Объектный принцип. Дайте определение понятию “конструктор”. Принцип наследования ООП и подклассы

Объектный принцип. Дайте определение понятию “конструктор”. Принцип наследования ООП и подклассы

22.05.2019

Общее представление об объектно-ориентированном программировании и его особенностях были рассмотрены в первом уроке. Здесь обобщим изученный в этом курсе материал.

В Python все объекты являются производными классов и наследуют от них атрибуты. При этом каждый объект формирует собственное пространство имен. Python поддерживает такие ключевые особенности объектно-ориентированного программирования как наследование, инкапсуляцию и полиморфизм. Однако инкапсуляцию в понимании сокрытия данных Python поддерживает только в рамках соглашения, но не синтаксиса языка.

В курсе не было уделено внимание множественному наследованию, когда дочерний класс наследуется от нескольких родительских. Такое наследование поддерживается в Python в полной мере и дает возможность в производном классе сочетать атрибуты двух и более классов. При множественном наследовании следует учитывать определенные особенности поиска атрибутов.

Полиморфизм позволяет объектам разных классов иметь схожие интерфейсы. Он реализуется путем объявления в них методов с одинаковыми именами. К проявлению полиморфизма как особенности ООП также можно отнести методы перегрузки операторов.

Кроме наследования, инкапсуляции и полиморфизма существуют другие особенности ООП. Таковой является композиция, или агрегирование, когда класс включает в себя вызовы других классов. В результате при создании объекта от класса-агрегата, создаются объекты других классов, являющиеся составными частями первого.

Классы обычно помещают в модули. Каждый модуль может содержать несколько классов. В свою очередь модули могут объединяться в пакеты. Благодаря пакетам в Python организуются пространства имен.

Преимущества ООП

Особенности объектно-ориентированного программирования наделяют его рядом преимуществ.

Так ООП позволяет использовать один и тот же программный код с разными данными. На основе классов создается множество объектов, у каждого из которых могут быть собственные значения полей. Нет необходимости вводить множество переменных, т. к. объекты получают в свое распоряжение индивидуальные пространства имен. В этом смысле объекты похожи на структуры данных. Объект можно представить как некую упаковку данных, к которой присоединены инструменты для их обработки – методы.

Наследование позволяет не писать новый код, а использовать и настраивать уже существующий за счет добавления и переопределения атрибутов.

Недостатки ООП

ООП позволяет сократить время на написание исходного кода, однако предполагает большую роль предварительного анализа предметной области и проектирования. От правильности решений на этом этапе зависит куда больше, чем от непосредственного написания исходного кода.

Следует понимать, что одна и та же задача может быть решена разными объектными моделями, каждая из которых будет иметь свои преимущества и недостатки. Только опытный разработчик может сказать, какую из них будет проще расширять и обслуживать в дальнейшем.

Особенности ООП в Python

По сравнению со многими другими языками в Python объектно-ориентированное программирования обладает рядом особых черт.

Всё является объектом – число, строка, список, функция, экземпляр класса, сам класс, модуль. Так класс – объект, способный порождать другие объекты – экземпляры.

В Python нет просто типов данных. Все типы – это классы.

Инкапсуляции в Python не уделяется особого внимания. В других языках программирования обычно нельзя получить напрямую доступ к свойству, описанному в классе. Для его изменения может быть предусмотрен специальный метод. В Python же не считается предосудительным непосредственное обращение к свойствам.

И напоследок

Python – это все-таки скриптовый интерпретируемый язык. Хотя на нем пишутся в том числе крупные проекты, часто он используется в веб-разработке, системном администрировании для создания небольших программ-сценариев. В этом случае обычно достаточно встроенных средств языка, "изобретать" собственные классы излишне.

(как расшифровывается ООП) – это, прежде всего, парадигма программирования.
Парадигма программирования определяет то, как программист видит выполнение программы.
Так, для парадигмы ООП характерно, что программист рассматривает программу в виде набора взаимодействующих объектов, в то время как, например, в функциональном программировании программа представляется в виде последовательности вычисления функций. Процедурное программирование или, как его еще правильно называют, классическое операциональное, подразумевает написание алгоритма для решения задачи; при этом ожидаемые свойства конечного результата не описываются и не указываются. Структурное программирование в основном придерживается тех же принципов, что и процедурное, лишь немного дополняя их полезными приемами.
Парадигмы непроцедурного программирования, к которым можно отнести объектно-ориентированную парадигму, имеют совершенно другие идеи.
Определение Гради Буча гласит: “Объектно-ориентированное программирование – это методология программирования, которая основана на представлении программы в виде совокупности объектов, каждый из которых является реализацией определенного класса (типа особого вида), а классы образуют иерархию на принципах наследуемости”.
Структурное и объектно-ориентированное программирование строятся на таком научном методе как декомпозиция — метод, который использует структуру задачи и позволяет разбить решение общей большой задачи на решение последовательности меньших задач. Декомпозиция ООП происходит не по алгоритмам, а по объектам, использующимся при решении задачи. Данная декомпозиция уменьшает размер программных систем благодаря повторному использованию общих механизмов. Известно, что системы визуального программирования или системы, построенные на принципах объектно-ориентированного программирования, являются более гибкими и легче эволюционируют со временем.

История развития ООП берет свое начало в конце 60-х годов. Первым объектно-ориентированным языком был язык программирования Simula, созданный в компьютерном центре в Норвегии. Язык предназначался для моделирования ситуаций реального мира. Особенностью Simula было то, что программа, написанная на языке, была организована по объектам программирования. Объекты имели инструкции, называемые методами, и данные, которые назывались переменными; методы и данные определяли поведение объекта. В процессе моделирования объект вел себя согласно своему стандартному поведению и, в случае необходимости, изменял данные для отражения влияния назначенного ему действия.

Сегодня существует достаточное количество объектно-ориентированных языков программирования , наиболее популярными из которых в настоящее время являются C++, Delphi, Java, Visual Basic, Flash. Но, кроме того, многие языки, которые принято причислять к процедурной парадигме, тоже обладают свойствами ООП, имея возможность работать с объектами. Так, объектно-ориентированное программирование в C — это большой раздел программирования на данном языке, то же самое касается ООП в python и многих других структурных языках.

Говоря об ООП, часто всплывает еще одно определение — визуальное программирование . Оно дополнительно предоставляет широкие возможности использования прототипов объектов, которые определяются как классы объектов.
События. Во многих средах визуального программирования реализована характеристика (помимо инкапсуляции, полиморфизма и наследования) объекта – событие. Событиями в объектно-ориентированном программировании называется возможность обработки так называемых сообщений (или событий), получаемых от операционной системы Windows или самой программы. Данный принцип характерен для всех компонентов среды, которые обрабатывают различные события, возникающие в процессе выполнения программы. По сути, событие — это некоторое действие, которое активизирует стандартную реакцию объекта. Событием может рассматриваться, например, щелчок по кнопке мыши, наведение курсора мыши на пункт меню, открытие вкладки и т.п. Очередность выполнения тех или иных действий определяется как раз таки событиями, возникающими в системе, и реакцией на них объектов.
Классы и объекты в ООП — различные понятия. Понятие класса в ООП – это тип данных (такой же как, например, Real или String), а объект – конкретный экземпляр класса (его копия), хранящийся в памяти компьютера как переменная соответствующего типа.
Класс является структурным типом данных. Класс включает описание полей данных, а также процедур и функций, которые работают с этими полями данных. Метод ООП – это и есть такие процедуры и функции применительно к классам.
Классы имеют поля (как тип данных запись — record), свойства, которые похожи на поля, но имеют дополнительные описатели, определяющие механизмы записи и считывания данных и методы — подпрограммы, которые направленны на изменение полей и свойств класса.

Основные принципы ООП

Принципы объектно-ориентированного программирования помимо обработки событий – это инкапсуляция, наследование, подклассы и полиморфизм. Они особенно полезны и необходимы при разработке тиражируемых и простых в сопровождении приложений.
Объект объединяет в себе методы и свойства, которые не могут существовать отдельно от него. Поэтому если объект удаляется, то удаляются его свойства и связанные с ним методы. При копировании происходит то же самое: объект копируется как единое целое. Инкапсуляция ООП — это и есть описанная характеристика.

Принцип наследования ООП и подклассы

Абсолютно все объекты создаются на основе классов, при это они наследуют свойства и методы этих классов. В свою очередь классы могут создаваться на основе других классов (родителей), тогда такие классы называют подклассами (потомки). Подклассы наследуют все свойства и методы родительского класса. Кроме того для подкласса или класса-потомка можно определить новые, свои собственные, свойства и методы, а также изменять методы класса-родителя. Изменение свойств и методов родительского класса отслеживается в подклассах, созданных на основе этого класса, а также в объектах, созданных на основе подклассов. В этом и заключается наследование ООП.

Полиморфизм ООП

В объектно-ориентированном программировании полиморфизм характеризуется как взаимозаменяемость объектов с одинаковым интерфейсом. Это можно объяснить так: класс-потомок наследует экземпляры методов класса-родителя, но выполнение этих методов может происходить другим образом, соответствующим специфике класса-потомка, то есть модифицированным.
То есть, если в процедурном программировании имя процедуры или функции однозначно определяет выполняемый код, относящейся к данной процедуре или функции, то в объектно-ориентированном программировании можно использовать одни и те же имена методов для выполнения разных действий. То есть результат выполнения одного и того же метода зависит от типа объекта, к которому применяется данный метод.

На сайте представлена частичная теория объектно-ориентированного программирования для начинающих и ООП примеры решения задач. ООП уроки сайта представляют собой подробные алгоритмы выполнения поставленной задачи. На основе выполнения данных лабораторных работ учащийся сможет в дальнейшем самостоятельно решать другие аналогичные задачи.
Желаем Вам легкого и интересного изучения объектно-ориентированного программирования!

Наверное, в половине вакансий(если не больше), требуется знание и понимание ООП. Да, эта методология, однозначно, покорила многих программистов! Обычно понимание ООП приходит с опытом, поскольку годных и доступно изложенных материалов на данный счет практически нет. А если даже и есть, то далеко не факт, что на них наткнутся читатели. Надеюсь, у меня получится объяснить принципы этой замечательной методологии, как говорится, на пальцах.

Итак, уже в начале статьи я уже упомянул такой термин "методология". Применительно к программированию этот термин подразумевает наличие какого-либо набора способов организации кода, методов его написания, придерживаясь которых, программист сможет писать вполне годные программы.

ООП (или объектно-ориентированное программирование) представляет собой способ организации кода программы, когда основными строительными блоками программы являются объекты и классы, а логика работы программы построена на их взаимодействии.


Об объектах и классах

Класс - это такая структура данных, которую может формировать сам программист. В терминах ООП, класс состоит из полей (по-простому - переменных) и методов (по-простому - функций). И, как выяснилось, сочетание данных и функций работы над ними в одной структуре дает невообразимую мощь. Объект - это конкретный экземпляр класса. Придерживаясь аналогии класса со структурой данных, объект - это конкретная структура данных, у которой полям присвоены какие-то значения. Поясню на примере:

Допустим, нам нужно написать программу, рассчитывающую периметр и площадь треугольника, который задан двумя сторонами и углом между ними. Для написания такой программы используя ООП, нам необходимо будет создать класс (то есть структуру) Треугольник. Класс Треугольник будет хранить три поля (три переменные): сторона А, сторона Б, угол между ними; и два метода (две функции): посчитать периметр, посчитать площадь. Данным классом мы можем описать любой треугольник и вычислить периметр и площадь. Так вот, конкретный треугольник с конкретными сторонами и углом между ними будет называться экземпляром класса Треугольник. Таким образом класс - это шаблон, а экземпляр - конкретная реализация шаблона. А вот уже экземпляры являются объектами, то есть конкретными элементами, хранящими конкретные значения.

Одним из самых распространенных объектно-ориентированных языков программирования является язык java. Там без использования объектов просто не обойтись. Вот как будет выглядеть код класса, описывающего треугольник на этом языке:

/** * Класс Треугольник. */ class Triangle { /** * Специальный метод, называемый конструктор класса. * Принимает на вход три параметра: * длина стороны А, длина стороны Б, * угол между этими сторонами(в градусах) */ Triangle(double sideA, double sideB, double angleAB) { this.sideA = sideA; this.sideB = sideB; this.angleAB = angleAB; } double sideA; //Поле класса, хранит значение стороны А в описываемом треугольнике double sideB; //Поле класса, хранит значение стороны Б в описываемом треугольнике double angleAB; //Поле класса, хранит угла(в градусах) между двумя сторонами в описываемом треугольнике /** * Метод класса, который рассчитывает площадь треугольника */ double getSquare() { double square = this.sideA * this.sideB * Math.sin(this.angleAB * Math.PI / 180); return square; } /** * Метод класса, который рассчитывает периметр треугольника */ double getPerimeter() { double sideC = Math.sqrt(Math.pow(this.sideA, 2) + Math.pow(this.sideB, 2) - 2 * this.sideA * this.sideB * Math.cos(this.angleAB * Math.PI / 180)); double perimeter = this.sideA + this.sideB + sideC; return perimeter; } }

Если мы внутрь класса добавим следующий код:

/** * Именно в этом месте запускается программа */ public static void main(String args) { //Значения 5, 17, 35 попадают в конструктор класса Triangle Triangle triangle1 = new Triangle(5, 17, 35); System.out.println("Площадь треугольника1: "+triangle1.getSquare()); System.out.println("Периметр треугольника1: "+triangle1.getPerimeter()); //Значения 6, 8, 60 попадают в конструктор класса Triangle Triangle triangle2 = new Triangle(6, 8, 60); System.out.println("Площадь треугольника1: "+triangle2.getSquare()); System.out.println("Периметр треугольника1: "+triangle2.getPerimeter()); }

то программу уже можно будет запускать на выполнение. Это особенность языка java. Если в классе есть такой метод

Public static void main(String args)

то этот класс можно выполнять. Разберем код подробнее. Начнем со строки

Triangle triangle1 = new Triangle(5, 17, 35);

Здесь мы создаем экземпляр triangle1 класса Triangle и тут же задаем ему параметры сторон и угла между ними. При этом, вызывается специальный метод, называемый конструктор и заполняет поля объекта переданными значениями в конструктор. Ну, а строки

System.out.println("Площадь треугольника1: "+triangle1.getSquare()); System.out.println("Периметр треугольника1: "+triangle1.getPerimeter());

выводят рассчитанные площадь треугольника и его периметр в консоль.

Аналогично все происходит и для второго экземпляра класса Triangle .

Понимание сути классов и конструирования конкретных объектов - это уверенный первый шаг к пониманию методологии ООП.

Еще раз, самое важное:

ООП - это способ организации кода программы;

Класс - это пользовательская структура данных, которая воедино объединяет данные и функции для работы с ними(поля класса и методы класса);

Объект - это конкретный экземпляр класса, полям которого заданы конкретные значения.


Три волшебных слова

ООП включает три ключевых подхода: наследование, инкапсуляцию и полиморфизм. Для начала, приведу определения из wikipedia :

Инкапсуляция - свойство системы, позволяющее объединить данные и методы, работающие с ними, в классе. Некоторые языки (например, С++) отождествляют инкапсуляцию с сокрытием, но большинство (Smalltalk, Eiffel, OCaml) различают эти понятия.

Наследование - свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс - потомком, наследником, дочерним или производным классом.

Полиморфизм - свойство системы, позволяющее использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта.

Понять, что же все эти определения означают на деле достаточно сложно. В специализированных книгах, раскрывающих данную тему на каждое определение, зачастую, отводится целая глава, но, как минимум, абзац. Хотя, сути того, что нужно понять и отпечатать навсегда в своем мозге программиста совсем немного.
А примером для разбора нам будут служить фигуры на плоскости. Из школьной геометрии мы знаем, что у всех фигур, описанных на плоскости, можно рассчитать периметр и площадь. Например, для точки оба параметра равны нулю. Для отрезка мы можем вычислить лишь периметр. А для квадрата, прямоугольника или треугольника - и то, и другое. Сейчас же мы опишем эту задачу в терминах ООП. Также не лишним будет уловить цепь рассуждений, которые выливаются в иерархию классов, которая, в свою очередь, воплощается в работающий код. Поехали:


Итак, точка - это самая малая геометрическая фигура, которая является основой всех прочих построений (фигур). Поэтому именно точка выбрана в качестве базового родительского класса. Напишем класс точки на java:

/** * Класс точки. Базовый класс */ class Point { /** * Пустой конструктор */ Point() {} /** * Метод класса, который рассчитывает площадь фигуры */ double getSquare() { return 0; } /** * Метод класса, который рассчитывает периметр фигуры */ double getPerimeter() { return 0; } /** * Метод класса, возвращающий описание фигуры */ String getDescription() { return "Точка"; } }

У получившегося класса Point пустой конструктор, поскольку в данном примере мы работаем без конкретных координат, а оперируем только параметрами значениями сторон. Так как у точки нет никаких сторон, то и передавать ей никаких параметров не надо. Также заметим, что класс имеет методы Point::getSquare() и Point::getPerimeter() для расчета площади и периметра, оба возвращают 0. Для точки оно и логично.


Поскольку у нас точка является основой всех прочих фигур, то и классы этих прочих фигур мы наследуем от класса Point . Опишем класс отрезка, наследуемого от класса точки:

/** * Класс Отрезок */ class LineSegment extends Point { LineSegment(double segmentLength) { this.segmentLength = segmentLength; } double segmentLength; // Длина отрезка /** * Переопределенный метод класса, который рассчитывает площадь отрезка */ double getSquare() { return 0; } /** * Переопределенный метод класса, который рассчитывает периметр отрезка */ double getPerimeter() { return this.segmentLength; } String getDescription() { return "Отрезок длиной: " + this.segmentLength; } }

Class LineSegment extends Point

означает, что класс LineSegment наследуется от класса Point . Методы LineSegment::getSquare() и LineSegment::getPerimeter() переопределяют соответствующие методы базового класса. Площадь отрезка всегда равняется нулю, а площадь периметра равняется длине этого отрезка.

Теперь, подобно классу отрезка, опишем класс треугольника(который также наследуется от класса точки):

/** * Класс Треугольник. */ class Triangle extends Point { /** * Конструктор класса. Принимает на вход три параметра: * длина стороны А, длина стороны Б, * угол между этими сторонами(в градусах) */ Triangle(double sideA, double sideB, double angleAB) { this.sideA = sideA; this.sideB = sideB; this.angleAB = angleAB; } double sideA; //Поле класса, хранит значение стороны А в описываемом треугольнике double sideB; //Поле класса, хранит значение стороны Б в описываемом треугольнике double angleAB; //Поле класса, хранит угла(в градусах) между двумя сторонами в описываемом треугольнике /** * Метод класса, который рассчитывает площадь треугольника */ double getSquare() { double square = (this.sideA * this.sideB * Math.sin(this.angleAB * Math.PI / 180))/2; return square; } /** * Метод класса, который рассчитывает периметр треугольника */ double getPerimeter() { double sideC = Math.sqrt(Math.pow(this.sideA, 2) + Math.pow(this.sideB, 2) - 2 * this.sideA * this.sideB * Math.cos(this.angleAB * Math.PI / 180)); double perimeter = this.sideA + this.sideB + sideC; return perimeter; } String getDescription() { return "Треугольник со сторонами: " + this.sideA + ", " + this.sideB + " и углом между ними: " + this.angleAB; } }

Тут нет ничего нового. Также, методы Triangle::getSquare() и Triangle::getPerimeter() переопределяют соответствующие методы базового класса.
Ну а теперь, собственно, тот самый код, который показывает волшебство полиморифзма и раскрывает мощь ООП:

Class Main { /** * Именно в этом месте запускается программа */ public static void main(String args) { //ArrayList - Это специальная структура данных в java, // позволяющая хранить объекты определенного типа в массиве. ArrayList figures = new ArrayList(); //добавляем три разных объекта в массив figures figures.add(new Point()); figures.add(new LineSegment(133)); figures.add(new Triangle(10, 17, 55)); for (int i = 0; i

Мы создали массив объектов класса Point , а поскольку классы LineSegment и Triangle наследуются от класса Point , то и их мы можем помещать в этот массив. Получается, каждую фигуру, которая есть в массиве figures мы можем рассматривать как объект класса Point . В этом и заключается полиморфизм: неизвестно, к какому именно классу принадлежат находящиеся в массиве figures объекты, но поскольку все объекты внутри этого массива принадлежат одному базовому классу Point , то все методы, которые применимы к классу Point также и применимы к его классам-наследникам.


Теперь о инкапсуляции. То, что мы поместили в одном классе параметры фигуры и методы расчета площади и периметра - это и есть инкапсуляция, мы инкапсулировали фигуры в отдельные классы. То, что у нас для расчета периметра используется специальный метод в классе - это и есть инкапсуляцию, мы инкапсулировали расчет периметра в метод getPerimiter() . Иначе говоря, инкапсуляция - это сокрытие реализции (пожалуй, самое короткое, и в то же время емкое определением инкапсуляции).


Полный код примера:

Import java.util.ArrayList; class Main { /** * Именно в этом месте запускается программа */ public static void main(String args) { //ArrayList - Это специальная структура данных в java, // позволяющая хранить объекты определенного типа в массиве. ArrayList figures = new ArrayList(); //добавляем три разных объекта в массив figures figures.add(new Point()); figures.add(new LineSegment(133)); figures.add(new Triangle(10, 17, 55)); for (int i = 0; i

Парадигмы программирования

Объе́ктно-ориенти́рованное программи́рование (ООП) - методология программирования, основанная на представлении программы в виде совокупности объектов , каждый из которых является экземпляром определенного класса , а классы образуют иерархию наследования .

Необходимо обратить внимание на следующие важные части этого определения: 1) объектно-ориентированное программирование использует в качестве основных логических конструктивных элементов объекты, а не алгоритмы; 2) каждый объект является экземпляром определенного класса; 3) классы образуют иерархии. Программа считается объектно-ориентированной, только если выполнены все три указанных требования. В частности, программирование, не использующее наследование, называется не объектно-ориентированным, а программированием с помощью абстрактных типов данных .

Энциклопедичный YouTube

    1 / 5

    ✪ Объектно ориентированное программирование в 2019

    ✪ Объектно-ориентированное проектирование, часть 1 - как проектируются классы

    ✪ Основные принципы объектно-ориентированного программирования. Что такое ООП и зачем оно нужно?

    ✪ Основы ООП в C++

    ✪ Объектно-ориентированное программирование. Классы и объекты. Урок 3

    Субтитры

Основные понятия

Абстракция данных Абстрагирование означает выделение значимой информации и исключение из рассмотрения незначимой. В ООП рассматривают лишь абстракцию данных (нередко называя её просто «абстракцией»), подразумевая набор значимых характеристик объекта, доступный остальной программе. Инкапсуляция Инкапсуляция - свойство системы, позволяющее объединить данные и методы, работающие с ними, в классе. Одни языки (например, С++ , Java или Ruby) отождествляют инкапсуляцию с сокрытием , но другие (Smalltalk , Eiffel , OCaml) различают эти понятия. Наследование Наследование - свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс - потомком, наследником, дочерним или производным классом. Полиморфизм подтипов Полиморфизм подтипов (в ООП называемый просто «полиморфизмом») - свойство системы, позволяющее использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта. Другой вид полиморфизма - параметрический - в ООП называют обобщённым программированием . Класс Класс - универсальный, комплексный тип данных , состоящий из тематически единого набора «полей» (переменных более элементарных типов) и «методов» (функций для работы с этими полями), то есть он является моделью информационной сущности с внутренним и внешним интерфейсами для оперирования своим содержимым (значениями полей). В частности, в классах широко используются специальные блоки из одного или чаще двух спаренных методов, отвечающих за элементарные операции с определенным полем (интерфейс присваивания и считывания значения), которые имитируют непосредственный доступ к полю. Эти блоки называются «свойствами» и почти совпадают по конкретному имени со своим полем (например, имя поля может начинаться со строчной, а имя свойства - с заглавной буквы). Другим проявлением интерфейсной природы класса является то, что при копировании соответствующей переменной через присваивание, копируется только интерфейс, но не сами данные, то есть класс - ссылочный тип данных. Переменная-объект, относящаяся к заданному классом типу, называется экземпляром этого класса. При этом в некоторых исполняющих системах класс также может представляться некоторым объектом при выполнении программы посредством динамической идентификации типа данных . Обычно классы разрабатывают таким образом, чтобы обеспечить отвечающие природе объекта и решаемой задаче целостность данных объекта, а также удобный и простой интерфейс. В свою очередь, целостность предметной области объектов и их интерфейсов, а также удобство их проектирования, обеспечивается наследованием. Объект Сущность в адресном пространстве вычислительной системы, появляющаяся при создании экземпляра класса (например, после запуска результатов компиляции и связывания исходного кода на выполнение).

Классификация подвидов ООП

Лука Карделли и Мартин Абади построили теоретическое обоснование ООП и классификацию на основе этого обоснования . Они отмечают, что выделенные ими понятия и категории вместе встречаются далеко не во всех ОО-языках, большинство языков поддерживают лишь подмножества теории, а порой и своеобразные отклонения от неё.

Наиболее заметные отличия в проявлении показателей качества между языками разных видов:

Обобщённое обоснование динамической диспетчеризации (включая множественную) в середине 1990-х годов построил Джузеппе Кастанья .

История

ООП возникло в результате развития идеологии процедурного программирования , где данные и подпрограммы (процедуры, функции) их обработки формально не связаны. Для дальнейшего развития объектно-ориентированного программирования часто большое значение имеют понятия события (так называемое событийно-ориентированное программирование) и компонента (компонентное программирование , КОП).

Взаимодействие объектов происходит посредством . Результатом дальнейшего развития ООП, по-видимому, будет агентно-ориентированое программирование , где агенты - независимые части кода на уровне выполнения. Взаимодействие агентов происходит посредством изменения среды , в которой они находятся.

Языковые конструкции, конструктивно не относящиеся непосредственно к объектам, но сопутствующие им для их безопасной (исключительные ситуации , проверки) и эффективной работы, инкапсулируются от них в аспекты (в аспектно-ориентированном программировании). Субъектно-ориентированное программирование расширяет понятие объекта посредством обеспечения более унифицированного и независимого взаимодействия объектов. Может являться переходной стадией между ООП и агентным программированием в части самостоятельного их взаимодействия.

Первым языком программирования, в котором были предложены основные понятия, впоследствии сложившиеся в парадигму, была Симула , но термин «объектная ориентированность» не использовался в контексте использования этого языка. В момент его появления в 1967 году в нём были предложены революционные идеи: объекты, классы, виртуальные методы и др., однако это всё не было воспринято современниками как нечто грандиозное. Фактически, Симула была «Алголом с классами», упрощающим выражение в процедурном программировании многих сложных концепций. Понятие класса в Симуле может быть полностью определено через композицию конструкций Алгола (то есть класс в Симуле - это нечто сложное, описываемое посредством примитивов).

Взгляд на программирование «под новым углом» (отличным от процедурного) предложили Алан Кэй и Дэн Ингаллс в языке Smalltalk . Здесь понятие класса стало основообразующей идеей для всех остальных конструкций языка (то есть класс в Смолтоке является примитивом, посредством которого описаны более сложные конструкции). Именно он стал первым широко распространённым объектно-ориентированным языком программирования .

В настоящее время количество прикладных языков программирования (список языков), реализующих объектно-ориентированную парадигму, является наибольшим по отношению к другим парадигмам. Наиболее распространённые в промышленности языки (С++, Delphi, C#, Java и др.) воплощают объектную модель Симулы. Примерами языков, опирающихся на модель Смолтока, являются Objective-C, Python, Ruby.

Определение ООП и его основные концепции

В центре ООП находится понятие объекта. Объект - это сущность, которой можно посылать сообщения и которая может на них реагировать, используя свои данные. Объект - это экземпляр класса. Данные объекта скрыты от остальной программы. Сокрытие данных называется инкапсуляцией .

Наличие инкапсуляции достаточно для объектности языка программирования, но ещё не означает его объектной ориентированности - для этого требуется наличие наследования .

Но даже наличие инкапсуляции и наследования не делает язык программирования в полной мере объектным с точки зрения ООП. Основные преимущества ООП проявляются только в том случае, когда в языке программирования реализован полиморфизм подтипов - возможность единообразно обрабатывать объекты с различной реализацией при условии наличия общего интерфейса.

Сложности определения

ООП имеет уже более чем сорокалетнюю историю, но, несмотря на это, до сих пор не существует чёткого общепринятого определения данной технологии . Основные принципы, заложенные в первые объектные языки и системы, подверглись существенному изменению (или искажению) и дополнению при многочисленных реализациях последующего времени. Кроме того, примерно с середины 1980-х годов термин «объектно-ориентированный» стал модным , в результате с ним произошло то же самое, что несколько раньше с термином «структурный» (ставшим модным после распространения технологии структурного программирования) - его стали искусственно «прикреплять» к любым новым разработкам, чтобы обеспечить им привлекательность. Бьёрн Страуструп в 1988 году писал, что обоснование «объектной ориентированности» чего-либо, в большинстве случаев, сводится к ложному силлогизму : «X - это хорошо. Объектная ориентированность - это хорошо. Следовательно , X является объектно-ориентированным».

Роджер Кинг аргументированно настаивал, что его кот является объектно-ориентированным. Кроме прочих своих достоинств, кот демонстрирует характерное поведение, реагирует на сообщения, наделён унаследованными реакциями и управляет своим, вполне независимым, внутренним состоянием.

Однако общность механизма обмена сообщениями имеет и другую сторону - «полноценная» передача сообщений требует дополнительных накладных расходов, что не всегда приемлемо. Поэтому во многих современных объектно-ориентированных языках программирования используется концепция «отправка сообщения как вызов метода» - объекты имеют доступные извне методы, вызовами которых и обеспечивается взаимодействие объектов. Данный подход реализован в огромном количестве языков программирования, в том числе C++ , Object Pascal , Java , Oberon-2 . Однако, это приводит к тому, что сообщения уже не являются самостоятельными объектами, и, как следствие, не имеют атрибутов, что сужает возможности программирования. Некоторые языки используют гибридное представление, демонстрируя преимущества одновременно обоих подходов - например, CLOS , Python .

Концепция виртуальных методов , поддерживаемая этими и другими современными языками, появилась как средство обеспечить выполнение нужных методов при использовании полиморфных переменных, то есть, по сути, как попытка расширить возможности вызова методов для реализации части функциональности, обеспечиваемой механизмом обработки сообщений.

Особенности реализации

Как уже говорилось выше, в современных объектно-ориентированных языках программирования каждый объект является значением, относящимся к определённому классу . Класс представляет собой объявленный программистом составной тип данных , имеющий в составе:

Поля данных Параметры объекта (конечно, не все, а только необходимые в программе), задающие его состояние (свойства объекта предметной области). Иногда поля данных объекта называют свойствами объекта, из-за чего возможна путаница. Физически поля представляют собой значения (переменные, константы), объявленные как принадлежащие классу. Методы Процедуры и функции, связанные с классом. Они определяют действия, которые можно выполнять над объектом такого типа, и которые сам объект может выполнять.

Классы могут наследоваться друг от друга. Класс-потомок получает все поля и методы класса-родителя, но может дополнять их собственными либо переопределять уже имеющиеся. Большинство языков программирования поддерживает только единичное наследование (класс может иметь только один класс-родитель), лишь в некоторых допускается множественное наследование - порождение класса от двух или более классов-родителей. Множественное наследование создаёт целый ряд проблем, как логических, так и чисто реализационных, поэтому в полном объёме его поддержка не распространена. Вместо этого в 1990-е годы появилось и стало активно вводиться в объектно-ориентированные языки понятие интерфейса . Интерфейс - это класс без полей и без реализации, включающий только заголовки методов. Если некий класс наследует (или, как говорят, реализует) интерфейс, он должен реализовать все входящие в него методы. Использование интерфейсов предоставляет относительно дешёвую альтернативу множественному наследованию.

Взаимодействие объектов в абсолютном большинстве случаев обеспечивается вызовом ими методов друг друга.

Инкапсуляция обеспечивается следующими средствами:

Контроль доступа Поскольку методы класса могут быть как чисто внутренними, обеспечивающими логику функционирования объекта, так и внешними, с помощью которых взаимодействуют объекты, необходимо обеспечить скрытость первых при доступности извне вторых. Для этого в языки вводятся специальные синтаксические конструкции, явно задающие область видимости каждого члена класса. Традиционно это модификаторы public, protected и private, обозначающие, соответственно, открытые члены класса, члены класса, доступные внутри класса и из классов-потомков, и скрытые, доступные только внутри класса. Конкретная номенклатура модификаторов и их точный смысл различаются в разных языках. Методы доступа Поля класса в общем случае не должны быть доступны извне, поскольку такой доступ позволил бы произвольным образом менять внутреннее состояние объектов. Поэтому поля обычно объявляются скрытыми (либо язык в принципе не позволяет обращаться к полям класса извне), а для доступа к находящимся в полях данным используются специальные методы, называемые методами доступа. Такие методы либо возвращают значение того или иного поля, либо производят запись в это поле нового значения. При записи метод доступа может проконтролировать допустимость записываемого значения и, при необходимости, произвести другие манипуляции с данными объекта, чтобы они остались корректными (внутренне согласованными). Методы доступа называют ещё аксессорами (от англ. access - доступ), а по отдельности - геттерами (англ. get - чтение) и сеттерами (англ. set - запись) . Свойства объекта Псевдополя, доступные для чтения и/или записи. Свойства внешне выглядят как поля и используются аналогично доступным полям (с некоторыми исключениями), однако фактически при обращении к ним происходит вызов методов доступа. Таким образом, свойства можно рассматривать как «умные» поля данных, сопровождающие доступ к внутренним данным объекта какими-либо дополнительными действиями (например, когда изменение координаты объекта сопровождается его перерисовкой на новом месте). Свойства, по сути, не более чем синтаксический сахар , поскольку никаких новых возможностей они не добавляют, а лишь скрывают вызов методов доступа. Конкретная языковая реализация свойств может быть разной. Например, в объявление свойства непосредственно содержит код методов доступа, который вызывается только при работе со свойствами, то есть не требует отдельных методов доступа, доступных для непосредственного вызова. В Delphi объявление свойства содержит лишь имена методов доступа, которые должны вызываться при обращении к полю. Сами методы доступа представляют собой обычные методы с некоторыми дополнительными требованиями к сигнатуре .

Полиморфизм реализуется путём введения в язык правил, согласно которым переменной типа «класс» может быть присвоен объект любого класса-потомка её класса.

Проектирование программ в целом

ООП ориентировано на разработку крупных программных комплексов, разрабатываемых командой программистов (возможно, достаточно большой). Проектирование системы в целом, создание отдельных компонентов и их объединение в конечный продукт при этом часто выполняется разными людьми, и нет ни одного специалиста, который знал бы о проекте всё.

Объектно-ориентированное проектирование ориентируется на описание структуры проектируемой системы (приоритетно по отношению к описанию её поведения, в отличие от функционального программирования), то есть, фактически, в ответе на два основных вопроса:

  • Из каких частей состоит система ;
  • В чём состоит ответственность каждой из ее частей .

Выделение частей производится таким образом, чтобы каждая имела минимальный по объёму и точно определённый набор выполняемых функций (обязанностей), и при этом взаимодействовала с другими частями как можно меньше.

Дальнейшее уточнение приводит к выделению более мелких фрагментов описания. По мере детализации описания и определения ответственности выявляются данные, которые необходимо хранить, наличие близких по поведению агентов, которые становятся кандидатами на реализацию в виде классов с общими предками. После выделения компонентов и определения интерфейсов между ними реализация каждого компонента может проводиться практически независимо от остальных (разумеется, при соблюдении соответствующей технологической дисциплины).

Большое значение имеет правильное построение иерархии классов. Одна из известных проблем больших систем, построенных по ООП-технологии - так называемая проблема хрупкости базового класса . Она состоит в том, что на поздних этапах разработки, когда иерархия классов построена и на её основе разработано большое количество кода, оказывается трудно или даже невозможно внести какие-либо изменения в код базовых классов иерархии (от которых порождены все или многие работающие в системе классы). Даже если вносимые изменения не затронут интерфейс базового класса, изменение его поведения может непредсказуемым образом отразиться на классах-потомках. В случае крупной системы разработчик базового класса просто не в состоянии предугадать последствия изменений, он даже не знает о том, как именно базовый класс используется и от каких особенностей его поведения зависит корректность работы классов-потомков.

Различные ООП-методологии

Компонентное программирование - следующий этап развития ООП; прототип- и класс-ориентированное программирование - разные подходы к созданию программы, которые могут комбинироваться, имеющие свои преимущества и недостатки.

Компонентное программирование

Компонентно-ориентированное программирование - это своеобразная «надстройка» над ООП, набор правил и ограничений, направленных на построение крупных развивающихся программных систем с большим временем жизни. Программная система в этой методологии представляет собой набор компонентов с хорошо определёнными интерфейсами. Изменения в существующую систему вносятся путём создания новых компонентов в дополнение или в качестве замены ранее существующих. При создании новых компонентов на основе ранее созданных запрещено использование наследования реализации - новый компонент может наследовать лишь интерфейсы базового. Таким образом компонентное программирование обходит проблему хрупкости базового класса.

Прототипное программирование

Прототипное программирование , сохранив часть черт ООП, отказалось от базовых понятий - класса и наследования.

  • Прототип - это объект-образец, по образу и подобию которого создаются другие объекты. Объекты-копии могут сохранять связь с родительским объектом, автоматически наследуя изменения в прототипе; эта особенность определяется в рамках конкретного языка .
  • Вместо механизма описания классов и порождения экземпляров, язык предоставляет механизм создания объекта (путём задания набора полей и методов, которые объект должен иметь) и механизм клонирования объектов.
  • Каждый вновь созданный объект является «экземпляром без класса». Каждый объект может стать прототипом - быть использован для создания нового объекта с помощью операции клонирования . После клонирования новый объект может быть изменён, в частности, дополнен новыми полями и методами.
  • Клонированный объект либо становится полной копией прототипа, хранящей все значения его полей и дублирующей его методы, либо сохраняет ссылку на прототип, не включая в себя клонированных полей и методов до тех пор, пока они не будут изменены. В последнем случае среда исполнения обеспечивает механизм делегирования - если при обращении к объекту он сам не содержит нужного метода или поля данных, вызов передаётся прототипу, от него, при необходимости - дальше по цепочке.

Класс-ориентированное программирование

Класс-ориентированное программирование - это программирование, сфокусированное на данных, причём данные и поведение неразрывно связаны между собой. Вместе данные и поведение представляют собой класс. Соответственно в языках, основанных на понятии «класс», все объекты разделены на два основных типа - классы и экземпляры. Класс определяет структуру и функциональность (поведение), одинаковую для всех экземпляров данного класса. Экземпляр является носителем данных - то есть обладает состоянием, меняющимся в соответствии с поведением, заданным классом. В класс-ориентированных языках новый экземпляр создаётся через вызов конструктора класса (возможно, с набором параметров). Получившийся экземпляр имеет структуру и поведение, жёстко заданные его классом.

Производительность объектных программ

Гради Буч указывает на следующие причины, приводящие к снижению производительности программ из-за использования объектно-ориентированных средств:

Динамическое связывание методов Обеспечение полиморфного поведения объектов приводит к необходимости связывать методы, вызываемые программой (то есть определять, какой конкретно метод будет вызываться) не на этапе компиляции, а в процессе исполнения программы, на что тратится дополнительное время. При этом реально динамическое связывание требуется не более чем для 20 % вызовов, но некоторые ООП-языки используют его постоянно. Значительная глубина абстракции ООП-разработка часто приводит к созданию «многослойных» приложений, где выполнение объектом требуемого действия сводится к множеству обращений к объектам более низкого уровня. В таком приложении происходит очень много вызовов методов и возвратов из методов, что, естественно, сказывается на производительности. Наследование «размывает» код Код, относящийся к «конечным» классам иерархии наследования, которые обычно и используются программой непосредственно, находится не только в самих этих классах, но и в их классах-предках. Относящиеся к одному классу методы фактически описываются в разных классах. Это приводит к двум неприятным моментам:

  • Снижается скорость трансляции, так как компоновщику приходится подгружать описания всех классов иерархии.
  • Снижается производительность программы в системе со страничной памятью - поскольку методы одного класса физически находятся в разных местах кода, далеко друг от друга, при работе фрагментов программы, активно обращающихся к унаследованным методам, система вынуждена производить частые переключения страниц.
Инкапсуляция снижает скорость доступа к данным Запрет на прямой доступ к полям класса извне приводит к необходимости создания и использования методов доступа. И написание, и компиляция, и исполнение методов доступа сопряжены с дополнительными расходами. Динамическое создание и уничтожение объектов Динамически создаваемые объекты, как правило, размещаются в куче , что менее эффективно, чем размещение их на стеке и, тем более, статическое выделение памяти под них на этапе компиляции.

Несмотря на отмеченные недостатки, Буч утверждает, что выгоды от использования ООП более весомы. Кроме того, повышение производительности за счёт лучшей организации ООП-кода, по его словам, в некоторых случаях компенсирует дополнительные накладные расходы на организацию функционирования программы. Можно также заметить, что многие эффекты снижения производительности могут сглаживаться или даже полностью устраняться за счёт качественной оптимизации кода компилятором. Например, упомянутое выше снижение скорости доступа к полям класса из-за использования методов доступа устраняется, если компилятор вместо вызова метода доступа использует инлайн-подстановку (современные компиляторы делают это вполне уверенно).

Критика ООП

Несмотря на отдельные критические замечания в адрес ООП, в настоящее время именно эта парадигма используется в подавляющем большинстве промышленных проектов. Однако нельзя считать, что ООП является наилучшей из методик программирования во всех случаях.

Критические высказывания в адрес ООП:

  • Было показано отсутствие значимой разницы в продуктивности разработки программного обеспечения между ООП и процедурным подходом .
  • Кристофер Дэйт указывает на невозможность сравнения ООП и других технологий во многом из-за отсутствия строгого и общепризнанного определения ООП .
  • Александр Степанов в одном из своих интервью указывал, что ООП «методологически неправильно» и что «…ООП практически такая же мистификация, как и искусственный интеллект…» .
  • Фредерик Брукс указывает, что наиболее сложной частью создания программного обеспечения является «…спецификация, дизайн и тестирование концептуальных конструкций, а отнюдь не работа по выражению этих концептуальных конструкций…». ООП (наряду с такими технологиями как искусственный интеллект , верификация программ, автоматическое программирование, графическое программирование , экспертные системы и др.), по его мнению, не является «серебряной пулей», которая могла бы на порядок величины снизить сложность разработки программных систем. Согласно Бруксу, «…ООП позволяет сократить только привнесённую сложность в выражение дизайна. Дизайн остаётся сложным по своей природе…» .
  • Эдсгер Дейкстра указывал: «…то, о чём общество в большинстве случаев просит - это эликсир от всех болезней. Естественно, "эликсир" имеет очень впечатляющие названия, иначе будет очень трудно что-то продать: „Структурный анализ и Дизайн“, „Программная инженерия“, „Модели зрелости“, „Управляющие информационные системы“ (Management Information Systems), „Интегрированные среды поддержки проектов“, „Объектная ориентированность“, „Реинжиниринг бизнес-процессов “…» .
  • Никлаус Вирт считает, что ООП - не более чем тривиальная надстройка над структурным программированием, и преувеличение её значимости, выражающееся, в том числе, во включении в языки программирования всё новых модных «объектно-ориентированных» средств, вредит качеству разрабатываемого программного обеспечения.
  • Патрик Киллелиа в своей книге «Тюнинг веб-сервера» писал: «…ООП предоставляет вам множество способов замедлить работу ваших программ…».
  • Известная обзорная статья проблем современного ООП-программирования перечисляет некоторые типичные проблемы ООП [ ] .
  • В программистском фольклоре получила широкое распространение критика объектно-ориентированного подхода в сравнении с функциональным подходом с использованием метафоры «Королевства Существительных » из эссе Стива Йегги .

Если попытаться классифицировать критические высказывания в адрес ООП, можно выделить несколько аспектов критики данного подхода к программированию.

Критика рекламы ООП Критикуется явно высказываемое или подразумеваемое в работах некоторых пропагандистов ООП, а также в рекламных материалах «объектно-ориентированных» средств разработки представление об объектном программировании как о некоем всемогущем подходе, который магическим образом устраняет сложность программирования. Как замечали многие, в том числе упомянутые выше Брукс и Дейкстра, «серебряной пули не существует» - независимо от того, какой парадигмы программирования придерживается разработчик, создание нетривиальной сложной программной системы всегда сопряжено со значительными затратами интеллектуальных ресурсов и времени. Из наиболее квалифицированных специалистов в области ООП никто, как правило, не отрицает справедливость критики этого типа. Оспаривание эффективности разработки методами ООП Критики оспаривают тезис о том, что разработка объектно-ориентированных программ требует меньше ресурсов или приводит к созданию более качественного ПО. Проводится сравнение затрат на разработку разными методами, на основании которого делается вывод об отсутствии у ООП преимуществ в данном направлении. Учитывая крайнюю сложность объективного сравнения различных разработок, подобные сопоставления, как минимум, спорны. С другой стороны, получается, что ровно так же спорны и утверждения об эффективности ООП. Производительность объектно-ориентированных программ Указывается на то, что целый ряд «врождённых особенностей» ООП-технологии делает построенные на её основе программы технически менее эффективными, по сравнению с аналогичными необъектными программами. Не отрицая действительно имеющихся дополнительных накладных расходов на организацию работы ООП-программ (см. раздел «Производительность» выше), нужно, однако, отметить, что значение снижения производительности часто преувеличивается критиками. В современных условиях, когда технические возможности компьютеров чрезвычайно велики и постоянно растут, для большинства прикладных программ техническая эффективность оказывается менее существенна, чем функциональность, скорость разработки и сопровождаемость. Лишь для некоторого, очень ограниченного класса программ (ПО встроенных систем, драйверы устройств, низкоуровневая часть системного ПО, научное ПО) производительность остаётся критическим фактором. Критика отдельных технологических решений в ООП-языках и библиотеках Эта критика многочисленна, но затрагивает она не ООП как таковое, а приемлемость и применимость в конкретных случаях тех или иных реализаций её механизмов. Одним из излюбленных объектов критики является язык C++, входящий в число наиболее распространённых промышленных ООП-языков.

Объектно-ориентированные языки

Многие современные языки специально созданы для облегчения объектно-ориентированного программирования. Однако следует отметить, что можно применять техники ООП и для не-объектно-ориентированного языка и наоборот, применение объектно-ориентированного языка вовсе не означает, что код автоматически становится объектно-ориентированным.

Как правило, объектно-ориентированный язык (ООЯ) содержит следующий набор элементов:

  • Объявление классов с полями (данными - членами класса) и методами (функциями - членами класса).
  • Механизм расширения класса (наследования) - порождение нового класса от существующего с автоматическим включением всех особенностей реализации класса-предка в состав класса-потомка. Большинство ООЯ поддерживают только единичное наследование.
  • Полиморфные переменные и параметры функций (методов), позволяющие присваивать одной и той же переменной экземпляры различных классов.
  • Полиморфное поведение экземпляров классов за счёт использования виртуальных методов. В некоторых ООЯ все методы классов являются виртуальными.

Некоторые языки добавляют к указанному минимальному набору те или иные дополнительные средства. В их числе:

  • Конструкторы, деструкторы, финализаторы;
  • Свойства (аксессоры);
  • Индексаторы;
  • Средства управления видимостью компонентов классов (интерфейсы или модификаторы доступа, такие как public, private, protected, feature и др.).

Одни языки отвечают принципам ООП в полной мере - в них все основные элементы являются объектами, имеющими состояние и связанные методы. Примеры подобных языков - Smalltalk , Eiffel . Существуют гибридные языки, совмещающие объектную подсистему в целостном виде с подсистемами других парадигм как «два и более языка в одном», позволяющие совмещать в одной программе объектные модели с иными, и размывающие грань между объектно-ориентированной и другими парадигмами за счёт нестандартных возможностей, балансирующих между ООП и другими парадигмами (таких как множественная диспетчеризация , параметрические классы, возможность манипулировать методами классов как самостоятельными объектами, и др.). Примеры таких языков:



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows