Какой из изображенных элементов является нелинейным. Основные свойства, характеристики и параметры нелинейных элементов (Н.Э.). Параметры нелинейных элементов

Какой из изображенных элементов является нелинейным. Основные свойства, характеристики и параметры нелинейных элементов (Н.Э.). Параметры нелинейных элементов

02.07.2020

Классификация нелинейных элементов

Нелинейные цепи - это цепи, в которых есть хотя бы один нелинейный элемент. Нелинейный элемент - это элемент, для которого связь тока и напряжения задают нелинейным уравнением.

В нелинейных цепях не выполняется принцип наложения, и поэтому нет общих методов расчёта. Это вызывает необходимость разработки специальных методов расчета для каждого типа нелинейных элементов и режима их работы.

Нелинейные элементы классифицируют:

1) по физической природе: проводниковые, полупроводниковые, диэлектрические, электронные, ионные и т.д.;

2) по характеру делят на резистивные, емкостные и индуктивные;

ВАХ КВХ ВАХ

3) по виду характеристик все элементы делят

На симметричные и несимметричные. Симметричные - это такие, у которых характеристика симметрична относительно начала координат. Для не симметричных элементов раз и навсегда выбирают положительное направление напряжения или тока и для них в справочниках приводится ВАХ. Только такое направление можно использовать при решении задач с использованием этих ВАХ.

На однозначные и неоднозначные. Неоднозначные, когда одному значению тока или напряжения на ВАХ соответствуют несколько точек;

4) инерционные и безынерционные элементы. Инерционными элементами называют такие элементы, у которых нелинейность обусловлена нагревом тела при прохождении тока. Т. к. температура не может изменяться сколь угодно быстро, то при прохождении по такому элементу переменного тока с достаточно высокой частотой и неизменным действующим значением, температура элемента остается практически постоянной в течение всего периода изменения тока. Поэтому для мгновенных значений элемент оказывается линейным и характеризуется какой-то постоянной величиной R (I,U). Если же изменится действующее значение тока, то изменится температура и получится другое сопротивление, т. е. для действующих значений элемент станет нелинейным.

5) управляемые и неуправляемые элементы. Выше мы говорили о неуправляемых элементах. К управляемым элементам относят элементы с тремя и более выводами, у которых, изменяя ток или напряжение на одном выводе, можно менять ВАХ относительно других выводов.

Параметры нелинейных элементов и некоторые схемы их замещения

В зависимости от конкретной задачи удобно применять те или иные параметры элементов и общее число их велико, но чаще всего используют статические и дифференциальные параметры. Для резистивного двухполюсного элемента это будут статическое и дифференциальное сопротивления.

В заданной точке ВАХ

В заданной рабочей точке ВАХ

1. Дают небольшое приращение напряжения. Находят по ВАХ, вызванное этим приращением, приращение тока и берут их отношение. Недостатком этого способа является то, что для повышения точности расчета нужно уменьшать U и I, но при этом трудно работать с графиком.

2. К заданной точке кривой проводят касательную и тогда по геометрическому определению производной, получают

Где приращения берут на этой касательной и могут быть сколь угодно большими.

Если известен режим работы нелинейного элемента, то в этой точке известно его статическое сопротивление, а также напряжение и ток, поэтому его можно заменить одним из 3-х способов.


Если известно, что во время работы цепи ток и напряжение меняются в пределах «более-менее прямолинейного участка ВАХ», то этот участок описывают линейным уравнением и ставят ему в соответствие такую эквивалентную схему.

Линеаризуют этот участок уравнением вида U=a+ib.Получают для него коэффициенты уравнения.

При i=0 и U=U 0 =а,

усреднённое значение на этом участке.

Тогда, что соответствует следующей схеме замещения:


Эта схема будет справедлива для участка, ограниченного волнистой линией.

То же самое выражение можно записать по-другому:

Поэтому в некоторых задачах, где заранее известно, что токи и напряжения нелинейного элемента представляют в виде суммы постоянной составляющей Uрт, Iрт и переменной составляющей u ~ , i ~ c амплитудой << чем величина постоянной составляющей, отдельно рассчитывают режим на постоянном токе (напряжении) и отдельно для переменной составляющей. Из записей видно, что двухполюсный элемент для малой переменной составляющей можно заменить просто дифференциальным сопротивлением в рабочей точке.

Этот же подход применяют и в схемах с многополюсными элементами, но там не удаётся ввести только одно сопротивление, т. к. Ч. П. характеризуются четырьмя коэффициентами уравнений. Но можно найти эти коэффициенты для малых переменных составляющих токов и напряжений.

Пример: Биполярный транзистор (схема с общим эмиттером).

Пусть известно, что u j =U p ф+u kj , i j =I p ф+i kj

Схема замещения:

Применим дифференцирующие параметры и получим в форме «И».

u бк =h 21 i б +h 12 u кэ

i кэ =h 21 i б +h 22 u кэ

U бэ =H 11 I б +H 21 U кэ

Эти уравнения пишут для переменных составляющих, потому что изменяется процедура расчета элементов.

H 11 =U бэ /I б при I б =0, т.е. i б =I бр.т.

H 12 =U бэ /U кэ при I б =0

H 21 =I к /I б при U кэ =0

H 22 =I к /U кэ при I б =0, т.е. i б =I бр.т.

h 12 =ДU бэ /ДU кэ h 21 =Дi к /Дi б h 22 =Дi к /Дu кэ,

где I, U есть приращения токов и напряжений в окрестности рабочей точки.

Вольтамперные характеристики данного нелинейного элемента.

Методы расчёта нелинейных цепей постоянного тока

Различают: численные, аналитические и графические методы.

1) Численные - это методы численного решения нелинейных уравнений. Обычно используют ЭВМ. Они позволяют решить широкий круг задач, но ответ получается в виде числа.

2) Аналитические - это методы, в основе которых лежит аппроксимация ВАХ какой-нибудь подходящей функции. Если эта функция нелинейная, то получается нелинейная система уравнений. Чтобы она могла быть решена, приходиться очень аккуратно выбирать аппроксимирующую функцию.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МАГНИТОГОРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ им. Г.И. НОСОВА»

КАФЕДРА ЭЛЕКТРОТЕХНИКИ И ЭЛЕКТРОТЕХНИЧЕСКИХ СИСТЕМ

О.И. Петухова, Л.В. Яббарова, Ю.И. Мамлеева

МЕТОДЫ АНАЛИЗА НЕЛИНЕЙНЫХ ЦЕПЕЙ

1.1. Нелинейные элементы и их характеристики 3

1.2.3. Расчет цепей при смешанном соединении элементов 7

1.2.4. Преобразование активных нелинейных двухполюсников 8

1.2.5. Анализ разветвленных цепей 10

1.3. Аппроксимация характеристик нелинейных элементов 12

1.3.1. Выбор аппроксимирующей функции 12

1.3.3. Аппроксимация ВАХ в окрестностях рабочей точки 18

2. МАГНИТНЫЕ ЦЕПИ 19

2.1. Основные понятия 19

2.2. Законы Ома и Кирхгофа для магнитных цепей 21

2.3. Расчет магнитных цепей постоянного тока 23

3.1. Особенности периодических процессов в электрических цепях с инерционными нелинейными элементами 27

3.2. Особенности периодических процессов в цепях с безинерционными нелинейными сопротивлениями 30

3.3. Электромагнитные процессы в катушке с ферромагнитным сердечником 31

1. НЕЛИНЕЙНЫЕ ЦЕПИ

1.1. Нелинейные элементы и их характеристики

Характеристики большинства реальных элементов в той или иной степени нелинейны. В одних случаях нелинейность элементов невелика и при построении упрощенной модели ею можно пренебречь, в других – нелинейностью пренебречь нельзя. Более того, функционирование большинства радиоэлектронных устройств, невозможно без нелинейных элементов (выпрямление, умножение, ограничение, генерирование и т.д.).

Реальные нелинейные элементы подразделяются на безинерционныеи инерционные. Если зависимость между мгновенными значениями тока и напряжения элементов при периодическом воздействии определяется статической вольт - амперной характеристикой (ВАХ), то элемент относится к безинерционнымнелинейным элементам. Если статическая ВАХ и динамическая, снятая при частоте, равной или меньшей рабочей, не совпадают, то такой элемент следует рассматривать какинерционный.

Таким образом, инерционный нелинейный элемент является линейным относительно мгновенных значений тока и напряжения, а ВАХ, связывающая действующие значения оказывается нелинейной. Безинерционные элементы являются нелинейными как в отношении мгновенных значений
,
, так и в отношении действующихи.

В зависимости от числа внешних выводов различают нелинейные элементы двухполюсные (диоды, термисторы) имногополюсные (транзисторы, триоды, пентоды). Вольт - амперная характеристика нелинейного двухполюсного элемента может быть симметричной или несимметричной. ВАХ двухполюсника с симметричной характеристикой представлена на рис.1. Для нее выполняется условие:

,
. (1)

Очевидно, что режим работы нелинейной цепи не изменится, если выводы нелинейного элемента с симметричной характеристикой поменять местами. Если условие (1) не выполняется, ВАХ – несимметрична.

Отношение напряжения, измеряемого отрезком АВ к току, измеряемому отрезком ОВ (см.рис.1.), определяет в некотором масштабе
статическое сопротивлениеR в точке А.

(2)

Предел отношения приращения напряжения на участке цепи к приращению тока в нем или производная от напряжения по току в том же масштабе
, определяет дифференциальное сопротивление:

. (3)

Различают нелинейные элементы с монотоннойи немонотоннойВАХ. Для монотонныхВАХ иливсегда больше нуля.

Немонотонные характеристики разделяются на N-и S-типы. У элементов с N-образной характеристикой (рис. 2.а) одному и тому же значению тока может соответствовать несколько различных напряжений. У S-образнойВАХ одному значению напряжения может соответствовать несколько токов (рис. 2.б).

Рис.2. ВАХ различных нелинейных элементов

а) немонотонная N -типа; б) немонотонная S – типа;

в) ВАХ неэлектрически управляемого двухполюсника - термистора.

Вид ВАХ нелинейного элемента может зависеть от некоторой величины, не связанной с токами и напряжениями цепи, в которую включен элемент, в частности от температуры (рис. 2.в), освещенности, давления и т.д. Такие элементы относятся кнеэлектрически управляемым двухполюсникам.

Рис.3. Электрически управляемый элемент

а) транзистор; б) семейство входных ВАХ;

в) семейство выходных ВАХ.

Важнейший класс нелинейных элементов составляют электрическиуправляемые элементы(транзисторы, тиристоры, и т.д.). Они имеют два основных электрода и один управляющий (рис.3.а). Ток элемента определяется уравнениями:

или
. (4)

Выводы нелинейного управляемого трёхполюсника образуют с остальной частью цепи два контура – основной (выходной) и управляющий (входной).

Управляемые элементы характеризуются семействами ВАХ: выходными и входными. (рис.3.б,с)

Вид ВАХ нелинейного управляемого элемента существенно зависит от схемы включения элемента, т.е. от того какой из электродов является общим для основного и управляющего контуров. На принципиальных электрических схемах реальные нелинейные элементы изображаются с помощью установленных ЕСКД условных графических обозначений (рис.4).

Рис.4 Обозначения нелинейных элементов

Свойства нелинейных двухполюсников обычно описывают их статическими характеристиками . Общепринятой характеристикой нелинейного резистивного двухполюсника является его вольт-амперная характеристика (ВАХ).

Статическая ВАХ это зависимость тока, протекающего через нелинейный резистивный элемент, от приложенного к нему напряжения в установившемся режиме (или наоборот – зависимость падения напряжения на элементе от протекающего через него тока).

Статическая ВАХ определяет свойства элемента при переменном напряжении (токе) низкой частоты, значение которой не превышает предельно допустимого значения.

В зависимости от числа внешних выводов различают нелинейные двухполюсные элементы (резисторы с нелинейным сопротивлением, электровакуумные и полупроводниковые диоды) и нелинейные многополюсные элементы (транзисторы и тиристоры различных типов, электровакуумные триоды и пентоды).

ВАХ нелинейного двухполюсного элемента может быть симметричной (рис.15.2,а) или несимметричной (рис.15.2,б,в) относительно начала координат.

Рис.15.2 – Статические вольт-амперные характеристики различных

резистивных элеметов

Для симметричной ВАХ справедливо условие I (U ) = -I (-U ), а для несимметричной I (U )  -I (-U ).

Очевидно, что режим работы нелинейной цепи не изменится, если выводы нелинейного резистивного элемента с симметричной характеристикой поменять местами.

Различают нелинейные резистивные элементы с монотонной (рис.15.2,а) и немонотонной (рис.15.2,б,в) ВАХ.

У элементов с монотонной ВАХ увеличение приложенного к элементу напряжения приводит к росту (или хотя бы не уменьшению) тока и, наоборот, увеличение тока приводит к возрастанию напряжения на элементе.

Напряжение и ток на зажимах такого элемента связаны между собой однозначной зависимостью , причем производные ВАХ во всех ее токах принимают только неотрицательные значения , т.е.

,
.

ВАХ нелинейного элемента является немонотонной , если хотя бы в ограниченном диапазоне изменения токов и напряжений рост напряжения на зажимах элемента приводит к уменьшению тока или, наоборот, увеличение тока приводит к снижению напряжения.

Ток и напряжение нелинейного резистивного элемента с немонотонной ВАХ не связаны между собой взаимно однозначной зависимостью (рис.15.2,б,в).

Многообразие всех ВАХ нелинейных двухполюсников можно свести к шести основным типам (рис.15.3,а-е).

ВАХ могут иметь зон нечувствительности, т.е. «ступеньку» по напряжению или по току (рис.15.4,а,б)

Вид ВАХ нелинейного резистивного двухполюсника может зависеть от некоторой величины, не связанной непосредственно с токами или напряжениями цепи, в которую включен данный элемент, в частности от температуры, освещенности, давления и др. Такие элементы относятся к неэлектрически управляемым двухполюсникам.

Так как каждому значению управляющей величины соответствует своя кривая, характеризующая зависимость между током и напряжением на зажимах неэлектрически управляемого резистивного двухполюсника, также двухполюсники характеризуются не одной ВАХ, а семейством ВАХ (рис.15.5).

Рис.15.5 – Семейство ВАХ термистора.

Важнейший класс нелинейных резистивных элементов составляют электрически управлямые элементы (транзисторы различных типов, вакуумные и газоразрядные трехэлектродные и многоэлектродные приборы. Элементы этого типа содержат два основных электрода:

Катод и анод у электронных ламп;

Эмиттер и коллектор у биполярных транзисторов;

Сток и исток у полевых транзисторов.

Сопротивление между основными электродами изменяется под действием тока или напряжения одного или нескольких управляющих электродов:

Сетки у электронных ламп;

Базы у биполярных транзисторов;

Затвора или подложки у полевых транзисторов.

В частности, ток i нелинейного резистивного трехполюсника (рис.15.6), имеющего два основных и один управляющий электрод, является функцией напряжения между основными электродами u и тока управления i упр или напряжения u упр управляющего электрода:

i = i (u , i упр)

i = i (u , u упр).

Рис.15.5 – Электрически управляемый нелинейный трехполюсник

Как видно из рис.15.5, электрически управляемый нелинейный резистивный трехполюсник имеет две стороны: входную (управляющую) и выходную (управляемую), причем один из выводов трехполюсника является общим для обеих сторон.

Электрически управляемые нелинейные резистивные элементы могут быть охарактеризованы различными семействами ВАХ.

Выходные ВАХ отображают зависимость между выходным током i и выходным напряжением u при различных значениях входного тока i упр или напряжения u упр .

Типовые выходные ВАХЪ биполярного транзистора в схеме с общим эмиттером (рис.15.6,а) представлены на рис.15.6,б.

Полная классификация нелинейных элементов представлена в таблице 15.1, а примеры нелинейных резистивных элементов с их условными графическими обозначениями и вольт-амперными характеристиками приведены в таблице 15.2.

Резистивные

1. По виду параметра

Признаки классификации

Табл.29.1 – Классификация нелинейных элементов

Индуктивные

Емкостные

Двухполюсные

2. По количес-тву внешних выводов

Многополюсные

Симметричные

3. По наличию симмет-рии ВАХ

Несимметричные

Монотонные

4. По наличию монотон-ности ВАХ

Немонотонные

С насыщением по току

5. По типу ВАХ

С насыщением по напряжению

S-типа (неоднозначность по току)

N-типа (неоднозначность по

напряжению)

С зоной нечувствительности по току

6. По наличию зоны нечувствитель-ности

С зоной нечувствительности по напряжению

Без зоны нечувствительности

Неэлектрически управляемые

7. По способу управления

Электрически управляемые

Таблица 15.1 – Резистивные НЭ

Элемент, графическое обозначение

Характеристика

Двухполюсные резистивные элементы

Варистор

Симметричная

I (U ) = -I (-U ),

монотонная

Электровакуумный диод

Несимметричная, монотонная ВАХ

(dI /dU ) > 0

Неоновая лампа

ВАХ с падающим участком (dI /dU ) < 0,

несимметричная, немонотонная,

Полупровод-никовый диод

Стабилитрон

ВАХ несимметричная, монотонная

Тоннельный диод

ВАХ с падающим участком, несимметричная, немонотонная, N-типа

Неэлектрически управляемые двухполюсные резистивные элементы

Терморезистор

ВАХ с падающим участком, сопротивление зависит от температуры

Фотодиод

Сопротивление зависит от светового потока

Электрически управляемые трехполюсные резистивные элементы

Биполярный

транзистор

типа n - p - n

Выходные ВАХ

ВАХ несимметрична, монотонна, с насыщением по току.

Выходной ток зависит от напряжения и от входного тока:

I к = I (I Б, U кэ)

Тиристор

ВАХ несимметрична, немонотонна, S-типа, зависит от напряжения на управляющем электроде

2.2. СТАТИЧЕСКИЕ И ДИФФЕРЕНЦИАЛЬНЫЕ ПАРАМЕТРЫ

Для резистивных нелинейных элементов важным параметром является их сопротивление, которое в отличие от линейных резисторов не является постоянным, а зависит от того, в какой точке ВАХ оно определяется. Различают два вида сопротивлений: статическое и дифференциальное (динамическое ).

Статическое сопротивление характеризует рабочую точку нелинейного элемента по постоянному току, а дифференциальное – работу нелинейного элемента в окрестности этой рабочей точки.

Пусть резистивный нелинейный элемент имеет вольт-амперную характеристику, указанную на рисунке 15.8.

Статическое сопротивление – это соотношение напряжения к току в данной точке ВАХ.

(15.1)

где
- масштабный коэффициент;

m u , m i – масштабы по напряжению и току;

 - угол наклона секущей, проведенной через начало координат и рабочую точку, к оси токов.

Статическое сопротивление – это сопротивление нелинейного элемента постоянному току.

Очевидно статическая проводимость есть величина, обратная статическому сопротивлению

(15.2)

– это предел отношения приращения напряжения к соответствующему приращению тока при небольшом смещении рабочей точки на ВАХ под воздействием переменного напряжения малой амплитуды:


Дифференциальное сопротивление это сопротивление нелинейного элемента переменному току малой амплитуды.

Нелинейные зависимости z = f(x) можно классифицировать по различным признакам:

1. По гладкости характеристик: гладкая - если в любой точке характеристики существует производная dz/dx, т. е. функция дифференцируема (рис. 1а, б); кусочно-линейная - характеристика, в которой производные имеют разрыв первого (рис.2а) или второго рода (рис. 2б).

По однозначности: однозначные - в которых каждому значению вхо-дной величины соответствует одно значение выходной величины (рис. 3a); многозначные - в которых каждому значению входной величины х соответствует несколько значений выходной величины z (рис.3б, в, г).

По симметрии: четно-симметричные - симметричные относительно оси ординат, т. е. z(х) = z (- х) (рис. 4а); нечетно-симметричные - сим-метричные относительно начала координат, при этом z (х) = - z (- х) (рис. 4б); не симметричные (рис. 4в).

Нелинейные цепи

Нелинейными называются цепи, в состав которых входит хотя бы один нелинейный элемент. Нелинейные элементы описываются нелинейными характеристиками, которые не имеют строгого аналитического выражения, определяются экспериментально и задаются таблично или графиками.

Нелинейные элементы можно разделить на двух - и многополюсные. Последние содержат три (различные полупроводниковые и электронные триоды) и более (магнитные усилители, многообмоточные трансформаторы, тетроды, пентоды и др.) полюсов, с помощью которых они подсоединяются к электрической цепи. Характерной особенностью многополюсных элементов является то, что в общем случае их свойства определяются семейством характеристик, представляющих зависимости выходных характеристик от входных переменных и наоборот: входные характеристики строят для ряда фиксированных значений одного из выходных параметров, выходные - для ряда фиксированных значений одного из входных.

По другому признаку классификации нелинейные элементы можно разделить на инерционные и безынерционные. Инерционными называются элементы, характеристики которых зависят от скорости изменения переменных. Для таких элементов статические характеристики, определяющие зависимость между действующими значениями переменных, отличаются от динамических характеристик, устанавливающих взаимосвязь между мгновенными значениями переменных. Безынерционными называются элементы, характеристики которых не зависят от скорости изменения переменных. Для таких элементов статические и динамические характеристики совпадают.

Понятия инерционных и безынерционных элементов относительны: элемент может рассматриваться как безынерционный в допустимом (ограниченном сверху) диапазоне частот, при выходе за пределы которого он переходит в разряд инерционных.

В зависимости от вида характеристик различают нелинейные элементы с симметричными и несимметричными характеристиками. Симметричной называется характеристика, не зависящая от направления определяющих ее величин, т.е. имеющая симметрию относительно начала системы координат. Для несимметричной характеристики это условие не выполняется, т.е. Наличие у нелинейного элемента симметричной характеристики позволяет в целом ряде случаев упростить анализ схемы, осуществляя его в пределах одного квадранта.

По типу характеристики можно также разделить все нелинейные элементы на элементы с однозначной и неоднозначной характеристиками. Однозначной называется характеристика, у которой каждому значению х соответствует единственное значение y и наоборот. В случае неоднозначной характеристики каким-то значениям х может соответствовать два или более значения y или наоборот. У нелинейных резисторов неоднозначность характеристики обычно связана с наличием падающего участка, а у нелинейных индуктивных и емкостных элементов - с гистерезисом.

Наконец, все нелинейные элементы можно разделить на управляемые и неуправляемые. В отличие от неуправляемых управляемые нелинейные элементы (обычно трех- и многополюсники) содержат управляющие каналы, изменяя напряжение, ток, световой поток и др. в которых, изменяют их основные характеристики: вольт-амперную, вебер-амперную или кулон-вольтную.

В зависимости от вида составляющих нелинейных элементов, называют нелинейные цепи.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows