнитное поле, которое вращает ротор на определенный угол. Затем ток подается на следующую секцию, и процесс повторяется, вал начинает вращаться.

Асинхронный электромотор

В асинхронном двигателе скорость вращения магнитного поля не совпадает со скоростью вращения ротора. Плюсом таких устройств является ремонтопригодность - запчасти для электромобилей, оснащенных этими установками, найти очень просто. К другим преимуществам относятся:

  1. Простая конструкция.
  2. Простота обслуживания и эксплуатации.
  3. Низкая стоимость.
  4. Высокая надежность.

В зависимости от наличия двигатели могут быть коллекторными и безколлекторными. Коллектор - устройство, служащее для преобразования переменного тока в постоянный. Щетки служат для передачи электроэнергии на ротор.

Безколлекторные двигатели для электромобилей отличаются меньшей массой, компактными габаритами и более высоким КПД. Они реже перегреваются и потребляют меньше электричества. Единственный минус такого двигателя - высокая цена на электронный блок, который выполняет функции коллектора. Кроме того, найти запчасти для электромобилей, оснащенных безколлекторным двигателем, сложнее.

Производители электродвигателей

Большинство самодельных электромобилей сконструировано с применением коллекторного двигателя. Это объясняется доступностью, низкой ценой и простым обслуживанием.

Видным производителем линейки данных моторов является немецкая компания Perm-Motor. Ее продукция способна к рекуперативному торможению в генераторном режиме. Она активно используется для оснащения скутеров, моторных лодок, легковых автомобилей, электроподъёмных устройств. Если устанавливали в каждый электромобиль, цена их была бы значительно ниже. Сейчас они стоят в пределах 5-7 тыс. евро.

Популярным производителем является компания Etek, которая занимается производством безщеточных и щеточных коллекторных двигателей. Как правило, это трехфазные моторы, работающие на постоянных магнитах. Основные преимущества установок:

  • точность управления;
  • легкость организации рекуперации;
  • высокая надежность за счет простой конструкции.

Завершает список производителей завод из США Advanced DC Motors, выпускающий коллекторные электромоторы. Некоторые модели обладают исключительной особенностью - они имеют второй шпиндель, что можно использовать для подключения на автомобиль-электромобиль дополнительного электрооборудования.

Какой двигатель выбрать

Чтобы покупка вас не разочаровала, надо сравнить характеристики приобретаемой модели с предъявляемыми требованиями к автомобилю. При выборе электродвигателя в первую очередь ориентируются на его тип:

  • Синхронные установки имеют сложное устройство и дорогостоящи, но обладают перегрузочной способностью, ими легче управлять, им не страшны перепады напряжения, используются при высоких нагрузках. Они устанавливаются на электромобиль Mercedes.
  • Асинхронные модели отличаются низкой стоимостью, простым устройством. Они просты в обслуживании и эксплуатации, однако выделяемая ими мощность намного меньше, чем тот же показатель синхронной установки.

На электромобиль цена будет значительно ниже, если электромотор будет работать в паре с двигателем внутреннего сгорания. На рынке такие комбинированные установки обладают большей популярностью, так как их стоимость составляет около 4-4,5 тыс. евро.

Электромобили двигаются под действием электричества, которое первоначально попадает к ним из обычной домашней электросети и запасается в автомобильных перезаряжаемых аккумуляторах.

Такому автомобилю не нужна коробка передач, применяемая в двигателях внутреннего сгорания. Потому что вал электродвигателя здесь присоединен прямо к колесу. Электричество питает мотор, и мотор крутит колесо, которое двигает машину. Сейчас сделаны опытные электромобили с одноразовым запасом энергии на борту, достаточным для 130-мильного пробега. Эти автомобили намного меньше загрязняют окружающую среду и работают значительно тише, чем автомобили, "кушающие" бензин. Пожалуй, главным недостатком электромобиля является то, что ему требуется шесть часов на полную зарядку аккумуляторов.

Автомобиль с автоматической коробкой передач

Если взглянуть на приборную панель электромобиля (рисунок выше), то видно, как просто сделан рычаг управления передачами, - по той причине, что в машине нет коробки передач. Все, что должны показывать приборы на панели, это число оборотов в минуту двигателя, скорость автомобиля и уровень зарядки электрической батареи.

Каким образом электрическая энергия вращает колеса

Принципиальная схема электромобиля

Электромобиль движется под действием электрической энергии, которую он первоначально запасает в своих аккумуляторах (рисунок ниже). При движении автомобиля электрическая энергия приходит на электромагнитный разъем. Оттуда под управлением водителя и сигналов от датчиков энергия поступает на электродвигатели, которые крутят колеса и заставляют автомобиль двигаться.

Подзарядка "севших" аккумуляторов электромобиля

Схема заряда аккумуляторов электромобиля

Электро-зарядное устройство автомобиля нужно для того, чтобы бортовые аккумуляторы накопили новую электрическую энергию взамен истраченной на движение автомобиля. Устройство получает энергию для зарядки через обычную электро-розетку, какие стоят в жилых домах.

Энергия передается прямо на колеса

Мощный постоянный магнит, находящийся внутри электродвигателя, позволяет вращать колесо без ведущего вала и шестеренок, применяемых в обычных автомобилях. Поэтому в электромобиле нет дифференциала, передаточных устройств с шестеренками и коробки передач. Энергия там идет от электродвигателя прямо на колеса.

В модели электромобиля "Дестини 2000" (Destiny 2000 ) сочетается применение солнечных панелей и аккумуляторов с кузовом из стекловолокна.

Последнее десятилетие электромобили уверенно завоевывают рынок автотранспортных средств.

Этому способствует множество факторов:

Массовый переход к электротранспорту тормозят следующие не полностью решенные проблемы и недостатки электромобилей:

  • низкая емкость аккумуляторных батарей, соответственно, небольшой пробег авто без подзарядки;
  • высокая стоимость блока аккумуляторов, недолговечность;
  • неразвитая сеть подзарядочных станций, большое время обслуживания (заряда) аккумуляторов даже в скоростном режиме;
  • наличие в электрических блоках управления и электропроводке высоких, опасных для водителя и пассажиров, напряжений;
  • утилизация аккумуляторных батарей электромобилей наносит вред окружающей среде;
  • большинство электронных блоков автомобилей, в том числе и аккумуляторная батарея, ремонтируются агрегатным методом, то есть заменяются полностью на исправные;
  • ресурс работы современных электродвигателей недостаточно большой;
  • работа системы отопления салона авто в холодное время года значительно увеличивает энергопотребление электромобиля;
  • остаются нерешенными проблемы использования электромобилей в грузоперевозках на дальние расстояния.

Очевидно, этот список значительно длиннее.

Разработчики ведущих автопроизводителей совершенствуют устройство электромобиля (электродвигатели, аккумуляторные батареи, зарядные станции и др.), приближая эру электротранспортных средств индивидуального пользования.

В терминологии автомобилестроения дается четкое понятие, что такое электромобиль: «Транспортное средство, основным движителем которого является электропривод».

Одним из основных преимуществ электродвигателя по сравнению с ДВС является высокий коэффициент полезного действия – до 95%. Считается, что электромобиль абсолютно экологичен. Это не совсем так. Производство электроэнергии в большинстве стран базируется на теплоэлектростанциях, которые сжигают топливо, нанося вред окружающей среде. Не менее опасны АЭС. Развитие рынка электромобилей рационально рассматривать с увеличением доли «зеленой» электроэнергии: солнечные батареи, энергия ветра и другие.

В системах авто с ДВС применяются в основном электродвигатели постоянного тока: стартеры, приводы щеток, вентиляторов, бензонасоса, различных регуляторов. Эти электродвигатели для передачи тока к вращающемуся ротору используют систему «щетки-коллектор», поэтому называются коллекторные. В электромобилях для обеспечения высокого вращающего момента необходимо протекание больших токов. Искрение щеток во время движения по ламелям коллектора приводят к преждевременному износу этой зоны. Поэтому в электромобилях обычно применяют бесколлекторные двигатели.

Для того чтобы уменьшить величину тока, протекающего через обмотки электродвигателя, согласно закону Ома, необходимо увеличивать питающее напряжение. В этом смысле наиболее эффективны трехфазные электродвигатели переменного тока: синхронные (например, на Mitsubishi i-MiEV) или асинхронные (на Chevrolet Volt).

Сейчас ведутся разработки высокоэффективных электродвигателей с минимальными размерами и массой. Привод от производителя Yasa Motors имеет массу 25 кг, достигая крутящего момента 650 Нм. Самый мощный электромобиль Venturi VBB-3 имеет электродвигатель 3 тыс. л. с.

Аккумуляторная батарея электромобиля

Тяговая аккумуляторная батарея электромобиля имеет существенные отличия от АКБ автомобилей с ДВС.
Прежде всего, выходное напряжение аккумуляторных батарей электромобилей с целью уменьшения токов, соответственно тепловых и энергопотерь, значительно выше, чем традиционные 12 вольт. Например, в первые автомобили марки Lola-Drayson разработчики выбирали аккумуляторные батареи емкостью 60 кВт*час номинальным напряжением 700 В. Нетрудно подсчитать, что при мощности электродвигателя 200 кВт такой автомобиль может проехать без подзаряда не более 15 минут. В условиях кольцевых автогонок на спортивных электрокарах необходимо производить замену аккумулятора чаще, чем колес. Гоночный электромобиль ближайшего будущего способен разогнаться до 100 км/час за одну секунду.

Большинство аккумуляторных батарей для электромобилей имеет встроенный контроллер процесса заряда батареи по аналогии с аккумуляторами для ноутбуков, только на более высоком уровне. Кроме этого, в мощные аккумуляторные блоки устанавливают встроенную систему жидкостного охлаждения, которая также увеличивает их массу.

Трансмиссия электромобилей

Один из положительных технических моментов при проектировании электромобилей – возможность упрощенной трансмиссии. Некоторые модели имеют одноступенчатый редуктор. В электромобилях с двигателями, вмонтированными в колеса (Active Wheel), трансмиссионная функция выполняется электронным методом. Это позволяет применить еще одну важную опцию: восполнение заряда аккумуляторной батареи в момент торможения «электродвигателем». Такой метод уже давно применяется в электротранспорте.

Особенность блоков управления электромобилей

Электрическая схема электромобиля имеет свои особенности в схемотехнике узлов контроля и управления. Большинство электрических систем в электромобилях строятся по традиционным схемам, рассчитанным на напряжение бортовой сети 12 В. Поэтому необходима установка в электромобиль дополнительной схемы инверторного преобразователя напряжения высокого напряжение аккумулятора в напряжение бортовой сети 12 В. В большинство моделей устанавливается дополнительная 12-вольтная аккумуляторная батарея небольшой емкости. Принцип работы основных систем электромобиля (ABS, ESP, кондиционера и других) не меняется.

Для обеспечения максимальной эффективности использования емкости аккумуляторной батареи климат-контроль автомобиля в холодное время года использует предподогрев от стационарных источников перед поездкой, затем энергия батареи расходуется только на поддержание температуры в салоне машины. Поэтому особое внимание конструкторы уделяют применению современных теплоизоляционных материалов в отделке салона. Актуально в этом смысле использование нанотехнологичных материалов.

Системы световых излучателей машины (повороты, ближний/дальний, габариты, салонные и другие) используются, в основном, светодиодного энергосберегающего типа. Принцип работы электрооборудования автомобиля основан на бесконтактных электронных системах управления.

Блок управления электродвигателем (двигателями) представляет, по сравнению с аналогичными блоками для ДВС, высокопроизводительный вычислительный комплекс, который контролирует работу большинства энергозначимых узлов с точки зрения достижения максимальной эффективности использования емкости аккумуляторной батареи. Он производит:

  • распределение энергии между электроприводами;
  • регулирование тяги;
  • мониторинг узлов и систем электромобиля;
  • управление динамикой авто;
  • контроль напряжений питания бортовых систем;
  • использование дистанционного мониторинга.

Электромобиль не роскошь

Перспективы электромобилей ближайшего будущего:

  • пробег без подзаряда до 500 км;
  • динамика разгона – менее 3 секунд до 100 км/час (легковые электромобили);
  • стоимость аккумуляторной батареи средней мощности – менее 7 тыс. USD;
  • время быстрого заряда – менее 15 минут.

Электромобиль ближайшего будущего будет оснащен беспилотными системами управления и навигации.


Если вы решили присоединиться к пока немногочисленной армии электромобилистов, прежде всего необходимо изучить, как работает электромобиль и его основные системы.

Несколько советов при решении задачи, какой электромобиль выбрать:

  • без пробега или с небольшим сроком эксплуатации, но с новой аккумуляторной батареей;
  • с опцией быстрого заряда аккумулятора;
  • со стажем выпуска модели не менее 2-х лет (за это время проблемы электромобилей данного модельного ряда успеют проявить себя).

Будущее – за электромобилями!

Электрический автомобиль, как показали статистические данные за текущий год, является очевидным будущим автопроизводства, причем ближайшим будущим. Многие всемирно известные автопроизводители вкладывают огромнейшие суммы в разработку электромобилей. Целю является желание сэкономить на нефтепродуктах, цена на которые систематически возрастает, а также необходимость снижения вредных выбросов в атмосферу и поиск новейших устройств хранения энергии, технологий энергопотребления.

В настоящее время крупнейшими рынками электромобилей являются Соединенные Штаты, Япония, Поднебесная и ряд стран Европы (Нидерланды, Германия, Норвегия,Франция,Великобритания). Производством электромобилей занимаются ряд марок, таких как Renault (Fluence Z.E. и ZOE),Nissan (Leaf, Toyota (RAV4EV), Ford (Focus Electric), Honda (FitEV) , BMW (Active C), Tesla (Roadster и Model S), Volvo (C30 Electric)), Mitsubishi (I MiEV). Если говорить о нашей стране, то 2015 год ознаменовался небывалым ростом продаж таких автомобилей, который составил 400% только за первые восемь месяцев текущего года.

Это говорит о том, что любителей экологичных стает все больше и больше: с января по август в стране, по данным МВД, зарегистрирован 231 электромобиль. Да, такая «новинка», несомненно, пришлась многим украинцам «по вкусу». А дело то в эффективном «электрическом зверьке», который, как говорится и денежку сэкономит и экологию побережет. Как вы уже догадались, разговор пойдет о электродвигателе. Давайте вместе разбираться «что это и с чем его едят».

1. Как устроен электромобиль?

Электромобиль, по сути, является транспортом, приводимым в движение одним или несколькими электромоторами. Внешне транспорт выглядит аналогично бензиновому, но есть одно очень важное отличие: бесшумный режим работы двигателя. «Тихоня»(так мы можем назвать электродвижок) питается от батареи (бывает солнечная, аккумуляторная или специализированный топливный элемент), которая исполняет функцию «топливного бака» и обеспечивает силовой агрегат энергией. Электромобиль также укомплектован контроллером – блоком, который управляет работой электродвигателя и регулирует потоки энергии в сети между аккумуляторами и двигателем. Все остальные компоненты практически такие же, что и в других автомобилей: , тормоза, подушки безопасности...

Для того, чтобы внедриться в принципы работы электромобиля, давайте рассмотрим технику переработки стандартного бензинового автомобиля на электрический. Такой автомобиль возродился от бензинового Geo Prism. Для того, чтобы переделать второй на электропривод, его внутренняя конструкция пережила небольшие перемены. Прежде всего, конструкторы произвели исключение бензинового движка, муфты сцепления, бензобака, выхлопных труб. «Механика» осталась на своем месте и заработала на второй передаче. Далее последовала установка контроллера и электродвигателя с переменным током. Свинцово-кислотные аккумуляторы были размещены на полу транспортного средства. Инженеры также произвели замену тормозной системы и оборудовали автомобиль усилителем руля, водяным насосом и системой кондиционирования. Вакуумный насос добавили для усовершенствования тормозной системы.

Трансмиссию подключили таким образом, чтобы при движении рычага, передавались сигналы на контроллер. Также, электромобиль оснастили зарядным устройством, вольтметром, двумя потенциометрами, подключив их к педали акселератора и контроллеру. В результате, конструктры получили электромобиль с такими характеристиками:

- пробег на единочном заряде батарей – 80 км;

Разгон до «сотни» за 15 секунд;

Сумма энергии, необходимой для перезарядки аккумуляторных батарей: 12 кВт/ч;

Сумарная масса батарей: 500 кг.

«Новачок» оказался прост в управлении, которое ничем не отличалось от аналогичного в автомобиле, использующем бензин.

Конструкция электромобиля имеет много плюсов. Дело в ее надежности, ведь в ней количество подвижных деталей и узлов сведено к минимуму. Для того, чтобы понять как устроен электромобиль, нужно прежде всего ближе познакомиться с его составляющими: трансмиссией, аккумулятором, электронной системой управления и специальным бортовым зарядным устройством. Начнем с первого. У данного экземпляра простейшая трансмиссия, так как на большинстве моделей она представляет собой простой одноступенчатый редуктор.

Если говорить о бортовом зарядном устройстве, то это довольно удобная «фишка» электромобиля, так как дает вам право рассматривать возможность зарядки транспорта от обычной розетки. С целью преобразования постоянного высокого напряжения в переменное, большинство производителей используют специальный инвертор. Он используется также с целью зарядки дополнительной батареи на 12 Вт. (она нужна для питания, к примеру, кондиционера, электроусилителя руля, или аудиосистемы).

Электронная система управления берет на себя ответственность за безопасность, энергосбережение и комфорт ездоков. Если покопать еще глубже, то такая система используется еще и с целью управления высоким напряжением, обеспечения нормального движения, регулировки тяги, контроля тормозной системы и расхода электроэнергии. Эта система включает в себя определенные входные датчики, блок управления и др..

Входные датчики выполняют функцию «оценщика» положения педали "газ" и "тормоз", селектора переключения передач, давления в системе тормоза, степени зарядки. Основные аспекты работы электромобиля (информация о потреблении энергии, восстановлении энергии, остаточный заряд аккумуляторной батареи) отображаются на панели приборов.

Важной составляющей «начинки» электромобиля является контроллер. Он получает токи от батарей и толкает их на электродвижок. С помощью двух потенциометров (переменных резисторов), которые находятся на педали акселератора, формируется сигнал, который «говорит» контроллеру, о количестве энергии, которую он должен транспортировать. Когда автомобиль находится в состоянии спокойствия, импульсы не передаются.

Как уже сообщалось, от бензинового автомобиля, электрический отличается бесшумной ездой. А все дело в частоте посылаемых контроллером импульсов - 15 тыс. раз в секунду. Человеческий слух почти не может уловить такой диапазон пульсации, поэтому движение автомобиля почти не сопровождается какими-либо звуками.

2. Электрические двигатели и аккумуляторные батареи

После того как мы рассмотрели дополнительные детали в конструкции автомобиля и более-менее поняли принцип его работы, мы переходим, непосредственно, к раскрытию темы нашей статьи, а именно к электродвигателю и работающей с ним в паре энергетической батареи. Электрический двигатель – это своеобразное «сердце» автомобиля и он также, как и другие «ипостаси» имеет ряд особенностей. Во первых, главной его функцией является создание , он способен пределать электрическую энергию в механическую.

Работа движка осуществляется по принципу электромагнитной индукции (возникновение электродвижущей силы в замкнутом контуре при изменении магнитного потока). В целом, электродвигатель представляет собой несколько трехфазных асинхронных либо синхронных электромашин, работа которых зависит от переменного тока. Стартовая составляет 15 кВт. Максималка способна достигнуть и 200 кВт. Эффективность электрической силовой установки и ДВС сопоставляется как 90% до 25%. Помимо этого, электрический агрегат имеет множество плюсов, среди которых возможность достижения максимального крутящего момента, двигаясь на любой скорости, а также простота конструкции, выгодное воздушное охлаждение и возможность эксплуатации без использования генератора..

На сегодня, популярностью пользуется эксплуатация мотор-колес. И не мудрено, ведь объединение обычного колеса и электродвижка в один агрегат повышает комфорт и легкость в управлении.

Плюсом движков переменного тока является способность к работе в режиме генератора на момент торможения транспорта, что способствует выработку энергии и сохранении ее в аккумуляторных батареях. Потом она может быть использована во время движения электромобиля и поспособствует повышению запаса хода на 15%. Много производителей используют в сборке некоторых моделей два и более электродвигателей. Таким образом конструкторы повышают силовую тягу, ведь в этом случае в движение приводится каждое колесо отдельно или несколько сразу. За таким ходом последует и сокращение трансмиссии, которое достигается встраиванием электродвигателей в колеса. Но, что бы не говорили, такой ход обусловит увеличение неподрессоренных масс и усложнит управление автомобилем.

«Подругой» электрического двигателя является аккумуляторная батарея. Ему без нее, как говорится, «ни туда и ни сюда». Она используется для обеспечения питания «сердца» автомобиля. В общем, разновидностей батарей очень много. Приобретение некоторых из них может влететь клиенту, как говорится, «в копеечку», ведь они отличаются завышенной ценой. Самый дешевый и, в следствии, самый популярный вариант - свинцово-кислотные батареи, которые на 97% поддаются повторной переработке. На ступеньку выше находятся никель-металлгибридные батареи, производительность и цена которых выше чем у свинцово-кислотных.

Идеальными для электромобилей являются литий-ионные батареи, так как в плане компактности, легкости и энергосбережении они способны превзойти первые два вида. Та же ситуация и с ценовой политикой, ведь данный вид батарей является наиболее дорогостоящим. Она представляет собой соединение нескольких модулей, которые вместе выдают 300 Вт систематического тока. Емкость батареи, как правило, прямопропорциональна к мощности двигателя. Срок действия батареи ограничивается на 7 лет.

Зачастую, многие автопроизводители оснащивают свои электромобили ещё одним небольшим дополнительным аккумулятором, который «оживляет» работу автомобильных аксессуаров: приборной панели, фар, автомагнитолы, подушек безопасности, электрических стеклоподъемников, стеклоочистителей и др.

В основном, в конструкции автомобилей на электрической тяге инженеры известных автопроизводств используют литий-ионные батареи. Именно в этом факте кроется главная причина высокой стоимости такого рода авто.

Большинство клиентов, как ни странно, предпочитают бензиновые автомобили, которые обойдутся им дешевле. Отталкивающее действие производит и длительное ожидание зарядки аккумулятора и не очень хорошая автономность. На сегодня, электромобили, в основном, эксплуатируются как транспорт для города. Стиль вождения, покрытие трассы оказывают сильное влияние на показатель автономности. Многие производители смогли добиться пробега в 150 км без дополнительной зарядки, но это при 70 км/ч. Если вы решили разогнаться до 130 км/ч, то вы проедете не более 70 км. В помощь водителю многие компании разработали специальные технологии, которые позволяют повысить автономность где-то до 300 км. Ранее упомянутое рекуперативное торможение, является одной из этих технологий и способно возвратить до 30% затраченной энергии.

3. Зарядка электрического автомобиля

Но все же, если вы уже решились на покупку электромобиля, первой хорошей новостью для вас станет тот факт, что на содержание такого автомобиля у вас уйдет в 3-4 раза меньше расходов, ведь они, в целом, зависят от стоимости электроэнергии. Всем же известно, что цена на нефтепродукты постоянно возрастает.

Сама зарядка включает в себя две цепи: цепь зарядки и цепь контроля зарядки. Вышеупомянутый контроллер способен отследить ток и температуру батареи, дабы свести время зарядки к минимуму. Это происходит во время сложной системы зарядки. Если брать зарядку ту что попроще, в таком случае напряжение или ток регулируются на основе предположений о характеристике батареи отслеживаются на основе регулируют их. К примеру, устройство для зарядки «втискивая» из себя максимальный показатель тока для зарядки электромобиля до 80%, вскоре по достижению этой отметки резко снижает поступление тока к концу зарядки. Все это хитромудро придумано для избежания перегрева батареи. Зарядка может «жить отдельной жизнью» и быть независимым от конструкции электромобиля блоком, или же быть всецело интегрированной в электрический транспорт.

Сразу после ценовой политики, многих покупателей волнует система зарядки автомобиля, ведь пробег транспортного средства на одном заряде батарей «затиснут» в определенные рамки. Как известно, неотъемлемой частью использования электромобиля является нужда в систематической зарядке аккумуляторной батареи, которая, в свою очередь, занимает не мало времени.

На деле, если диапазон пробега вашего «электромобильчика» не будет превышать 50-60 км ежедневно, вам нечего боятся. Но что, если вы любители дальних и длительных поездок? Не отчаивайтесь! Решений проблемы есть много. Во первых, электромобиль требует добротной зарядки аккумуляторной батареи, которую вы сможете осуществить с помощью бытовой электрической сети мощностью 3-3,5 кВт. Запомните, что нормальный заряд достигается только спустя восемь часов! Если вы не любите, или не можете ждать, то альтернативой для вас станет ускоренная зарядка, которая доступна на специальных станциях мощностью до 50 кВт. Так вы сможете зарядить своего «рысака» до 80% всего за 30 минут.

Еще одним способом станет элементарная замена разряженной аккумуляторной батареи на заряженную, которая может осуществиться на специальных станциях по обмену. Особой популярностью в развитых в этом плане странах пользуется система зарядки Magna-Charge.

Она состоит из двух ипостасей: зарядной станции, установленной на стене дома и системы зарядки, которая находится в багажнике электромобиля. Первая подключается к сети 240 вольт используя 40-ка амперный автомат. Другая использует для этого индуктивную панель (половинка трансформатора). Другая половина находится в отсеке за номером электромобиля. Таким образом данная система позволяет сделать заряд автомобиля более комфортным и быстрым.

Но опять же, все эти решения имеют место в том городе или стране, где прослеживается развитие инфраструктуры, а именно, тех самых зарядных и обменных станций и мест парковки.

Содержание:

Довольно часто возникает ситуация, когда место для строительства частного дома во всех отношениях просто идеальное, но в то же время отсутствует возможность подключения к централизованным . Особенную остроту приобретает вопрос обеспечения электричеством, без которого невозможно нормальное функционирование современных объектов. Поэтому наилучшим выходом из такого положения будут автономные системы электроснабжения, обеспечивающие полную независимость от центральных электрических сетей, без какого-либо ущерба для экологии.

Использование автономных систем обойдется значительно дешевле, чем прокладка новой линии электропередачи, требующая значительных материальных затрат. Автономный источник питания находится в полной собственности хозяина дома. При регулярном техническом обслуживании он сможет эксплуатироваться в течение длительного времени.

Автономные системы электроснабжения частного дома

Автономные инженерные сети широко используются в частных домах. Собственное водоснабжение, канализация и система отопления дают полную независимость от местных коммунальных служб. Гораздо сложнее решается вопрос обеспечения электричеством, однако при правильном подходе с использованием альтернативных источников питания, эта проблема сравнительно легко преодолевается. Существует несколько вариантов автономного электроснабжения, каждый из которых является наиболее подходящим для конкретных условий эксплуатации, в том числе и солнечные системы электроснабжения.

Все автономные системы имеют единый принцип работы, но отличаются первоначальными источниками электроэнергии. При их выборе учитываются различные факторы, в том числе и расходы на эксплуатацию. Например, бензиновые или дизельные генераторы постоянно требуют топливо. Другие же, условно относящиеся к так называемым вечным двигателям, не нуждаются в энергоносителях, а, наоборот, сами способны вырабатывать электричество за счет преобразования энергии солнца и ветра.

Все автономные источники электроснабжения по большому счету похожи друг на друга своим общим устройством и принципом действия. В состав каждой из них входят три основные узла:

  • Преобразователь энергии. Представлен солнечными панелями или , где энергия солнца и ветра преобразуется в электрический ток. Их эффективность во многом зависит от природных условий и погоды в данной местности - от солнечной активности, силы и направления ветра.
  • Аккумуляторы. Представляют собой электрические емкости, накапливающие электричество, активно вырабатываемое при оптимальной погоде. Чем больше имеется аккумуляторов, тем дольше сможет расходоваться запасенная энергия. Для расчетов используется среднесуточное потребление электричества.
  • Контроллер. Выполняет управляющую функцию по распределению потоков выработанной энергии. В основном эти устройства контролируют состояние аккумуляторных батарей. Когда они полностью заряжены, вся энергия уходит напрямую потребителям. Если же контроллер обнаруживает разрядку батареи, то энергия перераспределяется: она частично уходит потребителю, а другая часть затрачивается на зарядку батареи.
  • Инвертор. Устройство для преобразования постоянного тока 12 или 24 вольта в стандартное напряжение 220 В. Инверторы имеют различную мощность, для которой берется суммарная мощность одновременно работающих потребителей. При расчетах необходимо давать определенный запас, поскольку работа оборудования на пределе возможностей приводит к его быстрому выходу из строя.

Существует различное автономное электроснабжение загородного дома, готовые решения которого дополняются различными элементами в виде соединительных кабелей, балластов для сброса лишнего электричества и прочими составными частями. Для правильного выбора агрегата следует более подробно ознакомиться с каждым типом альтернативных источников питания.

Генераторы и мини-электростанции

Генераторные установки и мини-электростанции широко используются и обеспечивают автономное электроснабжение дома, особенно там, где совсем нет централизованных электрических сетей. При условии правильного выбора агрегата, на выходе получается напряжение, способное полностью обеспечить объект электроэнергией. Основным фактором нормальной работы оборудования, является его соответствие электрическим параметрам подключаемых потребителей.

Как правило автономные электростанции выполняют две основные функции. Они служат источником резервного питания на период отключения электроэнергии или снабжают объект электричеством на постоянной основе. Во многих случаях эти устройства обеспечивают подачу напряжения более высокого качества, чем в центральной сети. Это очень важно при использовании высокочувствительной техники, например, газовых отопительных котлов, медицинского оборудования и другой аппаратуры.

Большое значение имеет мощность генераторов, их производительность и возможность продолжительной работы без отключения. Техника с малой мощностью относится к категории электрогенераторов, а более сложные и мощные конструкции считаются уже мини-электростанциями. К устройствам малой мощности относятся генераторы способные выдерживать нагрузку, не превышающую 10 кВт.

Существуют различные типы генераторов, в зависимости от применяемого топлива.

  1. Бензиновые. Чаще всего используются в качестве резервного источника питания в связи с высокой стоимостью топлива и сравнительно дорогим техническим обслуживанием. Стоимость бензиновых агрегатов значительно ниже других аналогов, что делает их экономически выгодными именно в качестве резервного источника на период отключения основной электроэнергии.
  2. Дизельные. Обладают значительным моторесурсом, гораздо выше, чем у бензиновых аналогов. Такое оборудование может работать дольше, даже при больших нагрузках. Несмотря на их высокую стоимость, дизельные генераторы пользуются повышенным спросом из-за дешевого топлива и недорогого технического обслуживания.
  3. Газовые. Надежность и эффективность этих агрегатов вполне может сравниться с бензиновыми и дизельными генераторами. Основным достоинством является их низкая цена и экологическая чистота в процессе эксплуатации.

Каждый агрегат состоит из двигателя и самого генератора. Для более удобной работы все устройства оборудуются замком зажигания, стартером и аккумулятором, розетками для подключения потребителей, измерительными приборами, топливным баком, воздушным фильтром и другими элементами.

Аккумуляторы и источники бесперебойного питания

Одним из вариантов на период отключения электричества в загородном доме являются источники бесперебойного питания. Их применение позволяет решить множество проблем, особенно при кратковременных отключениях электроэнергии. Регулировка питания осуществляется с помощью инвертора и стабилизатора. Использование бесперебойников позволяет сохранить важную информацию на компьютере, которая может быть уничтожена при неожиданном отключении электроэнергии.

В состав входит схема управления и инвертор, являющийся по сути, зарядным устройством. От его мощности зависит время переключения и обеспечение бесперебойного поступления электроэнергии к потребителю. За счет этого обеспечивается автономное электроснабжение загородного дома.

Особая роль отводится стабилизатору, основная функция которого заключается в увеличении или снижении подачи тока, поступающего из основной сети. Поэтому при выборе источника бесперебойного питания следует обязательно учитывать технические характеристики инвертора и стабилизатора. Стандартные устройства оборудуются стабилизатором, способным лишь понижать напряжение.

К положительным качествам ИБП можно отнести их сравнительно невысокую стоимость. Они работают бесшумно и не подвержены нагреву за счет высокого КПД, составляющего 99%. Основным недостатком считается продолжительное переключение на собственное питание. Отсутствует возможность ручной настройки величины напряжения и частоты подачи энергии. Во время работы аккумулятора выход напряжения будет иметь несинусоидальную форму.

Источники бесперебойного питания хорошо зарекомендовали себя совместно с компьютерами и локальными сетями, эффективно поддерживая их работоспособность. Они оказались наиболее оптимальным вариантом для использования именно в этой области.

Электроснабжение частного дома солнечными батареями

В частных и загородных домах все более широкое распространение получают солнечные батареи, используемые в качестве основных или резервных источников питания. Основной функцией этих устройств является преобразование солнечной энергии в электрическую.

Существуют различные способы применения постоянного тока, вырабатываемого солнечными батареями. Он может использоваться напрямую, сразу же после выработки или накапливаться в аккумуляторных батареях и расходоваться по мере необходимости в темное время суток. Кроме того, постоянный ток с помощью инвертора может быть преобразован в переменный ток, напряжением 110, 220 и 380 вольт и применяться для различных групп и типов потребителей.

Вся автономная система электроснабжения на солнечных батареях функционирует по определенной схеме. На протяжении светового дня они производят электроэнергию, которая затем подается к контроллеру заряда. Основной функцией контроллера является управление зарядом аккумуляторов. Если их емкость заполнена на 100%, то подача заряда от солнечных батарей прекращается. Инвертор преобразует постоянный ток в переменный с заданными параметрами. При включении потребителей, этот прибор забирает энергию из аккумуляторов, преобразует ее и направляет в сеть к потребителям.

Солнечная энергия, в зависимости от времен года, не бывает постоянной и не всегда рассматривается в качестве основного источника. Кроме того, объем электроэнергии, потребляемой ежесуточно, тоже изменяется в разные стороны. Поэтому при наступлении полного разряда аккумуляторов, происходит автоматическое переключение системы домашнего электроснабжения с солнечных батарей на другие резервные источники питания или на центральную электрическую сеть.

Солнечные батареи делают хозяев дома абсолютно независимыми от центрального электроснабжения. В этом случае не требуется подводка электрических сетей, исключаются дополнительные траты на оформление разрешительных документов и оплату электроэнергии. Данная система не зависит от перебоев централизованной подачи электричества, на нее не влияет рост тарифов, отсутствуют ограничения в подключении дополнительных мощностей.

Солнечные батареи могут эксплуатироваться в течение длительного периода времени, составляющего 20-50 лет. Серьезные финансовые вложения делаются только один раз, после чего система будет работать и постепенно окупать себя. Вся работа батарей осуществляется на полном автомате. Существенным плюсом является полная безопасность солнечной энергии для человека и окружающей среды. Для получения нужного экономического результата следует правильно выбирать оборудование, монтировать и вводить его в эксплуатацию.

Ветрогенераторные установки

Энергия ветра используется с давних пор. Наглядным примером являются парусные корабли и ветряные мельницы, оставшиеся далеко в прошлом. В настоящее время ветровая энергия стала вновь использоваться для совершения полезной работы.

Типичным представителем этих устройств считается ветрогенератор. Принцип работы агрегата основа на вращении воздушным потоком лопастей ротора, закрепленного на валу генератора. В результате вращения в обмотках генератора создается переменный ток. Он может расходоваться напрямую или накапливаться в аккумуляторах и использоваться в дальнейшем по мере необходимости. Таким образом, обеспечивается автономное электроснабжение объекта.

Кроме генератора, в рабочей цепи имеется контроллер, выполняющий функцию преобразования трехфазного переменного тока в постоянный. Преобразованный ток направляется на зарядку аккумуляторов. Бытовые приборы не могут работать от постоянного тока, поэтому для его дальнейшего преобразования используется инвертор. С его помощью происходит обратное превращение постоянного тока в переменный бытовой ток на 220 вольт. В результате всех преобразований расходуется примерно 15-20% от первоначально выработанной электроэнергии.

Совместно с ветровыми установками могут использоваться солнечные батареи, а также бензиновые или дизельные генераторы. В этих случаях в схему дополнительно включается автоматический ввод резерва (АВР), который производит активацию резервного источника тока, если основной отключается.

Для того чтобы получить максимальную мощность, расположение ветряного генератора должно быть вдоль по направлению ветрового потока. Наиболее простые системы оборудуются специальными флюгерами, закрепляемыми на противоположном конце генератора. Флюгер представляет собой вертикальную лопасть, которая разворачивает все устройство навстречу ветру. В более сложных и мощных установках эта функция выполняется поворотным электромотором, под управлением датчика направления.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows