Функции логарифмически нормального распределения при. Смотреть страницы где упоминается термин логарифмически-нормальное распределение. Отрывок, характеризующий Логарифмическое распределение

Функции логарифмически нормального распределения при. Смотреть страницы где упоминается термин логарифмически-нормальное распределение. Отрывок, характеризующий Логарифмическое распределение

02.07.2020

Если бы вы делали измерения для продолжительного интервала времени , вы, вероятно, столкнулись бы с искажением картины распределения. Например, вы могли бы увидеть, что нормы доходности превышают 100% и что нет ни одного случая, когда доходность была бы меньше 100%. Распределение значений доходности за период, скажем в один год, лучше всего соответствовало бы логарифмическому нормальному распределению. Логарифмическое нормальное распределение, как и нормальное, полностью определяется его средним значением и стандартным отклонением.  


На левой гистограмме мы делаем предположение, что для предприятия г-жи Хартии Вольнэсти возможны только два исхода - высокий спрос или низкий спрос. На гистограмме показана приведенная стоимость в первом году при допущении, что бизнес не останавливается. Логарифмическое нормальное распределение на правом рисунке более реалистично, поскольку подразумевает бесконечный ряд возможных значений приведенной стоимости и учитывает промежуточные результаты Модель Блэка -Шольца основана на логарифмическом распределении.  

Гипотеза о логарифмически нормальном распределении коэффициентов элементарного перехода обеспечивает удобство и простоту про-  

Как уже отмечалось выше, предположение о том, что коэффициенты элементарного перехода а, являются случайными величинами , имеющими одно и то же логарифмически нормальное распределение с параметрами i, о2 (а,-е п(ц,а2)), предопределяет справедливость прогнозов, получаемых на основе мультипликативной стохастической модели в течение ограниченного временного периода, характеризующегося неизменностью условий. Отсюда вытекает задача разработки методов оперативного и эффективного определения момента изменения факторов, влияющих на динамику ресурса (момента изменения значений ц, а2). Она может быть решена за счет мониторинга (постоянного отслеживания) значений математического ожидания m, - Ma(i) и дисперсии s,2 = Da(z) случайных коэффициентов элементарного перехода a(z), z = l,..., n,....  

Логарифмически-нормальное распределение. Распределение случайной величины Y называется логарифмически-нормальным, если логарифм этой величины распределяется по нормальному закону  

Логарифмически нормальное распределение  

Необходимо отметить, что форма распределения, используемого для Р(Т, U), не обязательно должна быть такой же, как и в модели ценообразования , применяемой для определения значений Z(T, U - Y). Например, вы используете модель фондовых опционов Блэка-Шоулса для определения значений Z(T, U - Y). Эта модель предполагает логарифмически нормальное распределение изменений цены, однако для определения соответствующего Р(Т, U) вы можете использовать другую форму распределения.  

Логнормальное, логарифмически-нормальное распределение 176  

Весьма часто физические параметры подчиняются так называемому логарифмически нормальному распределению. На основании анализа табл. 95 и 96 можно утверждать, что парные коэффициенты корреляции, подсчитанные по параметрам в логарифмическом масштабе, будут незначимо отличаться от линейных парных коэффициентов корреляции. В табл. 95 и 96 приведены парные коэффициенты корреляции в линейном (верхняя строка) и логарифмическом (нижняя строка) масштабах. Незначимым различие считается, если доверительные интервалы для парных коэффициентов корреляции пересекаются. Рамкой обведены те клетки, в которых различие парных коэффициентов корреляции оказалось значимым. Как видно, для всех приборов существенно нелинейна взаимосвязь 1-го и 6-го, 2-го и 6-го, 2-го и 5-го параметров. Для годных приборов то же относится к взаимосвязи 1-го и 6-го, 2-го и 6-го параметров.  

К математическим средствам оценки рисков относятся статистические расчеты, нормальное распределение , логарифмически нормальное распределение, линейное программирование , эконометрические методы и т.д.  

Стандарт устанавливает правила определения оценок и доверительных границ для параметров логарифмически нормального распределения по совокупности статистических данных, если эти данные подчинены логарифмически нормальному распределению.  

Логарифмически нормальное распределение. Пусть X N(m,a2). Случайная величина Y = ех называется логарифмически нормальной. Можно показать, что плотность распределения этой величины определяется формулой  

Логарифмически нормальное распределение возникает в ситуации, когда исследуемая случайная величина формируется под воздействием большого числа мультипликативных случайных факторов . Можно показать, что  

С помощью этой модификации нормальное распределение преобразуется в логарифмически нормальное распределение. Цена любого свободно котируемого инструмента имеет нулевое значение в качестве нижнего предела 1. Поэтому когда цена этого инструмента падает и приближается к нулю, то, теоретически, цене инструмента должно быть все труднее понизиться. Рассмотрим некую акцию стоимостью 10 долларов. Если бы акция упала на 5 долларов до 5 долларов за акцию (50% понижение), то в соответствии с нормальным распределением она может также легко упасть с 5 долларов до 0 долларов. Однако при логарифмически нормальном распределении подобное падение на 50% с цены в 5 долларов за акцию до цены  

Логарифмически нормальное распределение, рисунок 3-15, работает точно так же, как и нормальное распределение , за тем исключением, что при логарифмически нормальном распределении мы имеем дело с процентными изменениями, а не абсолютными. Теперь рассмотрим движение вверх. В соответствии с логарифмически нормальным распределением движение с 10 долларов за акцию до 20 долларов за акцию аналогично движению с 5 долларов до 10 долларов за акцию, так как оба эти движения представляют повышение на 100%. Это не означает, что мы не будем использовать нормальное распределение . Мы просто познакомимся с логарифмически нормальным распределением, покажем его отличие от нормального (логарифмически нормальное распределение использует процентные, а не абсолютные изменения цены) и увидим, что обычно именно оно используется при обсуждении ценовых движений или в том случае, когда нормальное распределение ограничено снизу нулем. Для использования логарифмически нормального распределения необходимо преобразовывать данные, с которыми вы работаете, в натуральные логарифмы1.  

Мы немного познакомились с математикой нормального и логарифмически нормального распределения и теперь посмотрим, как находить оптимальное f по нормально распределенным результатам. Формула Келли является примером параметрического оптимального f, где f является функцией двух параметров. В формуле Келли вводные параметры - это процент выигрышных ставок и отношение выигрыша к проигрышу. Однако формула Келли даст вам оптимальное f только тогда, когда возможные результаты имеют бернуллиево распределение. Другими словами, формула Келли даст правильное оптимальное f, когда есть только два возможных результата, в противном случае, как, например, в нормально распределенных результатах, формула Келли не даст вам правильное оптимальное f2.  

Логарифмически нормальное распределение зависит от двух параметров математического ожидания а и среднего квадратичес-кого отклонения о случайной величины Y (логарифмов доходов) а = E(Y) = E(InX), а2 = var(F) = var(hiA). Расчет второго параметра проводится на основе данных выборочного бюджетного обследования по следующей формуле  

Для изучения особенностей дифференциации населения по уровню доходов используются структурные характеристики радов распределения, такие, как мода, медиана, квартили, децили и др. Эти статистические характеристики могут быть выражены и исчислены через параметры логарифмически нормального распределения (а и о). Вместе с тем приближенную оценку структурных характеристик можно получить и на основе уже построенных статистических рядов, публикуемых органами государственной статистики.  

ЛОГНОРМАЛЬНОЕ, ЛОГАРИФМИЧЕСКИ-НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ - распределение случайной величины , логарифм которой характеризуется нормальным распределением . С его помощью удобно описывать некоторые экономические явления, напр., дифференциацию заработной платы , распределение доходов.  

При использовании вероятностных моделей риска распространены два характерных заблуждения. Во-первых, если величина ущерба зависит от множества причин, то она должна иметь нормальное распределение . Это ошибочное мнение, так как все зависит от способа их взаимодействия. Если причины действуют аддитивно (суммарно), то согласно Центральной предельной теореме теории вероятностей величина ущерба действительно имеет приблизительно нормальное (гауссово) распределение. Если же причины действуют мультипликативно, то в силу той же теоремы следует приближать распределение величины ущерба X с помощью логарифмически нормального распределения. Если же основное влияние оказывает

Случайная переменная Y имеет логарифмически нормальное распределение с параметрами μ и σ, если случайная переменная X = lnY имеет нормальное распределение с теми же параметрами μ и σ. Зная характер связи между переменными X и Y, можем легко построить график плотности вероятности случайной переменной с логарифмически нормальным распределением (Рисунок 4.2).

Рисунок 4.2 – Кривые плотности логарифмически нормального распределения при различных значениях параметров μ и σ

Если случайная переменная X имеет функцию плотности вероятности, определяемую формулой (4.6), и если X = lnY, то:

Откуда имеем для у > 0:

Из определения следует, что случайная переменная, подчиняющаяся логарифмически нормальному распределению, может принимать только положительные значения. Как показано на рисунке 4.2, кривые функции f(y) имеют левостороннюю асимметрию, которая тем сильнее, чем больше значения параметров μ и σ. Каждая кривая имеет один максимум и является определенной для всех положительных значений у.

Вычисление математического ожидания и дисперсии случайной переменной с логарифмически нормальным распределением не составляет особых трудностей:

Путем подстановок и ввода новых переменных в интегралах 4.15 и 4.16 получим:

Вообще, для исчисления вероятности того, что случайная переменная Y с логарифмически нормальным распределением и плотностью f(y, μ, σ), примет значение в интервале (а, b), следует взять интеграл:

Однако на практике удобнее воспользоваться тем, что логарифм случайной переменной Y имеет нормальное распределение. Вероятность того, что а ≤ Y ≤ b равнозначна вероятности того, что
lnа ≤ lnY ≤ lnb.

Вычислим вероятность того, что случайная переменная с логарифмически распределением μ = 1, σ = 0,5, примет значение в интервале (2, 5). Имеем:

Из таблиц логарифмов находим ln2 = 0,6932 и ln5 = 1,6094.

Обозначив lnY = X, можем написать:

Причем случайная переменная X подчинена нормальному распределению со средним значением μ = 1 и стандартным отклонением σ = 0,5. Теперь искомую вероятность нетрудно вычислить по таблицам интегральной функции нормального распределения:

Вопросы для самоконтроля

1 Определение прямоугольного распределения.

2 График плотности вероятности случайной переменной с прямоугольным распределением

3 Основополагающее значение прямоугольного распределения.

4 Математическое ожидание и дисперсия случайной переменной в прямоугольном распределении.



5 Роль нормального распределения в математической статистике.

6 Что такое нормальное распределение и как оно связано с биномиальным?

7 График плотности вероятности случайной переменной с нормальным распределением.

8 Какими статистическими параметрами может быть задано нормальное распределение?

9 Почему нормальное распределение является непрерывным?

10 Уравнение нормальной кривой.

11 Что такое нормированное отклонение?

12 Уравнение кривой нормального распределения в нормированной форме.

13 Какими значениями μ и σ характеризуется нормальная совокупность в нормированной форме?

14 Какая доля данных выборки укладывается в пределах ±1σ, ±2σ, ±3σ?

15 Что показывает таблица нормального интеграла вероятностей?

16 Уравнение логарифмически нормальной кривой.

17 График плотности вероятности случайной переменной с логарифмически нормальным распределением.

18 Какие необходимо выполнить преобразования, чтобы из логарифмически нормального распределения получить нормальное распределение?

19 Какими статистическими параметрами задается логарифмически нормальное распределение?

ТЕМА 5 Распределения параметров выборки

5.1 t – распределение Стьюдента

5.2 F-распределение Фишера–Снедекора

5.3 χ 2 –распределение

5.1 t – распределение Стьюдента

Закон нормального распределения проявляется при числе признаков n > 20–30. Однако экспериментатор часто проводит ограниченное число измерений, основывает свои выводы на малых выборках. При небольшом числе наблюдений результаты обычно близки и редко появляются большие отклонения. Это легко объяснить законом нормального распределения, согласно которому вероятность появления малых отклонений больше, чем отклонений значительных. Так, вероятность отклонений, превышающих по абсолютной величине ±2σ, равна 0,05, или один случай на 20 измерений, а отклонений ± 3σ – 0,01, или один случай на 100.

Если же полевой опыт проводят, например, в 4 – 6 повторностях, то естественно ожидать, что среди показаний урожаев на параллельных делянках очень больших отклонений не будет. Поэтому стандартное отклонение s, подсчитанное по малой выборке, в большинстве случаев будет меньше, чем по всей генеральной совокупности . Следовательно, в этих случаях полагаться на критерии нормального распределения в своих выводах нельзя.

С начала XX века в математической статистике стало разрабатываться новое направление, которое можно назвать статистикой малых выборок. Наибольшее практическое значение для экспериментальной работы имело открытое в 1908 г. английским статистиком и химиком В. Госсетом t–распределение, получившее название распределения Стьюдента (англ. стьюдент – студент, псевдоним В. Госсета).

Распределение t Стьюдента для выборочных средних определяется равенством:

Числитель формулы означает отклонение выборочной средней от средней всей совокупности , а знаменатель:

– является показателем, оценивающим величину стандартной ошибки средней выборочной совокупности.

Таким образом, величина t измеряется отклонением выборочной средней от средней совокупности , выраженным в долях ошибки выборки , принятой за единицу.

Максимумы частоты нормального и t-распределения совпадают, но форма кривой t-распределения всецело зависит от числа степеней свободы. При очень малых значениях степеней свободы она принимает вид плосковершинной кривой, причем площадь, отграниченная кривой, больше, чем при нормальном распределении, а при увеличении числа наблюдений (n > 30) распределение t приближается к нормальному и переходит в него при n = ∞.

На рисунке 1.1 представлено дифференциальное и интегральное распределение t-Стьюдента при 10 степенях свободы.

Рисунок 5.1 – Дифференциальное (слева) и интегральное (справа) распределение t–Стьюдента

Распределение t–Стьюдента имеет важное значение при работе с малыми выборками: позволяет определить доверительный интервал, накрывающий среднюю совокупности , и проверить ту или иную гипотезу относительно генеральной совокупности. При этом нет необходимости знать параметры совокупности и , достаточно иметь их оценки μ и σ для определенного объема выборки n.

5.1.1 Проблема Беренса–Фишера

Проверка гипотезы о генеральных средних двух групп с нормальным распределением и неравными дисперсиями в математической статистике называется проблемой Беренса–Фишера и имеет в настоящее время только приближенные решения. Почему так важно требование равенства дисперсий в сравниваемых группах? Не вдаваясь в детали этой проблемы, отметим, что чем больше различаются между собой дисперсии и объемы выборок, тем сильнее отличается распределение "вычисляемого t-критерия" от распределения "t-критерия Стьюдента". При этом различную величину имеет как сам t-критерий, так и такой параметр этих распределений, как число степеней свободы. В свою очередь число степеней свободы сказывается на величине достигнутого (критического) уровня значимости (р < ...) определяемого для вычисленного значения t-критерия.

Пренебрежение исследователями, приведенными выше условиями допустимости использования t-критерия Стьюдента, приводит к существенному искажению результатов проверки гипотез о равенстве средних. Поэтому в работах, где проверка гипотез о равенстве двух средних производилась с помощью t-критерия Стьюдента, и нет упоминания критериев проверки нормальности распределения и равенства дисперсий, имеются основания предполагать некорректное использование авторами данного критерия, а стало быть, и сомнительность декларируемых ими выводов.

Другая частая ошибка – применение t–критерия Стьюдента для проверки гипотез о равенстве трех и более групповых средних. В этом случае необходимо применять так называемую общую линейную модель, реализованную в процедуре однофакторного дисперсионного анализа с фиксированными эффектами.

Рассмотрим подробнее особенности использования t–критерия Стьюдента. Наиболее часто t–критерий используется в двух случаях. В первом случае его применяют для проверки гипотезы о равенстве генеральных средних двух независимых, несвязанных выборок (так называемый двухвыборочный t–критерий). В этом случае есть контрольная группа и опытная группа, состоящая из разных объектов, количество которых в группах может быть различно. Во втором же случае используется так называемый парный t–критерий, когда одна и та же группа объектов порождает числовой материал для проверки гипотез о средних. Поэтому эти выборки называют зависимыми, связанными. Например, измеряется содержание лейкоцитов у здоровых животных, а затем у тех же самых животных после облучения определенной дозой излучения. В обоих случаях должно выполняться требование нормальности распределения исследуемого признака в каждой из сравниваемых групп. Доминирование t–критерия Стьюдента в подавляющем большинстве работ отражает два важных аспекта.

Во-вторых, это говорит также и о том, что этим авторам неизвестны какие-либо альтернативы данному критерию, либо они не в состоянии ими самостоятельно воспользоваться. Можно без преувеличения сказать, что в настоящее время бездумное применение t–критерия Стьюдента в большинстве биологических работ приносит больше вреда, нежели пользы.

5.2 F-распределение Фишера–Снедекора

Если из нормально распределенной совокупности взять две независимые выборки объемом n 1 и n 2 и подсчитать дисперсии и со степенями свободы ν 1 = n –1 и ν 2 = n 2 –1, то можно определить отношение дисперсий:

Отношение дисперсий берут таким, чтобы в числителе была большая дисперсия, и поэтому F ≥ 1.

Распределение F зависит только от числа степеней свободы ν 1 и ν 2 (закон F-распределения открыл Р.А. Фи шер). Когда две сравниваемые выборки являются случайными независимыми из общей совокупности с генеральной средней , то фактическое значение F не выйдет за определенные пределы и не превысит критическое для данных ν 1 и ν 2 теоретическое значение критерия F (F факт < F теор). Если генеральные параметры сравниваемых групп различны, то F факт > F теор. Теоретические значения F для 5%-ного и 1%-ного уровня значимости даны в таблице, где табулированы только правые критические точки для F ≥ 1, так как всегда принято находить отношение большей дисперсии к меньшей.

Кривые, полученные из функции распределения для всех возможных значений F, особенно при небольшом числе наблюдений, имеют асимметричную форму – длинный «хвост» больших значений и большую концентрацию малых величин F (рисунок 5.2).

Рисунок 5.2 – Дифференциальное (слева) и интегральное (справа)
F-распределение Фишера–Снедекора

Отметим, что t–распределение Стьюдента является частным случаем F–распределения при числе степеней свободы ν 1 = 1 и ν 2 = ν, т. е. равно числу степеней свободы для распределения t. В этом случае наблюдается следующее соотношение между F и t:

5.3 χ 2 –распределение

Многие фактические распределения соответствуют моделям теоретических распределений (нормальное, биномиальное, Пуассона) Однако, на практике существуют распределения, сильно отличающиеся от нормального. Для оценки степени расхождения или степени согласия между численностями фактического и теоретического распределений вводятся статистические критерии согласия, например критерий χ 2 . Этот критерий применяется для решения задач статистического анализа, например для проверки гипотез: о независимости двух принципов, положенных в основу группировки результатов наблюдений из одной совокупности; об однородности групп в отношении некоторых определяемых характеристик; о согласии теоретической и экспериментальной кривых численностей. Критерий χ 2 может называться как критерием согласия, так и критерием независимости, критерием однородности. Закон распределения χ 2 (хи–квадрат) открыл К. Пирсон. Кривая распределения, полученная из функции хи–квадрат:

где f – фактические и F – теоретические частоты численности объектов выборки. Ее вид в сильной степени зависит от числа степеней свободы. Для малого числа степеней свободы ν кривая асимметрична (рисунок 5.3), но с увеличением ν асимметрия уменьшается и при ν = ∞ кривая становится нормальной гауссовой.

Распределение χ 2 , так же как и t–распределение, частный случай
F – распределения при ν 1 = ν и ν 2 = ∞.

Рисунок 5.3 – Дифференциальное (слева) и интегральное (справа)
χ 2 –распределение

Вопросы для самоконтроля

1 В каких случаях предпочтительнее использовать t-распределение Стьюдента, а не нормальное распределение?

2 Какие величины необходимо оценивать для использования t-распределения Стьюдента?

3 В чем суть проблемы Беренса–Фишера?

4 Чем численно выражается F-распределение для двух независимых выборок из общей совокупности переменных?

5 От каких характерных величин случайных переменных зависит F-распределение?

6 На какие вопросы может ответить значение критерия χ 2 при статистической обработке экспериментальных данных?

ТЕМА 6 Основы математической статистики

6.1 Средние величины

6.2 Средняя арифметическая

6.3 Средняя геометрическая

6.4 Средняя гармоническая

Модель логарифмического распределения известного английского математика Фишера была первой попыткой описать отношение между числом видов и числом особей этих видов. Особенным успехом эта модель пользовалась в энтомологических исследованиях и была впервые применена Фишером как теоретическая модель для описания распределения видов в коллекциях. Этой модели и статистике разнообразия было посвящено подробное исследование Л. Р. Тейлора с соавторами .

Распределение частот видов для логарифмического распределения описывается следующей последовательностью:

где х – число видов, представленных одной особью, х 2 /2 – число видов, представленных двумя особями и т. д.

Логарифмическая модель имеет два параметра  и x . Это означает, что для выборки объемом N и числом видов S существует только одно возможное распределение частот видов по их относительному обилию, так как и , и х являются функциями N и S . Чем больше выборка, извлеченная из данного сообщества, тем больше значение х и тем меньше доля особей, относящихся к видам, представленных одной особью в выборке. Два параметра S и N (общее число особей) связаны между собой зависимостью
, где – индекс разнообразия, который можно получить из уравнения:

,

где сумма всех особей N , принадлежащих S видам:

Моделью логарифмического распределения, характеризующейся малым числом обильных видов и большой долей «редких», с наибольшей вероятностью можно описать такие сообщества, структура которых определяется одним или немногими экологическими факторами.

Как показали исследования, проведенные Мэгарран в Ирландии , такому ряду соответствует распределение обилий видов растений наземного яруса в хвойных культурах в условиях низкой освещенности.

5.3.3. Логарифмическинормальное распределение

Для большинства сообществ характерно лог-нормальное распределение обилий видов, но обычно эта модель указывает на большое, зрелое и разнообразное сообщество. Такое распределение характерно для систем, когда величина некоей переменной определяется большим числом факторов.

Эта модель впервые была применена к распределению обилий видов Престоном. На разнообразном эмпирическом материале он показал, что частоты видов в больших выборках распределены в соответствии с логарифмическинормальным законом. По разработанной им методике в частотные классы группируются виды с числом особей, заключенным в промежутках, которые ограничены числами геометрической прогрессии. Престон нанес на ось обилия видов в масштабе логарифма по основанию 2 (log 2) и назвал получившиеся классы октавами. Но для описания модели можно использовать любое основание логарифма. На графике распределения частот видов по полученным таким способом классам численности соответствуют известной кривой нормального распределения, усеченной слева, в области частот редких видов.

Распределение обычно записывается в форме:

, где

S R – теоретическое число видов в октаве, расположенной в R октавах от модальной октавы; S mo – число видов в модальной октаве; – стандартное отклонение теоретической лог-нормальной кривой, выраженное в числе октав.

Рис. 5.3.2. Лог-нормальное распределение

Лог-нормальное распределение описывается симметричной «нормальной», т. е. колоколообразной кривой (рис. 5.3.2.). Однако если данные, которым она соответствует, получены из ограниченной выборки, то левая часть кривой (т. е. редкие, неучтенные виды) будет выражена нечетко. Престон назвал такую точку усечения кривой слева «линией занавеса». «Линия занавеса» может сдвигаться влево при увеличении объема выборки. На рисунке она указана стрелкой. Для большинства выборок выражена только часть кривой справа от моды. Только при огромном количестве данных, собранных на обширных биогеографических территориях, прослеживается полная кривая. S -образная кривая указывает на сложный характер дифференциации и перекрывания ниш. Большинство видов в природных открытых экосистемах существует в условиях соревнования за ресурсы, а не на условиях прямой конкуренции; множество адаптаций дает возможность делить ниши без конкурентного исключения из местообитания. Эта модель наиболее вероятна для ненарушенных сообществ.


Случайная переменная Y имеет логарифмически нормальное распределение с параметрами μ и σ, если случайная переменная X = lnY имеет нормальное распределение с теми же параметрами μ и σ. Зная характер связи между переменными X и Y, можем легко построить график плотности вероятности случайной переменной с логарифмически нормальным распределением (Рисунок 4.2).

Рисунок 4.2 – Кривые плотности логарифмически нормального распределения при различных значениях параметров μ и σ

Если случайная переменная X имеет функцию плотности вероятности, определяемую формулой (4.6), и если X = lnY, то:

Откуда имеем для у > 0:

Из определения следует, что случайная переменная, подчиняющаяся логарифмически нормальному распределению, может принимать только положительные значения. Как показано на рисунке 4.2, кривые функции f(y) имеют левостороннюю асимметрию, которая тем сильнее, чем больше значения параметров μ и σ. Каждая кривая имеет один максимум и является определенной для всех положительных значений у.

Вычисление математического ожидания и дисперсии случайной переменной с логарифмически нормальным распределением не составляет особых трудностей:

Путем подстановок и ввода новых переменных в интегралах 4.15 и 4.16 получим:

Вообще, для исчисления вероятности того, что случайная переменная Y с логарифмически нормальным распределением и плотностью f(y, μ, σ), примет значение в интервале (а, b), следует взять интеграл:

Однако на практике удобнее воспользоваться тем, что логарифм случайной переменной Y имеет нормальное распределение. Вероятность того, что а ≤ Y ≤ b равнозначна вероятности того, что
lnа ≤ lnY ≤ lnb.

Вычислим вероятность того, что случайная переменная с логарифмически распределением μ = 1, σ = 0,5, примет значение в интервале (2, 5). Имеем:

Из таблиц логарифмов находим ln2 = 0,6932 и ln5 = 1,6094.

Обозначив lnY = X, можем написать:

Причем случайная переменная X подчинена нормальному распределению со средним значением μ = 1 и стандартным отклонением σ = 0,5. Теперь искомую вероятность нетрудно вычислить по таблицам интегральной функции нормального распределения:

Вопросы для самоконтроля

1 Определение прямоугольного распределения.

2 График плотности вероятности случайной переменной с прямоугольным распределением

3 Основополагающее значение прямоугольного распределения.

4 Математическое ожидание и дисперсия случайной переменной в прямоугольном распределении.

5 Роль нормального распределения в математической статистике.

6 Что такое нормальное распределение и как оно связано с биномиальным?

7 График плотности вероятности случайной переменной с нормальным распределением.

8 Какими статистическими параметрами может быть задано нормальное распределение?

9 Почему нормальное распределение является непрерывным?

10 Уравнение нормальной кривой.

11 Что такое нормированное отклонение?

12 Уравнение кривой нормального распределения в нормированной форме.

13 Какими значениями μ и σ характеризуется нормальная совокупность в нормированной форме?

14 Какая доля данных выборки укладывается в пределах ±1σ, ±2σ, ±3σ?

15 Что показывает таблица нормального интеграла вероятностей?

16 Уравнение логарифмически нормальной кривой.

17 График плотности вероятности случайной переменной с логарифмически нормальным распределением.

18 Какие необходимо выполнить преобразования, чтобы из логарифмически нормального распределения получить нормальное распределение?

19 Какими статистическими параметрами задается логарифмически нормальное распределение?

ТЕМА 5 Распределения параметров выборки

5.1 t – распределение Стьюдента

5.2 F-распределение Фишера–Снедекора

5.3 χ 2 –распределение

5.1 t – распределение Стьюдента

Закон нормального распределения проявляется при числе признаков n > 20–30. Однако экспериментатор часто проводит ограниченное число измерений, основывает свои выводы на малых выборках. При небольшом числе наблюдений результаты обычно близки и редко появляются большие отклонения. Это легко объяснить законом нормального распределения, согласно которому вероятность появления малых отклонений больше, чем отклонений значительных. Так, вероятность отклонений, превышающих по абсолютной величине ±2σ, равна 0,05, или один случай на 20 измерений, а отклонений ± 3σ – 0,01, или один случай на 100.

Если же полевой опыт проводят, например, в 4 – 6 повторностях, то естественно ожидать, что среди показаний урожаев на параллельных делянках очень больших отклонений не будет. Поэтому стандартное отклонение s, подсчитанное по малой выборке, в большинстве случаев будет меньше, чем по всей генеральной совокупности . Следовательно, в этих случаях полагаться на критерии нормального распределения в своих выводах нельзя.

С начала XX века в математической статистике стало разрабатываться новое направление, которое можно назвать статистикой малых выборок. Наибольшее практическое значение для экспериментальной работы имело открытое в 1908 г. английским статистиком и химиком В. Госсетом t–распределение, получившее название распределения Стьюдента (англ. стьюдент – студент, псевдоним В. Госсета).

Распределение t Стьюдента для выборочных средних определяется равенством:

Числитель формулы означает отклонение выборочной средней от средней всей совокупности , а знаменатель:

– является показателем, оценивающим величину стандартной ошибки средней выборочной совокупности.

Таким образом, величина t измеряется отклонением выборочной средней от средней совокупности , выраженным в долях ошибки выборки , принятой за единицу.

Максимумы частоты нормального и t-распределения совпадают, но форма кривой t-распределения всецело зависит от числа степеней свободы. При очень малых значениях степеней свободы она принимает вид плосковершинной кривой, причем площадь, отграниченная кривой, больше, чем при нормальном распределении, а при увеличении числа наблюдений (n > 30) распределение t приближается к нормальному и переходит в него при n = ∞.

На рисунке 1.1 представлено дифференциальное и интегральное распределение t-Стьюдента при 10 степенях свободы.

Рисунок 5.1 – Дифференциальное (слева) и интегральное (справа) распределение t–Стьюдента

Распределение t–Стьюдента имеет важное значение при работе с малыми выборками: позволяет определить доверительный интервал, накрывающий среднюю совокупности , и проверить ту или иную гипотезу относительно генеральной совокупности. При этом нет необходимости знать параметры совокупности и , достаточно иметь их оценки μ и σ для определенного объема выборки n.

5.1.1 Проблема Беренса–Фишера

Проверка гипотезы о генеральных средних двух групп с нормальным распределением и неравными дисперсиями в математической статистике называется проблемой Беренса–Фишера и имеет в настоящее время только приближенные решения. Почему так важно требование равенства дисперсий в сравниваемых группах? Не вдаваясь в детали этой проблемы, отметим, что чем больше различаются между собой дисперсии и объемы выборок, тем сильнее отличается распределение "вычисляемого t-критерия" от распределения "t-критерия Стьюдента". При этом различную величину имеет как сам t-критерий, так и такой параметр этих распределений, как число степеней свободы. В свою очередь число степеней свободы сказывается на величине достигнутого (критического) уровня значимости (р < ...) определяемого для вычисленного значения t-критерия.

Пренебрежение исследователями, приведенными выше условиями допустимости использования t-критерия Стьюдента, приводит к существенному искажению результатов проверки гипотез о равенстве средних. Поэтому в работах, где проверка гипотез о равенстве двух средних производилась с помощью t-критерия Стьюдента, и нет упоминания критериев проверки нормальности распределения и равенства дисперсий, имеются основания предполагать некорректное использование авторами данного критерия, а стало быть, и сомнительность декларируемых ими выводов.

Другая частая ошибка – применение t–критерия Стьюдента для проверки гипотез о равенстве трех и более групповых средних. В этом случае необходимо применять так называемую общую линейную модель, реализованную в процедуре однофакторного дисперсионного анализа с фиксированными эффектами.

Рассмотрим подробнее особенности использования t–критерия Стьюдента. Наиболее часто t–критерий используется в двух случаях. В первом случае его применяют для проверки гипотезы о равенстве генеральных средних двух независимых, несвязанных выборок (так называемый двухвыборочный t–критерий). В этом случае есть контрольная группа и опытная группа, состоящая из разных объектов, количество которых в группах может быть различно. Во втором же случае используется так называемый парный t–критерий, когда одна и та же группа объектов порождает числовой материал для проверки гипотез о средних. Поэтому эти выборки называют зависимыми, связанными. Например, измеряется содержание лейкоцитов у здоровых животных, а затем у тех же самых животных после облучения определенной дозой излучения. В обоих случаях должно выполняться требование нормальности распределения исследуемого признака в каждой из сравниваемых групп. Доминирование t–критерия Стьюдента в подавляющем большинстве работ отражает два важных аспекта.

Во-вторых, это говорит также и о том, что этим авторам неизвестны какие-либо альтернативы данному критерию, либо они не в состоянии ими самостоятельно воспользоваться. Можно без преувеличения сказать, что в настоящее время бездумное применение t–критерия Стьюдента в большинстве биологических работ приносит больше вреда, нежели пользы.

5.2 F-распределение Фишера–Снедекора

Если из нормально распределенной совокупности взять две независимые выборки объемом n 1 и n 2 и подсчитать дисперсии и со степенями свободы ν 1 = n –1 и ν 2 = n 2 –1, то можно определить отношение дисперсий:

Отношение дисперсий берут таким, чтобы в числителе была большая дисперсия, и поэтому F ≥ 1.

Распределение F зависит только от числа степеней свободы ν 1 и ν 2 (закон F-распределения открыл Р.А. Фи шер). Когда две сравниваемые выборки являются случайными независимыми из общей совокупности с генеральной средней , то фактическое значение F не выйдет за определенные пределы и не превысит критическое для данных ν 1 и ν 2 теоретическое значение критерия F (F факт < F теор). Если генеральные параметры сравниваемых групп различны, то F факт > F теор. Теоретические значения F для 5%-ного и 1%-ного уровня значимости даны в таблице, где табулированы только правые критические точки для F ≥ 1, так как всегда принято находить отношение большей дисперсии к меньшей.

Кривые, полученные из функции распределения для всех возможных значений F, особенно при небольшом числе наблюдений, имеют асимметричную форму – длинный «хвост» больших значений и большую концентрацию малых величин F (рисунок 5.2).

Рисунок 5.2 – Дифференциальное (слева) и интегральное (справа)
F-распределение Фишера–Снедекора

Отметим, что t–распределение Стьюдента является частным случаем F–распределения при числе степеней свободы ν 1 = 1 и ν 2 = ν, т. е. равно числу степеней свободы для распределения t. В этом случае наблюдается следующее соотношение между F и t:

5.3 χ 2 –распределение

Многие фактические распределения соответствуют моделям теоретических распределений (нормальное, биномиальное, Пуассона) Однако, на практике существуют распределения, сильно отличающиеся от нормального. Для оценки степени расхождения или степени согласия между численностями фактического и теоретического распределений вводятся статистические критерии согласия, например критерий χ 2 . Этот критерий применяется для решения задач статистического анализа, например для проверки гипотез: о независимости двух принципов, положенных в основу группировки результатов наблюдений из одной совокупности; об однородности групп в отношении некоторых определяемых характеристик; о согласии теоретической и экспериментальной кривых численностей. Критерий χ 2 может называться как критерием согласия, так и критерием независимости, критерием однородности. Закон распределения χ 2 (хи–квадрат) открыл К. Пирсон. Кривая распределения, полученная из функции хи–квадрат:

где f – фактические и F – теоретические частоты численности объектов выборки. Ее вид в сильной степени зависит от числа степеней свободы. Для малого числа степеней свободы ν кривая асимметрична (рисунок 5.3), но с увеличением ν асимметрия уменьшается и при ν = ∞ кривая становится нормальной гауссовой.

Распределение χ 2 , так же как и t–распределение, частный случай
F – распределения при ν 1 = ν и ν 2 = ∞.

Рисунок 5.3 – Дифференциальное (слева) и интегральное (справа)
χ 2 –распределение

Вопросы для самоконтроля

1 В каких случаях предпочтительнее использовать t-распределение Стьюдента, а не нормальное распределение?

2 Какие величины необходимо оценивать для использования t-распределения Стьюдента?

3 В чем суть проблемы Беренса–Фишера?

4 Чем численно выражается F-распределение для двух независимых выборок из общей совокупности переменных?

5 От каких характерных величин случайных переменных зависит F-распределение?

6 На какие вопросы может ответить значение критерия χ 2 при статистической обработке экспериментальных данных?

ТЕМА 6 Основы математической статистики

6.1 Средние величины

6.2 Средняя арифметическая

6.3 Средняя геометрическая

6.4 Средняя гармоническая



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows