Основы анализа данных. Регрессионный анализ

Основы анализа данных. Регрессионный анализ

24.08.2019

ОТЧЕТ

Задание: рассмотреть процедуру регрессионного анализа на основе данных (цена продажи и жилая площадь) о 23 объектах недвижимости.

Режим работы "Регрессия" служит для расчета параметров уравнения линейной регрессии и проверки его адекватности исследуемому процессу.

Для решения задачи регрессионного анализа в MS Excel выбираем в меню Сервис команду Анализ данных и инструмент анализа "Регрессия ".

В появившемся диалоговом окне задаем следующие параметры:

1. Входной интервал Y - это диапазон данных по результативному признаку. Он должен состоять из одного столбца.

2. Входной интервал X - это диапазон ячеек, содержащих значения факторов (независимых переменных). Число входных диапазонов (столбцов) должно быть не больше 16.

3. Флажок Метки , устанавливается втом случае, если в первой строке диапазона стоит заголовок.

4. Флажок Уровень надежности активизируется, если в поле, находящееся рядом с ним необходимо ввести уровень надежности, отличный от установленного по умолчанию. Используется для проверки значимости коэффициента детерминации R 2 и коэффициентов регрессии.

5. Константа ноль. Данный флажок необходимо установить, если линия регрессии должна пройти через начало координат (а 0 =0).

6. Выходной интервал/ Новый рабочий лист/ Новая рабочая книга - указать адрес верхней левой ячейки выходного диапазона.

7. Флажки в группе Остатки устанавливаются, если необходимо включить в выходной диапазон соответствующие столбцы или графики.

8. Флажок График нормальной вероятности необходимо сделать активным, если требуется вывести на лист точечный график зависимости наблюдаемых значений Y от автоматически формируемых интервалов персентилей.

После нажатия кнопки ОК в выходном диапазоне получаем отчет.

С помощью набора средств анализа данных выполним регрессионный анализ исходных данных.

Инструмент анализа "Регрессия" применяется для подбора параметров уравнения регрессии с помощью метода наименьших квадратов. Регрессия используется для анализа воздействия на отдельную зависимую переменную значений одной или нескольких независимых переменных.

ТАБЛИЦА РЕГРЕССИОННАЯ СТАТИСТИКА

Величина множественный R - это корень из коэффициента детерминации (R-квадрат). Также его называют индексом корреляции или множественным коэффициентом корреляции. Выражает степень зависимости независимых переменных (X1, X2) и зависимой переменной (Y) и равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы. В нашем случае он равен 0,7, что говорит о существенной связи между переменными.

Величина R-квадрат (коэффициент детерминации) , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В нашем случае величина R-квадрат равна 0,48 , т.е. почти 50%, что говорит о слабой подгонке регрессионной прямой к исходным данным.Т.к. найденная величина R-квадрат = 48%<75%, то, следовательно, также можно сделать вывод о невозможности прогнозирования с помощью найденной регрессионной зависимости. Таким образом, модель объясняет всего 48% вариации цены, что говорит о недостаточности выбранных факторов, либо о недостаточном объеме выборки.

Нормированный R-квадрат - это тот же коэффициент детерминации, но скорректированный на величину выборки.

Норм.R-квадрат=1-(1-R-квадрат)*((n-1)/(n-k)),

регрессионный анализ линейный уравнение

где n - число наблюдений; k - число параметров. Нормированный R-квадрат предпочтительнее использовать в случае добавления новых регрессоров (факторов), т.к. при их увеличении будет также увеличиваться значение R-квадрат, однако это не будет свидетельствовать об улучшении модели. Так как в нашем случае полученная величина равна 0,43 (что отличается от R-квадрат всего на 0,05), то можно говорить о высоком доверии коэффициенту R-квадрат.

Стандартная ошибка показывает качество аппроксимации (приближения) результатов наблюдений. В нашем случае ошибка равна 5,1. Рассчитаем в процентах: 5,1/(57,4-40,1)=0,294 ? 29% (Модель считается лучше, когда стандартная ошибка составляет <30%)

Наблюдения - указывается число наблюдаемых значений (23).

ТАБЛИЦА ДИСПЕРСИОННЫЙ АНАЛИЗ

Для получения уравнения регрессии определяется -статистика - характеристика точности уравнения регрессии, представляющая собой отношение той части дисперсии зависимой переменной которая объяснена уравнением регрессии к необъясненной (остаточной) части дисперсии.

В столбце df - приводится число степеней свободы k.

Для регрессии это число регрессоров (факторов) - X1 (площадь) и X2 (оценка), т.е. k=2.

Для остатка это величина, равная n-(m+1), т.е. число исходных точек (23) минус число коэффициентов (2) и минус свободный член (1).

В столбце SS - суммы квадратов отклонений от среднего значения результирующего признака. В нем представлены:

Регрессионная сумма квадратов отклонений от среднего значения результирующего признака теоретических значений, рассчитанных по регрессионному уравнению.

Остаточная сумма отклонений исходных значений от теоретических значений.

Общая сумма квадратов отклонений исходных значений от результирующего признака.

Чем больше регрессионная сумма квадратов отклонений (или чем меньше остаточная сумма), тем лучше регрессионное уравнение аппроксимирует облако исходных точек. В нашем случае остаточная сумма составляет около 50%. Следовательно, уравнение регрессии очень слабо аппроксимирует облако исходных точек.

В столбце MS - несмещенные выборочные дисперсии, регрессионная и остаточная.

В столбце F вычислено значение критериальной статистики для проверки значимости уравнения регрессии.

Для осуществления статистической проверки значимости уравнения регрессии формулируется нулевая гипотеза об отсутствии связи между переменными (все коэффициенты при переменных равны нулю) и выбирается уровень значимости.

Уровень значимости - это допустимая вероятность совершить ошибку первого рода - отвергнуть в результате проверки верную нулевую гипотезу. В рассматриваемом случае совершить ошибку первого рода означает признать по выборке наличие связи между переменными в генеральной совокупности, когда на самом деле ее там нет. Обычно уровень значимости принимается равным 5%. Сравнивая полученное значение = 9,4 с табличным значением = 3,5 (число степеней свободы 2 и 20 соответственно) можно говорить о том, что уравнение регрессии значимо (F>Fкр).

В столбце значимость F вычисляется вероятность полученного значения критериальной статистике. Так как в нашем случае это значение = 0,00123, что меньше 0,05 то можно говорить о том, что уравнение регрессии (зависимость) значимо с вероятностью 95%.

Два выше описанных столба показывают надежность модели в целом.

Следующая таблица содержит коэффициенты для регрессоров и их оценки.

Строка Y-пересечение не связана ни с каким регрессором, это свободный коэффициент.

В столбце коэффициенты записаны значения коэффициентов уравнения регрессии. Таким образом, получилось уравнение:

Y=25,6+0,009X1+0,346X2

Регрессионное уравнение должно проходить через центр облака исходных точек: 13,02?M(b)?38,26

Далее сравниваем попарно значения столбцов Коэффициенты и Стандартная ошибка. Видно, что в нашем случае, все абсолютные значения коэффициентов превосходят значения стандартных ошибок. Это может свидетельствовать о значимости регрессоров, однако, это грубый анализ. Столбец t-статистика содержит более точную оценку значимости коэффициентов.

В столбце t-статистика содержатся значения t-критерия, рассчитанные по формуле:

t=(Коэффициент)/(Стандартная ошибка)

Этот критерий имеет распределение Стьюдента с числом степеней свободы

n-(k+1)=23-(2+1)=20

По таблице Стьюдента находим значение tтабл=2,086. Сравнивая

t с tтабл получаем, что коэффициент регрессора X2 незначим.

Столбец p-значение представляет вероятность того, что критическое значение статистики используемого критерия (статистики Стьюдента) превысит значение, вычисленное по выборке. В данном случае сравниваем p-значения с выбранным уровнем значимости (0.05). Видно, что незначимым можно считать только коэффициент регрессора X2=0.08>0,05

В столбцах нижние 95% и верхние 95% приводятся границы доверительных интервалов с надежностью 95%. Для каждого коэффициента свои границы: Коэффициентtтабл*Стандартная ошибка

Доверительные интервалы строятся только для статистически значимых величин.

ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика
Регрессионная статистика
Множественный R 0,998364
R-квадрат 0,99673
Нормированный R-квадрат 0,996321
Стандартная ошибка 0,42405
Наблюдения 10

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а , - регрессионную статистику.

Величина R-квадрат , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значение R-квадрата , близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

Множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно, множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии
Коэффициенты Стандартная ошибка t-статистика
Y-пересечение 2,694545455 0,33176878 8,121757129
Переменная X 1 2,305454545 0,04668634 49,38177965
* Приведен усеченный вариант расчетов

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б . Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Y= x*2,305454545+2,694545455

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в . представлены результаты вывода остатков . Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".

ВЫВОД ОСТАТКА

Таблица 8.3в. Остатки
Наблюдение Предсказанное Y Остатки Стандартные остатки
1 9,610909091 -0,610909091 -1,528044662
2 7,305454545 -0,305454545 -0,764022331
3 11,91636364 0,083636364 0,209196591
4 14,22181818 0,778181818 1,946437843
5 16,52727273 0,472727273 1,182415512
6 18,83272727 0,167272727 0,418393181
7 21,13818182 -0,138181818 -0,34562915
8 23,44363636 -0,043636364 -0,109146047
9 25,74909091 -0,149090909 -0,372915662
10 28,05454545 -0,254545455 -0,636685276

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение

В предыдущих заметках предметом анализа часто становилась отдельная числовая переменная, например, доходность взаимных фондов, время загрузки Web-страницы или объем потребления безалкогольных напитков. В настоящей и следующих заметках мы рассмотрим методы предсказания значений числовой переменной в зависимости от значений одной или нескольких других числовых переменных.

Материал будет проиллюстрирован сквозным примером. Прогнозирование объема продаж в магазине одежды. Сеть магазинов уцененной одежды Sunflowers на протяжении 25 лет постоянно расширялась. Однако в настоящее время у компании нет систематического подхода к выбору новых торговых точек. Место, в котором компания собирается открыть новый магазин, определяется на основе субъективных соображений. Критериями выбора являются выгодные условия аренды или представления менеджера об идеальном местоположении магазина. Представьте, что вы - руководитель отдела специальных проектов и планирования. Вам поручили разработать стратегический план открытия новых магазинов. Этот план должен содержать прогноз годового объема продаж во вновь открываемых магазинах. Вы полагаете, что торговая площадь непосредственно связана с объемом выручки, и хотите учесть этот факт в процессе принятия решения. Как разработать статистическую модель, позволяющую прогнозировать годовой объем продаж на основе размера нового магазина?

Как правило, для предсказания значений переменной используется регрессионный анализ. Его цель - разработать статистическую модель, позволяющую предсказывать значения зависимой переменной, или отклика, по значениям, по крайней мере одной, независимой, или объясняющей, переменной. В настоящей заметке мы рассмотрим простую линейную регрессию - статистический метод, позволяющий предсказывать значения зависимой переменной Y по значениям независимой переменной X . В последующих заметках будет описана модель множественной регрессии, предназначенная для предсказания значений независимой переменной Y по значениям нескольких зависимых переменных (Х 1 , Х 2 , …, X k ).

Скачать заметку в формате или , примеры в формате

Виды регрессионных моделей

где ρ 1 – коэффициент автокорреляции; если ρ 1 = 0 (нет автокорреляции), D ≈ 2; если ρ 1 ≈ 1 (положительная автокорреляции), D ≈ 0; если ρ 1 = -1 (отрицательная автокорреляции), D ≈ 4.

На практике применение критерия Дурбина-Уотсона основано на сравнении величины D с критическими теоретическими значениями d L и d U для заданного числа наблюдений n , числа независимых переменных модели k (для простой линейной регрессии k = 1) и уровня значимости α. Если D < d L , гипотеза о независимости случайных отклонений отвергается (следовательно, присутствует положительная автокорреляция); если D > d U , гипотеза не отвергается (то есть автокорреляция отсутствует); если d L < D < d U , нет достаточных оснований для принятия решения. Когда расчётное значение D превышает 2, то с d L и d U сравнивается не сам коэффициент D , а выражение (4 – D ).

Для вычисления статистики Дурбина-Уотсона в Excel обратимся к нижней таблице на рис. 14 Вывод остатка . Числитель в выражении (10) вычисляется с помощью функции =СУММКВРАЗН(массив1;массив2), а знаменатель =СУММКВ(массив) (рис. 16).

Рис. 16. Формулы расчета статистики Дурбина-Уотсона

В нашем примере D = 0,883. Основной вопрос заключается в следующем - какое значение статистики Дурбина-Уотсона следует считать достаточно малым, чтобы сделать вывод о существовании положительной автокорреляции? Необходимо соотнести значение D с критическими значениями (d L и d U ), зависящими от числа наблюдений n и уровня значимости α (рис. 17).

Рис. 17. Критические значения статистики Дурбина-Уотсона (фрагмент таблицы)

Таким образом, в задаче об объеме продаж в магазине, доставляющем товары на дом, существуют одна независимая переменная (k = 1), 15 наблюдений (n = 15) и уровень значимости α = 0,05. Следовательно, d L = 1,08 и d U = 1,36. Поскольку D = 0,883 < d L = 1,08, между остатками существует положительная автокорреляция, метод наименьших квадратов применять нельзя.

Проверка гипотез о наклоне и коэффициенте корреляции

Выше регрессия применялась исключительно для прогнозирования. Для определения коэффициентов регрессии и предсказания значения переменной Y при заданной величине переменной X использовался метод наименьших квадратов. Кроме того, мы рассмотрели среднеквадратичную ошибку оценки и коэффициент смешанной корреляции. Если анализ остатков подтверждает, что условия применимости метода наименьших квадратов не нарушаются, и модель простой линейной регрессии является адекватной, на основе выборочных данных можно утверждать, что между переменными в генеральной совокупности существует линейная зависимость.

Применение t -критерия для наклона. Проверяя, равен ли наклон генеральной совокупности β 1 нулю, можно определить, существует ли статистически значимая зависимость между переменными X и Y . Если эта гипотеза отклоняется, можно утверждать, что между переменными X и Y существует линейная зависимость. Нулевая и альтернативная гипотезы формулируются следующим образом: Н 0: β 1 = 0 (нет линейной зависимости), Н1: β 1 ≠ 0 (есть линейная зависимость). По определению t -статистика равна разности между выборочным наклоном и гипотетическим значением наклона генеральной совокупности, деленной на среднеквадратичную ошибку оценки наклона:

(11) t = (b 1 β 1 ) / S b 1

где b 1 – наклон прямой регрессии по выборочным данным, β1 – гипотетический наклон прямой генеральной совокупности, , а тестовая статистика t имеет t -распределение с n – 2 степенями свободы.

Проверим, существует ли статистически значимая зависимость между размером магазина и годовым объемом продаж при α = 0,05. t -критерий выводится наряду с другими параметрами при использовании Пакета анализа (опция Регрессия ). Полностью результаты работы Пакета анализа приведены на рис. 4, фрагмент, относящийся к t-статистике – на рис. 18.

Рис. 18. Результаты применения t

Поскольку число магазинов n = 14 (см. рис.3), критическое значение t -статистики при уровне значимости α = 0,05 можно найти по формуле: t L =СТЬЮДЕНТ.ОБР(0,025;12) = –2,1788, где 0,025 – половина уровня значимости, а 12 = n – 2; t U =СТЬЮДЕНТ.ОБР(0,975;12) = +2,1788.

Поскольку t -статистика = 10,64 > t U = 2,1788 (рис. 19), нулевая гипотеза Н 0 отклоняется. С другой стороны, р -значение для Х = 10,6411, вычисляемое по формуле =1-СТЬЮДЕНТ.РАСП(D3;12;ИСТИНА), приближенно равно нулю, поэтому гипотеза Н 0 снова отклоняется. Тот факт, что р -значение почти равно нулю, означает, что если бы между размерами магазинов и годовым объемом продаж не существовало реальной линейной зависимости, обнаружить ее с помощью линейной регрессии было бы практически невозможно. Следовательно, между средним годовым объемом продаж в магазинах и их размером существует статистически значимая линейная зависимость.

Рис. 19. Проверка гипотезы о наклоне генеральной совокупности при уровне значимости, равном 0,05, и 12 степенях свободы

Применение F -критерия для наклона. Альтернативным подходом к проверке гипотез о наклоне простой линейной регрессии является использование F -критерия. Напомним, что F -критерий применяется для проверки отношения между двумя дисперсиями (подробнее см. ). При проверке гипотезы о наклоне мерой случайных ошибок является дисперсия ошибки (сумма квадратов ошибок, деленная на количество степеней свободы), поэтому F -критерий использует отношение дисперсии, объясняемой регрессией (т.е. величины SSR , деленной на количество независимых переменных k ), к дисперсии ошибок (MSE = S Y X 2 ).

По определению F -статистика равна среднему квадрату отклонений, обусловленных регрессией (MSR), деленному на дисперсию ошибки (MSE): F = MSR / MSE , где MSR = SSR / k , MSE = SSE /(n – k – 1), k – количество независимых переменных в регрессионной модели. Тестовая статистика F имеет F -распределение с k и n – k – 1 степенями свободы.

При заданном уровне значимости α решающее правило формулируется так: если F > F U , нулевая гипотеза отклоняется; в противном случае она не отклоняется. Результаты, оформленные в виде сводной таблицы дисперсионного анализа, приведены на рис. 20.

Рис. 20. Таблица дисперсионного анализа для проверки гипотезы о статистической значимости коэффициента регрессии

Аналогично t -критерию F -критерий выводится в таблицу при использовании Пакета анализа (опция Регрессия ). Полностью результаты работы Пакета анализа приведены на рис. 4, фрагмент, относящийся к F -статистике – на рис. 21.

Рис. 21. Результаты применения F -критерия, полученные с помощью Пакета анализа Excel

F-статистика равна 113,23, а р -значение близко к нулю (ячейка Значимость F ). Если уровень значимости α равен 0,05, определить критическое значение F -распределения с одной и 12 степенями свободы можно по формуле F U =F.ОБР(1-0,05;1;12) = 4,7472 (рис. 22). Поскольку F = 113,23 > F U = 4,7472, причем р -значение близко к 0 < 0,05, нулевая гипотеза Н 0 отклоняется, т.е. размер магазина тесно связан с его годовым объемом продаж.

Рис. 22. Проверка гипотезы о наклоне генеральной совокупности при уровне значимости, равном 0,05, с одной и 12 степенями свободы

Доверительный интервал, содержащий наклон β 1 . Для проверки гипотезы о существовании линейной зависимости между переменными можно построить доверительный интервал, содержащий наклон β 1 и убедиться, что гипотетическое значение β 1 = 0 принадлежит этому интервалу. Центром доверительного интервала, содержащего наклон β 1 , является выборочный наклон b 1 , а его границами - величины b 1 ± t n –2 S b 1

Как показано на рис. 18, b 1 = +1,670, n = 14, S b 1 = 0,157. t 12 =СТЬЮДЕНТ.ОБР(0,975;12) = 2,1788. Следовательно, b 1 ± t n –2 S b 1 = +1,670 ± 2,1788 * 0,157 = +1,670 ± 0,342, или + 1,328 ≤ β 1 ≤ +2,012. Таким образом, наклон генеральной совокупности с вероятностью 0,95 лежит в интервале от +1,328 до +2,012 (т.е. от 1 328 000 до 2 012 000 долл.). Поскольку эти величины больше нуля, между годовым объемом продаж и площадью магазина существует статистически значимая линейная зависимость. Если бы доверительный интервал содержал нуль, между переменными не было бы зависимости. Кроме того, доверительный интервал означает, что каждое увеличение площади магазина на 1 000 кв. футов приводит к увеличению среднего объема продаж на величину от 1 328 000 до 2 012 000 долларов.

Использование t -критерия для коэффициента корреляции. был введен коэффициент корреляции r , представляющий собой меру зависимости между двумя числовыми переменными. С его помощью можно установить, существует ли между двумя переменными статистически значимая связь. Обозначим коэффициент корреляции между генеральными совокупностями обеих переменных символом ρ. Нулевая и альтернативная гипотезы формулируются следующим образом: Н 0 : ρ = 0 (нет корреляции), Н 1 : ρ ≠ 0 (есть корреляция). Проверка существования корреляции:

где r = + , если b 1 > 0, r = – , если b 1 < 0. Тестовая статистика t имеет t -распределение с n – 2 степенями свободы.

В задаче о сети магазинов Sunflowers r 2 = 0,904, а b 1 - +1,670 (см. рис. 4). Поскольку b 1 > 0, коэффициент корреляции между объемом годовых продаж и размером магазина равен r = +√0,904 = +0,951. Проверим нулевую гипотезу, утверждающую, что между этими переменными нет корреляции, используя t -статистику:

При уровне значимости α = 0,05 нулевую гипотезу следует отклонить, поскольку t = 10,64 > 2,1788. Таким образом, можно утверждать, что между объемом годовых продаж и размером магазина существует статистически значимая связь.

При обсуждении выводов, касающихся наклона генеральной совокупности, доверительные интервалы и критерии для проверки гипотез являются взаимозаменяемыми инструментами. Однако вычисление доверительного интервала, содержащего коэффициент корреляции, оказывается более сложным делом, поскольку вид выборочного распределения статистики r зависит от истинного коэффициента корреляции.

Оценка математического ожидания и предсказание индивидуальных значений

В этом разделе рассматриваются методы оценки математического ожидания отклика Y и предсказания индивидуальных значений Y при заданных значениях переменной X .

Построение доверительного интервала. В примере 2 (см. выше раздел Метод наименьших квадратов ) регрессионное уравнение позволило предсказать значение переменной Y X . В задаче о выборе места для торговой точки средний годовой объем продаж в магазине площадью 4000 кв. футов был равен 7,644 млн. долл. Однако эта оценка математического ожидания генеральной совокупности является точечной. для оценки математического ожидания генеральной совокупности была предложена концепция доверительного интервала. Аналогично можно ввести понятие доверительного интервала для математического ожидания отклика при заданном значении переменной X :

где , = b 0 + b 1 X i – предсказанное значение переменное Y при X = X i , S YX – среднеквадратичная ошибка, n – объем выборки, X i - заданное значение переменной X , µ Y | X = X i – математическое ожидание переменной Y при Х = Х i , SSX =

Анализ формулы (13) показывает, что ширина доверительного интервала зависит от нескольких факторов. При заданном уровне значимости возрастание амплитуды колебаний вокруг линии регрессии, измеренное с помощью среднеквадратичной ошибки, приводит к увеличению ширины интервала. С другой стороны, как и следовало ожидать, увеличение объема выборки сопровождается сужением интервала. Кроме того, ширина интервала изменяется в зависимости от значений X i . Если значение переменной Y предсказывается для величин X , близких к среднему значению , доверительный интервал оказывается уже, чем при прогнозировании отклика для значений, далеких от среднего.

Допустим, что, выбирая место для магазина, мы хотим построить 95%-ный доверительный интервал для среднего годового объема продаж во всех магазинах, площадь которых равна 4000 кв. футов:

Следовательно, средний годовой объем продаж во всех магазинах, площадь которых равна 4 000 кв. футов, с 95% -ной вероятностью лежит в интервале от 6,971 до 8,317 млн. долл.

Вычисление доверительного интервала для предсказанного значения. Кроме доверительного интервала для математического ожидания отклика при заданном значении переменной X , часто необходимо знать доверительный интервал для предсказанного значения. Несмотря на то что формула для вычисления такого доверительного интервала очень похожа на формулу (13), этот интервал содержит предсказанное значение, а не оценку параметра. Интервал для предсказанного отклика Y X = Xi при конкретном значении переменной X i определяется по формуле:

Предположим, что, выбирая место для торговой точки, мы хотим построить 95%-ный доверительный интервал для предсказанного годового объема продаж в магазине, площадь которого равна 4000 кв. футов:

Следовательно, предсказанный годовой объем продаж в магазине, площадь которого равна 4000 кв. футов, с 95%-ной вероятностью лежит в интервале от 5,433 до 9,854 млн. долл. Как видим, доверительный интервал для предсказанного значения отклика намного шире, чем доверительный интервал для его математического ожидания. Это объясняется тем, что изменчивость при прогнозировании индивидуальных значений намного больше, чем при оценке математического ожидания.

Подводные камни и этические проблемы, связанные с применением регрессии

Трудности, связанные с регрессионным анализом:

  • Игнорирование условий применимости метода наименьших квадратов.
  • Ошибочная оценка условий применимости метода наименьших квадратов.
  • Неправильный выбор альтернативных методов при нарушении условий применимости метода наименьших квадратов.
  • Применение регрессионного анализа без глубоких знаний о предмете исследования.
  • Экстраполяция регрессии за пределы диапазона изменения объясняющей переменной.
  • Путаница между статистической и причинно-следственной зависимостями.

Широкое распространение электронных таблиц и программного обеспечения для статистических расчетов ликвидировало вычислительные проблемы, препятствовавшие применению регрессионного анализа. Однако это привело к тому, что регрессионный анализ стали применять пользователи, не обладающие достаточной квалификацией и знаниями. Откуда пользователям знать об альтернативных методах, если многие из них вообще не имеют ни малейшего понятия об условиях применимости метода наименьших квадратов и не умеют проверять их выполнение?

Исследователь не должен увлекаться перемалыванием чисел - вычислением сдвига, наклона и коэффициента смешанной корреляции. Ему нужны более глубокие знания. Проиллюстрируем это классическим примером, взятым из учебников. Анскомб показал, что все четыре набора данных, приведенных на рис. 23, имеют одни и те же параметры регрессии (рис. 24).

Рис. 23. Четыре набора искусственных данных

Рис. 24. Регрессионный анализ четырех искусственных наборов данных; выполнен с помощью Пакета анализа (кликните на рисунке, чтобы увеличить изображение)

Итак, с точки зрения регрессионного анализа все эти наборы данных совершенно идентичны. Если бы анализ был на этом закончен, мы потеряли бы много полезной информации. Об этом свидетельствуют диаграммы разброса (рис. 25) и графики остатков (рис. 26), построенные для этих наборов данных.

Рис. 25. Диаграммы разброса для четырех наборов данных

Диаграммы разброса и графики остатков свидетельствуют о том, что эти данные отличаются друг от друга. Единственный набор, распределенный вдоль прямой линии, - набор А. График остатков, вычисленных по набору А, не имеет никакой закономерности. Этого нельзя сказать о наборах Б, В и Г. График разброса, построенный по набору Б, демонстрирует ярко выраженную квадратичную модель. Этот вывод подтверждается графиком остатков, имеющим параболическую форму. Диаграмма разброса и график остатков показывают, что набор данных В содержит выброс. В этой ситуации необходимо исключить выброс из набора данных и повторить анализ. Метод, позволяющий обнаруживать и исключать выбросы из наблюдений, называется анализом влияния. После исключения выброса результат повторной оценки модели может оказаться совершенно иным. Диаграмма разброса, построенная по данным из набора Г, иллюстрирует необычную ситуацию, в которой эмпирическая модель значительно зависит от отдельного отклика (Х 8 = 19, Y 8 = 12,5). Такие регрессионные модели необходимо вычислять особенно тщательно. Итак, графики разброса и остатков являются крайне необходимым инструментом регрессионного анализа и должны быть его неотъемлемой частью. Без них регрессионный анализ не заслуживает доверия.

Рис. 26. Графики остатков для четырех наборов данных

Как избежать подводных камней при регрессионном анализе:

  • Анализ возможной взаимосвязи между переменными X и Y всегда начинайте с построения диаграммы разброса.
  • Прежде чем интерпретировать результаты регрессионного анализа, проверяйте условия его применимости.
  • Постройте график зависимости остатков от независимой переменной. Это позволит определить, насколько эмпирическая модель соответствует результатам наблюдения, и обнаружить нарушение постоянства дисперсии.
  • Для проверки предположения о нормальном распределении ошибок используйте гистограммы, диаграммы «ствол и листья», блочные диаграммы и графики нормального распределения.
  • Если условия применимости метода наименьших квадратов не выполняются, используйте альтернативные методы (например, модели квадратичной или множественной регрессии).
  • Если условия применимости метода наименьших квадратов выполняются, необходимо проверить гипотезу о статистической значимости коэффициентов регрессии и построить доверительные интервалы, содержащие математическое ожидание и предсказанное значение отклика.
  • Избегайте предсказывать значения зависимой переменной за пределами диапазона изменения независимой переменной.
  • Имейте в виду, что статистические зависимости не всегда являются причинно-следственными. Помните, что корреляция между переменными не означает наличия причинно-следственной зависимости между ними.

Резюме. Как показано на структурной схеме (рис. 27), в заметке описаны модель простой линейной регрессии, условия ее применимости и способы проверки этих условий. Рассмотрен t -критерий для проверки статистической значимости наклона регрессии. Для предсказания значений зависимой переменной использована регрессионная модель. Рассмотрен пример, связанный с выбором места для торговой точки, в котором исследуется зависимость годового объема продаж от площади магазина. Полученная информация позволяет точнее выбрать место для магазина и предсказать его годовой объем продаж. В следующих заметках будет продолжено обсуждение регрессионного анализа, а также рассмотрены модели множественной регрессии.

Рис. 27. Структурная схема заметки

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 792–872

Если зависимая переменная является категорийной, необходимо применять логистическую регрессию.

Целью регрессионного анализа является измерение связи меж­ду зависимой переменной и одной (парный регрессионный анализ) или не­сколькими (множественный) независимыми переменными. Независимые переменные называют также факторными, объясняющими, опреде­ляющими, регрессорами и предикторами.

Зависимую переменную иногда называют определяемой, объясняемой, «откликом». Чрезвы­чайно широкое распространение регрессионного анализа в эмпири­ческих исследованиях связано не только с тем, что это удобный ин­струмент тестирования гипотез. Регрессия, особенно множественная, является эффективным методом моделирования и прогнозирования.

Объяснение принципов работы с регрессионным анализом начнем с более простого - парного метода.

Парный регрессионный анализ

Первые действия при использовании регрессионного анализа будут практически идентичны предпринятым нами в рамках вычисления коэффициента корреляции. Три основных условия эффективности корреляционного анализа по методу Пирсона - нормальное распре­деление переменных, интервальное измерение переменных, линейная связь между переменными - актуальны и для множественной регрес­сии. Соответственно, на первом этапе строятся диаграммы рассеяния, проводится статистически-описательный анализ переменных и вы­числяется линия регрессии. Как и в рамках корреляционного анализа, линии регрессии строятся методом наименьших квадратов.

Чтобы более наглядно проиллюстрировать различия между двумя методами анализа данных, обратимся к уже рассмотренному приме­ру с переменными «поддержка СПС» и «доля сельского населения». Исходные данные идентичны. Отличие в диаграммах рассеяния бу­дет заключаться в том, что в регрессионном анализе корректно от­кладывать зависимую переменную - в нашем случае «поддержка СПС» по оси Y, тогда как в корреляционном анализе это не имеет значения. После чистки выбросов диаграмма рассеяния имеет вид:

Принципиальная идея регрессионного анализа состоит в том, что, имея общую тенденцию для переменных - в виде линии регрессии, - можно предсказать значение зависимой переменной, имея значения независимой.

Представим обычную математическую линейную функцию. Лю­бую прямую в евклидовом пространстве можно описать формулой:

где а - константа, задающая смещение по оси ординат; b - коэффи­циент, определяющий угол наклона линии.

Зная угловой коэффициент и константу, можно рассчитать (пред­сказать) значение у для любого х.

Эта простейшая функция и легла в основу модели регрессионного анализа с той оговоркой, что значение у мы предскажем не точно, а в рамках определенного доверительного интервала, т.е. приблизительно.

Константой является точка пересечения линии регрессии и оси ординат (F-пересечение, в статистических пакетах, как правило, обозначаемое «interceptor»). В нашем примере с голосованием за СПС ее округленное значение составит 10,55. Угловой коэффициент Ъ бу­дет равен примерно -0,1 (как и в корреляционном анализе, знак по­казывает тип связи - прямая или обратная). Таким образом, получен­ная модель будет иметь вид СП С = -0,1 х Сел. нас. + 10,55.

СПС = -0,10 х 47 + 10,55 = 5,63.

Разность между исходным и предсказанным значениями называет­ся остатком (с этим термином - принципиальным для статистики - мы уже сталкивались при анализе таблиц сопряженности). Так, для случая «Республика Адыгея» остаток будет равен 3,92 - 5,63 = -1,71. Чем больше модульное значение остатка, тем менее удачно предсказа­но значение.

Рассчитываем предсказанные значения и остатки для всех случаев:
Случай Сел. нас. СПС

(исходное)

СПС

(предсказанное)

Остатки
Республика Адыгея 47 3,92 5,63 -1,71 -
Республика Алтай 76 5,4 2,59 2,81
Республика Башкортостан 36 6,04 6,78 -0,74
Республика Бурятия 41 8,36 6,25 2,11
Республика Дагестан 59 1,22 4,37 -3,15
Республика Ингушетия 59 0,38 4,37 3,99
И т.д.

Анализ соотношения исходных и предсказанных значений служит для оценки качества полученной модели, ее прогностической способности. Одним из главных показателей регрессионной статистики является множественный коэффициент корреляции R - коэффициент корреляции между исходными и предсказанными значениями зави­симой переменной. В парном регрессионном анализе он равен обыч­ному коэффициенту корреляции Пирсона между зависимой и неза­висимой переменной, в нашем случае - 0,63. Чтобы содержательно интерпретировать множественный R, его необходимо преобразовать в коэффициент детерминации. Это делается так же, как и в корреля­ционном анализе - возведением в квадрат. Коэффициент детерминации R -квадрат (R 2) показывает долю вариации зависимой пере­менной, объясняемую независимой (независимыми) переменными.

В нашем случае R 2 = 0,39 (0,63 2); это означает, что переменная «доля сельского населения» объясняет примерно 40% вариации переменной «поддержка СПС». Чем больше величина коэффициента детер­минации, тем выше качество модели.

Другим показателем качества модели является стандартная ошиб­ка оценки (standard error of estimate). Это показатель того, насколько сильно точки «разбросаны» вокруг линии регрессии. Мерой разброса для интервальных переменных является стандартное отклонение. Со­ответственно, стандартная ошибка оценки - это стандартное откло­нение распределения остатков. Чем выше ее значение, тем сильнее разброс и тем хуже модель. В нашем случае стандартная ошибка со­ставляет 2,18. Именно на эту величину наша модель будет «ошибаться в среднем» при прогнозировании значения переменной «поддерж­ка СПС».

Регрессионная статистика включает в себя также дисперсионный анализ. С его помощью мы выясняем: 1) какая доля вариации (дисперсии) зависимой переменной объясняется независимой перемен­ной; 2) какая доля дисперсии зависимой переменной приходится на остатки (необъясненная часть); 3) каково отношение этих двух вели­чин (/"-отношение). Дисперсионная статистика особенно важна для выборочных исследований - она показывает, насколько вероятно наличие связи между независимой и зависимой переменными в генеральной совокупности. Однако и для сплошных исследований (как в нашем примере) изучение результатов дисперсионного анализа небесполезно. В этом случае проверяют, не вызвана ли выявленная ста­тистическая закономерность стечением случайных обстоятельств, насколько она характерна для того комплекса условий, в которых на­ходится обследуемая совокупность, т.е. устанавливается не истинность полученного результата для какой-то более обширной гене­ральной совокупности, а степень его закономерности, свободы от случайных воздействий.

В нашем случае статистика дисперсионного анализа такова:

SS df MS F значение
Регрес. 258,77 1,00 258,77 54,29 0.000000001
Остат. 395,59 83,00 Л,11
Всего 654,36

F-отношение 54,29 значимо на уровне 0,0000000001. Соответ­ственно, мы можем с уверенностью отвергнуть нулевую гипотезу (что обнаруженная нами связь носит случайный характер).

Аналогичную функцию выполняет критерий t, но уже в отношении регрессионных коэффициентов (углового и F-пересечения). С помо­щью критерия / проверяем гипотезу о том, что в генеральной совокуп­ности регрессионные коэффициенты равны нулю. В нашем случае мы вновь можем уверенно отбросить нулевую гипотезу.

Множественный регрессионный анализ

Модель множественной регрессии практически идентична модели парной регрессии; разница лишь в том, что в линейную функцию последовательно включаются несколько независимых переменных:

Y = b1X1 + b2X2 + …+ bpXp + а.

Если независимых переменных больше двух, мы не имеем возмож­ности получить визуальное представление об их связи, в этом плане множественная регрессия менее «наглядна», нежели парная. При на­личии двух независимых переменных данные бывает полезно отобразить на трехмерной диаграмме рассеяния. В профессиональных ста­тистических пакетах программ (например, Statisticа) существует опция вращения трехмерной диаграммы, позволяющая хорошо визуально представить структуру данных.

При работе с множественной регрессией, в отличие от парной, не­обходимо определять алгоритм анализа. Стандартный алгоритм включает в итоговую регрессионную модель все имеющиеся предикторы. Пошаговый алгоритм предполагает последовательное включе­ние (исключение) независимых переменных, исходя из их объяснительного «веса». Пошаговый метод хорош, когда имеется много независимых переменных; он «очищает» модель от откровенно слабых предикторов, делая ее более компактной и лаконичной.

Дополнительным условием корректности множественной регрес­сии (наряду с интервальностью, нормальностью и линейностью) является отсутствие мультиколлинеарности - наличия сильных корреляционных связей между независимыми переменными.

Интерпретация статистики множественной регрессии включает в себя все злементы, рассмотренные нами для случая парной регрессии. Кроме того, в статистике множественного регрессионного анализа есть и другие важные составляющие.

Работу с множественной регрессией мы проиллюстрируем на при­мере тестирования гипотез, объясняющих различия в уровне электоральной активности по регионам России. В ходе конкретных эмпири­ческих исследований были высказаны предположения, что на уровень явки избирателей влияют:

Национальный фактор (переменная «русское население»; операционализирована как доля русского населения в субъектах РФ). Предполагается, что увеличение доли русского населения ведет к сни­жению активности избирателей;

Фактор урбанизации (переменная «городское население»; операционализирована как доля городского населения в субъектах РФ, с этим фактором мы уже работали в рамках корреляционного анализа). Предполагается, что увеличение доли городского населения также ве­дет к снижению активности избирателей.

Зависимая переменная - «интенсивность избирательной активно­сти» («актив») операционализирована через усредненные данные яв­ки по регионам на федеральных выборах с 1995 по 2003 г. Исходная таблица данных для двух независимых и одной зависимой перемен­ной будет иметь следующий вид:

Случай Переменные
Актив. Гор. нас. Рус. нас.
Республика Адыгея 64,92 53 68
Республика Алтай 68,60 24 60
Республика Бурятия 60,75 59 70
Республика Дагестан 79,92 41 9
Республика Ингушетия 75,05 41 23
Республика Калмыкия 68,52 39 37
Карачаево-Черкесская Республика 66,68 44 42
Республика Карелия 61,70 73 73
Республика Коми 59,60 74 57
Республика Марий Эл 65,19 62 47

И т.д. (после чистки выбросов остается 83 случая из 88)

Статистика, описывающая качество модели:

1. Множественный R = 0,62; Л-квадрат = 0,38. Следовательно, национальный фактор и фактор урбанизации вместе объясняют около 38% вариации переменной «электоральная активность».

2. Средняя ошибка составляет 3,38. Именно настолько «в среднем ошибается» построенная модель при прогнозировании уровня явки.

3. /л-отношение объясненной и необъясненной вариации состав­ляет 25,2 на уровне 0,000000003. Нулевая гипотеза о случайности выявленных связей отвергается.

4. Критерий /для константы и регрессионных коэффициентов пе­ременных «городское население» и «русское население» значим на уровне 0,0000001; 0,00005 и 0,007 соответственно. Нулевая гипотеза о случайности коэффициентов отвергается.

Дополнительная полезная статистика в анализе соотношения ис­ходных и предсказанных значений зависимой переменной - расстояние Махаланобиса и расстояние Кука. Первое - мера уникальности слу­чая (показывает, насколько сочетание значений всех независимых переменных для данного случая отклоняется от среднего значения по всем независимым переменным одновременно). Второе - мера влия­тельности случая. Разные наблюдения по-разному влияют на наклон линии регрессии, и с помощью расстояния Кука можно сопоставлять их по этому показателю. Это бывает полезно при чистке выбросов (вы­брос можно представить как чрезмерно влиятельный случай).

В нашем примере к уникальным и влиятельным случаям, в частно­сти, относится Дагестан.

Случай Исходные

значения

Предска­

значения

Остатки Расстояние

Махаланобиса

Расстояние
Адыгея 64,92 66,33 -1,40 0,69 0,00
Республика Алтай 68,60 69.91 -1,31 6,80 0,01
Республика Бурятия 60,75 65,56 -4,81 0,23 0,01
Республика Дагестан 79,92 71,01 8,91 10,57 0,44
Республика Ингушетия 75,05 70,21 4,84 6,73 0,08
Республика Калмыкия 68,52 69,59 -1,07 4,20 0,00

Собственно регрессионная модель обладает следующими парамет­рами: У-пересечение (константа) = 75,99; Ь (Гор. нас.) = -0,1; Ъ (Рус. нас.) = -0,06. Итоговая формула.

Что такое регрессия?

Рассмотрим две непрерывные переменные x=(x 1 , x 2 , .., x n), y=(y 1 , y 2 , ..., y n).

Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение , если данные аппроксимируются прямой линией.

Если мы полагаем, что y зависит от x , причём изменения в y вызываются именно изменениями в x , мы можем определить линию регрессии (регрессия y на x ), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

Статистическое использование слова "регрессия" исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей "регрессировал" и "двигался вспять" к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Линия регрессии

Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:

x называется независимой переменной или предиктором.

Y - зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x , т.е. это «предсказанное значение y »

  • a - свободный член (пересечение) линии оценки; это значение Y , когда x=0 (Рис.1).
  • b - угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
  • a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b .

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия .

Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)

Метод наименьших квадратов

Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b - выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).

Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).

Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y - предсказанный y , Рис. 2).

Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.

Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.

Предположения линейной регрессии

Итак, для каждой наблюдаемой величины остаток равен разнице и соответствующего предсказанного Каждый остаток может быть положительным или отрицательным.

Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:

  • Остатки нормально распределены с нулевым средним значением;

Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать или и рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).

Аномальные значения (выбросы) и точки влияния

"Влиятельное" наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).

Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть "влиятельным" наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.

И для выбросов, и для "влиятельных" наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.

Гипотеза линейной регрессии

При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.

Если угловой коэффициент линии равен нулю, между и нет линейного соотношения: изменение не влияет на

Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент равен нулю можно воспользоваться следующим алгоритмом:

Вычислить статистику критерия, равную отношению , которая подчиняется распределению с степенями свободы, где стандартная ошибка коэффициента


,

- оценка дисперсии остатков.

Обычно если достигнутый уровень значимости нулевая гипотеза отклоняется.


где процентная точка распределения со степенями свободы что дает вероятность двустороннего критерия

Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.

Для больших выборок, скажем, мы можем аппроксимировать значением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)

Оценка качества линейной регрессии: коэффициент детерминации R 2

Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется , и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.

Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.

Долю общей дисперсии , которая объясняется регрессией называют коэффициентом детерминации , обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.

Разность представляет собой процент дисперсии который нельзя объяснить регрессией.

Нет формального теста для оценки мы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.

Применение линии регрессии для прогноза

Можно применять регрессионную линию для прогнозирования значения по значению в пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).

Мы предсказываем среднюю величину для наблюдаемых, которые имеют определенное значение путем подстановки этого значения в уравнение линии регрессии.

Итак, если прогнозируем как Используем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины в популяции.

Повторение этой процедуры для различных величин позволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

Простые регрессионные планы

Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид

а регрессионное уравнение с использованием P для X1 выглядит как

Y = b0 + b1 P

Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:

а уравнение примет вид

Y = b0 + b1 P2

Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.

Пример: простой регрессионный анализ

Этот пример использует данные, представленные в таблице:

Рис. 3. Таблица исходных данных.

Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:

Рис. 4. Таблица спецификаций переменных.

Задача исследования

Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 (Pt_Poor ) как зависимую переменную.

Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 (Pop_Chng ) как переменную-предиктор.

Просмотр результатов

Коэффициенты регрессии

Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.

На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на.40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p<.05 . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на.65.

Распределение переменных

Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .

Рис. 6. Гистограмма переменной Pt_Poor.

Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся "внутри диапазона."

Рис. 7. Гистограмма переменной Pt_Poor.

Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.

Диаграмма рассеяния

Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.

Рис. 8. Диаграмма рассеяния.

Диаграмма рассеяния показывает явную отрицательную корреляцию (-.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.

Критерии значимости

Рис. 9. Таблица, содержащая критерии значимости.

Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p<.001 .

Итог

На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows