Программы сканирования объекта и построения 3d модели. Бесконтактные активные сканеры. Внешний вид, рабочие органы

Программы сканирования объекта и построения 3d модели. Бесконтактные активные сканеры. Внешний вид, рабочие органы

08.05.2019

Что такое 3D сканер?

3D сканер – это устройство, которое анализирует физический объект и, отталкиваясь от полученной информации, создает его 3D образ. Отсканированные модели далее могут обрабатываться средствами САПР, после чего используются для технологических и инженерных разработок. Для создания 3D-модели используются 3D-принтер и 3D-монитор.

В создании 3D-сканера участвовали сразу несколько технологий, различных между собой. Объекты, подвергающиеся оцифровке, также имеют некоторые ограничения. Трудности могут возникнуть с зеркальными, блестящими или прозрачными поверхностями. Стоит напомнить, что трехмерные данные важны и в других сферах деятельности. Например, его используют в развлекательной индустрии: при создании видеоигр, фильмов, рисунков. 3D-технологии находят свое применение в ортопедической области и протезировании, при разработке промышленного дизайна, реверс-инжиниринге, создании прототипов, а также в осмотре и документальной отчетности исторических объектов или иных культурных артефактов.

Область функциональных возможностей 3D-сканера

Во время работы 3D-сканер создает множество точек согласно геометрическим пропорциям сканируемого объекта. В дальнейшем эти точки воссоздают форму предмета, то есть реконструируют его на монитор. Если имеются сведения о расцветках, то они определяют и цвет будущей цифровой поверхности.

3D-сканер можно сравнить с обычной камерой: поле зрения у них конусообразного типа, а информация может быть получена только с тех поверхностей, которые были не затемнены. Различия между этими приборами все же существенные. Камера передает только изображение и цвет предмета, а сканер, более тщательно исследуя объект, выдает «картинку» с точным расстоянием каждой точки до поверхности. Это позволяет видеть изображение сразу в трех плоскостях.

Для полноценного моделирования предмета одного сканирования, как правило, недостаточно. Требуется сразу несколько таких операций. Сканирование объекта с разных направлений необходимо для получения более полной информации о его сторонах. Все отсканированные данные накладываются на общую систему координат, где происходит «привязка» и выравнивание изображения. Вся процедура моделирования называется 3D конвейером.

Для четкого сканирования объекта и сканирования его форм существует несколько технологий. По классификации 3D-сканеры делятся на два типа: контактные сканеры и бесконтактные. Последние, в свою очередь, делятся еще на два вида – пассивные и активные.

Контактные 3D-сканеры

Сканеры этого вида изучают объект напрямую – через физическое взаимодействие. В момент исследования предмет находится на специальной поверочной плите, отполированной и отшлифованной до нужной шероховатости поверхности. Если вещь несимметричная или не может лежать ровно на одном месте, ее удерживают специальные зажимы (тиски).

Различают три формы механизма 3D-сканера:

  1. Каретка, оснащенная измерительной рукой, которая четко зафиксирована в перпендикулярном направлении. Исследование по всем осям происходит в тот момент, когда рука двигается вдоль каретки. Этот вариант идеально подходит для изучения плоских или обычных выпуклых поверхностей.
  2. Прибор, оснащенный высокоточным угловым датчиком и зафиксированными составляющими. Конец измерительной руки расположен так, что способен воспроизводить сложнейшие математические вычисления. Данный механизм оптимален для сканирования внутреннего пространства объекта или иных его углублений, имеющих небольшое входное отверстие.
  3. Единовременное использование двух вышеуказанных механизма. К примеру, манипулятор совмещают с кареткой, что позволяет собирать информацию с крупных объектов, имеющих несколько внутренних отсеков или, перекрывающих друг друга, плоскости.

Координатно-измерительная машина – яркий пример 3D-сканера контактного типа. Они являются сверхточными и широко применяются на различных производствах. К существенному минусу машины можно отнести необходимость обязательного соприкосновения с изучаемым объектом. Велика вероятность повреждения предмета или его деформации. Этот пункт очень важен, тем более, если происходит сканирование хрупкого или исторического объекта.

Еще один недостаток КИМ – это ее медлительность. Перемещение руки по установленной цели может происходить очень долго. В то время, как современные оптические модели, могут работать гораздо быстрее.

К этой группе можно также отнести ручные измерительные приборы, которые часто используются для 3D-моделирования анимационных фильмов.

Бесконтактные активные 3D-сканеры

Для работы активного сканера используются либо обычный свет, либо определенный вид излучения. Именно через проходящее излучение или отражение света, объект подвергается цифровому исследованию. Случается применение рентгеновских лучей или ультразвука.

Триангуляционные сканеры

Эти приборы используют для зондирования объекта лазерный луч. Сканер посылает луч на предмет, а отдельно зафиксированная камера заносит данные о расположении указанной точки. По мере движения лазера по поверхности, поле зрения камеры фиксирует точку в разных местах. Триангуляционными их назвали потому, что лазерный излучатель, конечная точка и сама камера, совместно образуют треугольник.

Времяпролетные 3D-сканеры

Это активный вид сканера, который для исследования объекта использует лазерный луч. В его основе лежит времяпролетный дальномер. Именно он определяет расстояние до поверхности, рассчитывая время, за которое лазер пролетел туда и обратно. В этом случае лазерный луч используется, как световой импульс, время отражения которого и измеряется при помощи детектора. Скорость света, как известно, величина постоянная, поэтому, зная, за какое время луч совершает пролет туда-обратно, можно без труда вычислить расстояние от сканера до поверхности изучаемого предмета.

Времяпролетные 3D-приборы сканирования за одну секунду способны измерить до 100 000 точек.

Применение 3D-сканеров

Технологию 3D-сканирования простой не назовешь. Но, несмотря на это, этот с каждым годом она все активней развивается. Причин для этого масса, но можно выделить самые весомые.

В первую очередь, такое оборудование необходимо всем промышленным предприятиям для более дешевых и быстрых разработок продукции.

Реалистичными копиями реально существующих предметов пользуются сейчас во многих сферах деятельности: медицине, кино, фэйшн-индустрии.

Производство 3D-сканеров давно перестало быть чем-то из ряда фантастики. Сейчас их производят тысячи компаний: как акулы индустрии, так и дебютанты данного рынка. Поколение 3D-сканеров способно положительным образом повлиять на индустрии в целом. тем боле, что свою нишу здесь найдут, как крупные производства, так и инженеры одиночки.

Технология трехмерного сканирования появилась всего несколько десятилетий назад, в конце 20-го века. Первый работающий прототип появился в 60-х годах. Конечно, тогда он не мог похвастаться широким спектром возможностей, однако это был настоящий 3d сканер, неплохо справляющийся с основной функцией.

В средине 80-х годов сканирующие устройства усовершенствовали. Их начали дополнять лазерами, источниками белого света и затемнения. Благодаря этому удалось улучшить «захват» исследуемых объектов. В этот период появляются контактные датчики. С их помощью оцифровывалась поверхность твердых предметов, которые не отличались сложной формой. Чтобы усовершенствовать оборудование, разработчикам пришлось позаимствовать ряд оптических технологий из военной промышленности.

Применение 3d сканеров было интересно не только конструкторам дизайн-студий, автомобильных концернов, но и работникам киноиндустрии. В 80-х – 2000-х годах разные компании выпускали свои модели оборудования: Head Scanner, 3D-сканер REPLICA и другие. С тех времен агрегаты изменились, усовершенствовались, стали более мобильными и функциональными. Характеристики 3d сканера сегодня существенно отличаются.

Принцип работы 3d сканера

Устройство 3d сканера занимается детальным исследованием физических объектов, после чего воссоздаются их точные модели в цифровом формате. Современные агрегаты могут быть стационарными или мобильными. В качестве подсветки применяется лазер или особая лампа (их использование увеличивает точность измерений).

Принцип работы 3d сканера определяется технологией сканирования. При помощи подсветки и встроенных камер аппарат измеряет расстояние до объекта с разных ракурсов. Затем сопоставляются картинки, передаваемые камерами. После тщательного анализа всех полученных данных, на экране отображается готовая цифровая трехмерная модель. Если устройство 3d сканера основано на работе лазерного луча, то с его помощью измеряются расстояния в заданных точках. На основе этих сведений выводятся координаты.

Методы и технологии трехмерного сканирования

Выделяют два основных метода:

  1. Контактный. Устройство зондирует предмет посредством физического контакта, пока объект находится на прецизионной поверочной плите. Контактный 3d сканер отличается сверхточностью работы. Правда, при сканировании можно повредить или изменить форму объекта.
  2. Бесконтактный. Применяется излучение или особый свет (ультразвук, рентгеновские лучи). В данном случае предмет сканируется через отражение светового потока.

Технологии трехмерного сканирования:

  1. Лазерная. Функционирование устройств основывается на принципе работы лазерных дальномеров. Лазерные сканеры 3d характеризуются точностью получаемой трехмерной модели. Правда, их применение затруднительно в условиях подвижности объекта. Это больше 3d сканер для помещения. Сканирование человека 3d сканером лазерного типа практически невозможно.
  2. Оптическая. В данном случае применяется специальный лазер второго класса безопасности. Оптический 3d сканер отличается большой скоростью сканирования. Его использование исключает любое искажение, даже если объект будет двигаться. Также нет необходимости в нанесении отражающих меток. Правда, такие устройства не подходят для исследования зеркальных, прозрачных или блестящих изделий. Зато это отличный вариант 3d сканера человека.


Современные 3d сканеры

Устройства могут отличаться по многим параметрам: сфере использования, габаритам, форме, технологии. Современные агрегаты применяются и в промышленной, и в бытовой сфере. Промышленный 3d сканер полезен в:

  • инженерии;
  • медицине;
  • производстве;
  • дизайне;
  • киноиндустрии;
  • сфере создания компьютерных игр.

Особое внимание хотелось бы уделить ультразвуковому 3d сканеру. Он является настоящей находкой для современной медицины. Устройства снабжаются энергетическими, цветными, тканевыми, непрерывноволновыми и импульсными допплерами. Данный агрегат характеризуется высочайшей разрешающей способностью, поэтому популярен в маммологии, акушерстве, урологии, исследовании сосудов и мышечных тканей, эхокардиографии, неонаталогии, педиатрии.

По принципу работы устройства также отличаются. Рынок предлагает стационарный или переносной, то есть ручной 3d сканер. В качестве сенсора во втором случае используется координатно-чувствительный детектор или аппарат с зарядовой связью. Данный агрегат чрезвычайно удобен тем, что его можно свободно перемещать. Портативный 3d сканер идеально подходит для сканирования труднодоступных мест или крупногабаритных объектов. Измерение можно проводить под любыми углами, вокруг или под исследуемыми предметами.

Устройства используются совместно с разным оборудованием. Это может быть не только 3d сканер для 3d принтера, но и 3d сканер для ipad. Современные производители подобных агрегатов выпускают мобильные устройства, которые работают не только со стационарными компьютерами, но и с планшетами или даже смартфонами. Кроме этого существуют специальные программы, с помощью которых обычные телефоны превращаются в сканеры. К примеру, можно найти 3d сканер для андроид. Он поможет конструировать уникальные детали, проводить быстрое прототипирование и оцифровку объектов.

Программное обеспечение для 3D сканера

Специальные программы для 3d сканера и обработки данных:

  1. David-3D. Предназначается для трехмерного сканирования предметов и преобразования полученных результатов с целью последующего импорта моделей в 3D-редакторы.
  2. Artec Studio 10. Профессиональный инструмент для создания объемных моделей.
  3. Autodesk 123D Catch. Трехмерное сканирование для мобильных телефонов на Android.
  4. Photomodeler Scanner. Позволяет формировать высокоточные stl-модели на основе обычных снимков, сделанных камерой смартфона или планшета.
  5. 3DAround. Превращает фото в формате в 2D в реалистичные трехмерные модели.


Видео о 3D сканере

Чтобы лучше понять принцип работы устройств и их разновидности, стоит посмотреть видео про 3d сканеры, которые представлены ниже.

Интервью с Георгием Казакевичем, экспертом направления технической поддержки 3D-оборудования компании iQB Technologies

– В первой части интервью мы говорили об обратном проектировании (reverse engineering ). Теперь давайте разберемся, что такое контроль геометрии?

Контроль геометрии – это, по сути дела, контроль качества . Вот смотрите: предприятие получает заготовки, которые оно должно доработать. Если производить входной контроль этих заготовок, можно очень сильно уменьшить себе головную боль на этапе изготовления.

Взгляните на схему (рис. 1): для первой детали первые три пункта выполняются вручную (сканирование, подготовка к анализу и непосредственно анализ), а отчет составляет за вас программное обеспечение. Для следующих 999 деталей вручную делается только сканирование, остальные три этапа выполняет ПО. Таким образом, вы тратите время только на оцифровку. А при контроле геометрии сканирование – это обычно от 5 до 15% затраченного времени, не больше. Следовательно, при потоковом контроле или контроле серийного производства мы начинаем экономить массу времени.

Раньше предприятие могло себе позволить контролировать одну деталь из тысячи, потому что на это уходил день. Внедряя 3D-сканирование, можно контролировать сто деталей из тысячи всего за два дня. В первый день мы делаем всё вручную, и лишь еще один день потратим на 99 деталей – их надо только отсканировать. После чего помещаем CAD-модель в определенную папку и говорим программному обеспечению: «Работай».

Рис. 2. Карта отклонений геометрии футеровки

– Расскажите, пожалуйста, как это работает, на примерах из практики iQB Technologies .

– Была задача измерить толщину футеровки, успешно выполненная главным техническим экспертом нашей компании . Существует узел смешения жидкостей, он металлический, потому что жидкости подаются под давлением. Проблема в том, что должным образом обработать металл внутри – это, во-первых, тяжело, во-вторых, дорого. Ко всему прочему, металл – это материал, который вступает во взаимодействие со многими жидкостями, он может ржаветь, подвергаться коррозии и т.д. Этот узел изнутри покрывается специальным пластиковым составом. Для того чтобы достигалось правильное смешение жидкостей, покрытие должно быть равномерным. Если в нем есть рытвины, если оно неравномерно по толщине, внутри будут появляться завихрения. Они создают дополнительное давление на узел, следовательно, уменьшают срок его эксплуатации.

Раньше предприятие контролировало одну деталь из тысячи, потому что на это уходил день. Внедряя 3D-сканирование, можно контролировать сто деталей из тысячи всего за два дня.

Итак, сначала было выполнено 3D-сканирование узла без покрытия, затем с покрытием, и результаты подвергнуты сравнению. Красная зона на скане (рис. 2) – это покрытие. На правой картинке видно, что оно неровное. Исходя из полученных результатов, заказчик может предъявить претензии субподрядчику, который занимается нанесением этого покрытия.

Рис. 3. Контроль сварной конструкции

Следующий пример – выполненный мной контроль сварной конструкции. Я ездил в Нижний Новгород на завод компании Liebherr, который производит для сборки промышленной техники. Сами металлические листы приходят из Германии, в России свариваются и потом отправляются обратно. Из-за того, что конструкция довольно большая (2 м длиной), предусмотрены посадочные отверстия для крепления к другим конструкциям. Если во время сварки произойдет какой-нибудь перекос, деталь в одном месте присоединится, а в другом нет. Чтобы избежать этого, на заводе решили перед отправкой в Германию все детали предварительно сканировать и оценивать на отклонения, которые получились при сварке. В таблице справа (рис. 3) мы видим фактические размеры, которые показало 3D-сканирование. Отклонения отображаются в виде цветовой карты. Зеленый цвет – хороший результат, желтый – в пределах допуска, красный – неприемлемое отклонение. Конкретно та деталь, которую мы сканировали, естественно, не проходит и считается браком.


– В каких еще отраслях Вы применяли 3D-сканер и ПО для контроля геометрии?

Рис. 4. Контроль геометрии крыла автомобиля

– К примеру, у нас были проекты, связанные с . Запчасти для автомобилей, как вы знаете, достаточно дорогие. Их всегда можно заказать из Китая, но гораздо удобнее наладить производство в России. Наш заказчик, который изготавливает запчасти для машин высокого сегмента, стал получать жалобы: детали «играют», когда их пытаются посадить на место. Мы отсканировали крыло для BMW, сделанное в России, и крыло оригинального BMW. Сравнили их друг с другом и увидели, что российская деталь по размеру чуть больше, чем требуется. На основании этого в производственный цикл были внесены изменения.

Рис. 5. Корпус автобуса

На рисунке 6 вы видите корпус автобуса и результаты 3D-сканирования – это проект, которым занимался Алексей Чехович. В Москве есть предприятие, которое производит автобусы из смолы. Современные смолы по прочности могут соперничать с металлами, при этом они намного легче, а значит, экономичнее с точки зрения расходов топлива. Такой автобус собирается из нескольких частей. На предприятии заметили, что при сборке возникают некоторые перекосы, напряжения. Вначале нас пригласили отснять сделанные заготовки. Мы их отсняли и увидели, что заготовка сама по себе кривая. А в дальнейшем мы выяснили, что проблема даже не в заготовке, а в самой форме, в которой ее делали. То есть заготовка с формой идеально сошлась, а вот сама форма была бракованной, и ее пришлось заменить. После этого было решено, что мы примерно раз в полгода будем проверять форму.

– Контроль качества включает в себя и эксплуатационный контроль. Приходилось ли Вам решать подобные задачи с помощью 3D-сканирования?

Да, и это, как правило, связано со сложными, дорогими устройствами, типа самолета. В процессе эксплуатации на него действуют колоссальные нагрузки, и существуют ограничения на структурные изменения конструкции, которые самолет приобретает в процессе эксплуатации. Компания S7 заказала у нас полное 3D-сканирование Airbus. Анализ мы не выполняли, так как эти данные составляют коммерческую тайну.

Рис. 6. Эксплуатационный контроль Airbus авиакомпании S7

Обратите внимание на скан, где видно наклейку на хвостовой части (рис. 6). Дело в том, что даже такая вещь, как наклейка влияет на расход топлива. Измерительные системы, которые есть в нашем распоряжении, настолько чувствительны, что могут рассчитать оптимальное размещение наклейки. И по просьбе S7 было произведено 3D-сканирование хвоста самолета с наклейкой и без нее, чтобы понять, насколько правильно она расположена.

Рис. 7. Контроль оснастки на авиационном заводе

Упомяну еще один проект из области . Заказчиком iQB Technologies был самолетостроительный завод, изначально поручивший нам анализ листовых изделий довольно большого размера (2 метра и больше). На основании измерений мы выяснили, что деталь гнутая и не укладывается в требуемые допуски. И это при том, что на самом заводе она прошла контроль.

После того как деталь изготовили, ее кладут на деревянный шаблон (рис. 9). Если она лежит ровно, делают вывод, что она годная. Поскольку показывал отклонения, мы предложили проверить шаблон. И вот на скане можно увидеть множество зон с отклонениями. Такие шаблоны больших размеров, по которым изготавливаются узлы или детали, имеют сложный профиль, и поэтому их тяжело контролировать. Негодность самой шаблонной конструкции – это, на самом деле, большая проблема для многих предприятий.

– И здесь на помощь приходит 3D-сканер…


Я решил потестить и описать ручные профессиональные 3d-сканеры (не часто держишь в руках кусок пластика ценой выше миллиона рублей).

Трехмерное или 3D-сканирование - это процесс перевода физической формы реального объекта, изделия в цифровую форму, то есть получение трехмерной компьютерной модели (3d-модель) объекта.

3D-сканирование может оказаться полезным при решении задач ре-инжиниринга, проектирования приспособлений, оснастки, запасных частей при отсутствии оригинальной компьютерной документации на изделие, а также при необходимости перевода в цифровой вид поверхностей сложной формы, в том числе художественных форм и слепков.

Работа сканера в чем-то напоминает объемное зрение человека. Как мозг выстраивает объемное изображение увиденного, так 3D сканер получает информацию, сравнивая два изображения, смещенных друг относительно друга. Для достижения необходимой точности построения модели применяются дополнительные технологические приемы в виде подсветки лазером или периодической вспышки.

Под катом описание и тест-драйв Creaform HandyScan 700 и немного про 2 других сканера и одним глазком про Surphaser. А так же примеры использования сканеров в нефтяной и космической отраслях, медицине и реверс-инжиниринге.

Этапы создания 3d-модели при помощи сканера


3D-сканирование – это инструмент для быстрого получения геометрии трёхмерного объекта практически любой сложности. Однако, нужно помнить, что 3D-сканер даёт облако точек в трёхмерном пространстве, расположенных по форме объекта или полигональную модель – те же самые точки, но соединённые линиями так, что получается множество пересекающихся плоскостей, описывающих геометрию объекта.
Сама геометрия объекта мало кому нужна, ведь зачастую цель 3D-сканирования – это получение точных чертежей сканируемого объекта, а не просто координат в трёхмерном пространстве.

Но и этот вопрос уже давно решён: на рынке есть специально ПО, такое как Geomagic DesignX, позволяющее превратить облако точек в параметрическую модель и передать её в абсолютно любую CAD-систему.

Т.е., с помощью данного ПО мы снимаем вообще любые ограничения: сканируем 3D-сканером объект, параметризируем его в специальном ПО, передаём получившуюся параметрику или NURBS поверхности (кому что) в ваш CAD и с лёгкостью работаем по редактируемой модели, получая чертежи любого сечения в нужном нам формате.

Сферы применения 3d-сканеров

  • Автомобильная индустрия
  • Транспорт (автобусы, грузовики, поезда)
  • Тяжелое оборудование (агротехнологии, экскаваторы, шахтовое оборудование)
  • Спорт, хобби (ATV (квадроцикл), мототехника, акватранспорт)
  • Аэрокосмические технологии
  • Потребительские товары
  • Производство – металл
  • Производство – пластик и композиты
  • Армия, Оборона, Правительство
  • Электрогенерация (ветровая, гидро, атомная)
  • Судостроение
  • Бензин и газ
  • Образование
  • Здравохранение
  • Развлечения и мультимедиа
  • Музееведение, сохранение наследия
  • Архитектура, строительство, инженерия

ТТХ

Вес - 122 x 77 x 294 мм
Размеры 150 x 171 x 251 мм
Скорость измерений - 480 000 измерений в секунду
Область сканирования- 275 x 250 мм
Источник света - 7 лазерных крестов (+1 дополнительная линия)
Класс лазера - II (безопасный для глаз)
Разрешение 0,05 мм
Точность - до 0,03 мм
Объемная точность - 0,02 мм + 0,06 мм/м
Расстояние до объекта при сканировании - 300 мм
Глубина резкости - 250 мм
Диапазон размеров объектива (рекомендуемый) - 0,1 - 4 м
программное обеспечение - VXelements
Выходные форматы - .dae, .fbx, .ma, .obj, .ply, .stl, .txt, .wrl, .x3d, .x3dz, .zpr
Совместимое ПО - 3D Systems (Geomagic Solutions), InnovMetric Software (PolyWorks), Dassault Systèmes (CATIA V5 и SolidWorks), PTC (Pro/ENGINEER), Siemens (NX и Solid Edge), Autodesk (Inventor, Alias, 3ds Max, Maya, Softimage).
Стандарт соединения - 1 x USB 3.0
Диапазон рабочих температур - 15-40°C
Диапазон рабочей влажности (без конденсата) 10-90%

500 черных меток


Если очень надо, делаю даже вот так



Устройство само определяет положение. Нет необходимости использовать координатно-измерительную машину (CMM), измерительную руку или другое внешнее устройство позиционирования.


Визуализация сканируемой поверхности в режиме реального времени.


Благодаря динамической привязке объект можно передвигать во время трехмерного сканирования, что устраняет необходимость жёсткой установки.

Индивидуальная калибровочная таблица

Сертификат, подтверждающий качество и точность

Примеры

Применение



«На данный момент трехмерное сканирование применяется не только для получения оцифрованных моделей различных деталей, статуэток, кузовов машин и пр. 3D-сканирование также широко применяется в сканировании людей, а в последнее время это особенно спрашиваемая технология, ведь интересно хранить не только семейные фотографии в рамках на тумбочке, но и, например, всю семью, напечатанную на 3D-принтере. Помимо развлекательных целей, в медицине все чаще применяются трехмерные технологии. Например, сканирование ноги человека для создания удобного протеза, сканирование слепка челюсти пациента для дальнейшей работы в специализированном стоматологическом программном обеспечении, сканирование органов человека…Как может показаться на первый взгляд, на данный момент 3D – технологии несут в себе развлекательный характер, но это уже давно не так. Это инновация практически в любой сфере деятельности.» Алексей, специалист Consistent Software Distribution

Суровые технари проверяют трубопровод

оценкой целостности трубопроводов


оценка повреждения самолетов градом

Влияние повреждений, наносимых градом, на аэродинамические свойства самолёта является сложным фактором для оценки, но в то же время в буквальном смысле слова - жизненно важно! – сделать эту оценку максимально точно. Форма и размер дефектов могут варьироваться в зависимости от силы шквала, в который попадает самолёт. Следовательно, самый распространённый способ анализа повреждений - посредством измерения геометрии (длины, ширины и глубины) каждой вмятины на рассматриваемом участке поверхности самолёта. Также существует необходимость контроля геометрии деталей на производственной линии.


проверка внутреннего состояния труб

Операторы трубопроводов всегда разрываются между обеспечением общественной безопасности и экономическими последствиями земляных работ в зонах, где, как оказывается в дальнейшем, ремонт не требуется. Методы прямой оценки используются для подтверждения результатов измерений, полученных с помощью инструментов для проверки внутреннего состояния труб. Эти инструменты не всегда точны, и им иногда требуется повторная калибровка. Сервисные компании тратят большое количество времени на сопоставление данных от поставщиков оборудования для проверки внутреннего состояния труб и данных, полученных при помощи уровнемера (или любого другого инструмента для прямой оценки), для оценки работы инструмента. Для правильной оценки работы инструмента проверки внутреннего состояния труб операторы трубопроводов должны выполнять ежегодный анализ статистически значимых совокупностей при помощи устройства, которое обеспечивает большую точность, чем технология рассеяния магнитного потока.


осмотр и обмер резервуаров

Общественная озабоченность вопросами экологии вынуждает нефтяные компании совершенствовать технику безопасности по отношению к охране окружающей среды и здоровья. Осмотр резервуаров традиционно являлся длительной процедурой, но теперь компании могут удовлетворить общественные интересы благодаря технологии трёхмерного сканирования, позволяющей повысить точность и эффективность этих работ. Этот же инструмент можно использовать для других целей, например для обмера резервуаров. На самом деле, построение точной таблицы вместимости является одним из основных требования отрасли…

Установка резервуара
Отчёты об осмотре резервуаров, генерируемые системами Creaform, содержат важную информацию - такую, как профили дна, вертикальные профили и круглограммы - необходимую для оценки оседания резервуара.
Построение градуировочных таблиц вместимости
Градуировочные таблицы вместимости используются для определения количества продукта в резервуаре. Форму отчётов можно изменить в соответствии с потребностями клиента. Данные в отчёте могут включать или не включать объём внутренних конструкций резервуара, влияние на параметры плавающей крыши резервуара и т.п.


3d-моделирование для контроля методом фазированной решетки

для авиакосмической отрасли

Сервисные воздушные суда и их компоненты и конструкции необходимо контролировать и оценивать уровень деградации и оставшегося срока службы. Авиаконструкторы и авиаперевозчики сталкиваются с проблемой контроля сложных компонентов (например, газовых турбин, отсеков двигателя, обтекателей, кабины лётчика и т.п.), которые являются частями очень сложных узлов и не могут быть извлечены для осмотра. Для решения этой проблемы обычно обращаются к контролю методом фазированной решетки.

Моделирование фокального закона фазированной решетки применяется для прогнозирования результатов контроля и оптимизации конфигурации датчика и клина. Контроль компонентов сложной формы с использованием двумерной матрицы может представлять сложную задачу. За неимением лучшего решения, 3D-модель обычно берется из файла CAD или из теоретической модели конструкции. Однако реальная форма компонента отличается от идеальной теоретической модели и, следовательно, ухудшается точность ультразвукового сканирования и вероятность обнаружения.



для энергетики


Компоненты и конструкции электростанций необходимо контролировать и оценивать уровень деградации и оставшегося срока службы. Энергетические компании сталкиваются с проблемой контроля сложных компонентов (деталей «ласточкин хвост», форсунок, подающих труб и т.п.), которые являются частями очень сложных сборок и не могут быть извлечены для контроля. Для решения этой проблемы обычно обращаются к контролю методом фазированной решетки.

Моделирование фокального закона фазированной решетки широко применяется, особенно в атомной промышленности, для прогнозирования результатов контроля и оптимизации конфигурации датчика и клина. Контроль компонентов сложной формы с использованием двумерной матрицы может представлять сложную задачу. За неимением лучшего решения, 3D-модель обычно берется из файла CAD или из теоретической модели конструкции. Однако реальная форма компонента отличается от идеальной теоретической модели и, следовательно, ухудшается точность ультразвукового сканирования и вероятность обнаружения.

Другие модели

GoScan

EXAscan (~ 3 млн руб)

Surphaser (~ 3 млн руб)
Босс
Его используют для сканирования космических аппаратов и при строительстве метро и военные для своих целей.
Техническое обслуживание и ремонт производится в России. 3D-сканеры Surphaser собираются в России


Про эту штуковину стоит написать отдельную статью.


Время сканирования: с носовой части – 1,5 часа; с хвостовой части – 1 час
Используемое ПО: Cyclone для чистки и регистрации данных, RapidForm для моделирования

  • 3d-графика
  • Добавить метки

    И очень меня эта тема заинтересовала, хотя быстро пришло понимание того, что ни о каких 30$ для качественного сканирования не может быть и речи.

    Но основной плюс, который я вынес из статьи – программа для сканирования David-3D, к которой действительно есть хорошее руководство на русском языке и, что немаловажно, покупка лицензии - это последнее, что требуется, так как ограничение у бесплатной версии только на сохранение результата сканирования. Все остальное работает в полной мере, а значит вполне можно тестировать программу, настройки и свое железо сколько угодно. А если вам и результат не требуется с высокой точностью – то и вовсе без покупки лицензии можно обойтись.

    Мне точность требовалась, так как основное, что мне хотелось сканировать это были миниатюры из настольной игры Warhammer (дабы потом их изменять, как хочется и печатать:)). В высота этих «солдатиков» всего 3 см, однако это не мешает им быть очень детализированными.


    Если вам не требуется снимать настолько мелкие объекты – то требования к оборудованию у вас будут ниже, а значит и намного проще будет собрать себе подобный сканер.

    Принцип работы программы, и соответственно сканирования, хорошо описан в статье, на которую была ссылка выше (дублировать это, думаю, не обязательно). Желательно прочесть ту статью первой, так как эта будет в некотором роде её логичным продолжением.

    Но начнем по порядку. Что понадобится для того, чтобы опробовать 3д сканирование в домашних условиях:
    1 – проектор.
    2 – веб камера.

    Собственно все, короткий список на удивление получился. Тем не менее, если вы хотите получать очень точные и качественные сканы, то придется кое что доработать ручками. Без дополнительных затрат тут конечно не обойтись, но в итоге это все все равно обойдется дешевле, чем покупка любого из имеющихся в продаже 3д сканеров, да и качество результата получить можно намного лучше.

    Теперь по порядку и подробно.

    ПРОЕКТОР.

    Свои первые опыты по сканированию я, как и автор предыдущей статьи, начинал с лазерной указки, но они сразу же показали, насколько это неудобный способ. Недостатков тут сразу несколько:
    – невозможность получения луча с достаточно тонкой линией. Тем более, что при повороте указки меняется расстояние от линзы до объекта, а значит сбивается фокусировка.
    – если требуется регулярно сканировать, поворачивать лазерную указку с достаточной точностью и плавностью вручную очень сложно, да и утомительно просто – руки не такой уж стабильный инструмент когда речь идет о длительном времени.
    – сканировать приходится в темноте, дабы была видна только линия лазера и ничего более.

    И если со вторым недостатком еще можно бороться путем создания специального поворотного механизма (хотя это уже получается не такая уж и простая задача, во всяком случае, за 5 минут на коленке такое не сделать), то избавление от первого недостатка дороже.

    Когда я все это осознал, то решил попробовать сканирование с помощью проектора, для чего взял на время какую-то простую модель у знакомого.

    Тут следует сделать небольшое уточнение – в прошлой статье автор упоминал о возможности сканирования с помощью проектора, хотя предложение было, на мой взгляд, весьма странное -

    Подойдет проектор с мощной лампой, свет которой нужно направить сквозь узкую щель на сканируемый объект

    Возможно, в ранних версиях программы это был единственный вариант, но в версии 3 с которой я экспериментировал, проектор использовался намного лучше, т.к. там есть возможность называемая Structured Light Scanning (SLS). В отличие от лазерного сканирования, проектор сразу проецирует на объект сетки из вертикальных и горизонтальных линий различной толщины, что на порядок уменьшает время сканирования и позволяет в автоматическом режиме снимать цветную текстуру объекта. Ну и при хорошей фокусировке, линия в 1 пиксель шириной намного тоньше, чем возможно получить от недорогой лазерной указки.

    К сожалению, фотографии с тех первых опытов я не делал, да и фотографировать особенно было нечего – проектор на столе, рядом с ним веб-камера, все это смотрит в одну сторону:) Однако даже такая простейшая конструкция показала, что этот вариант намного предпочтительней как по скорости сканирования, так и по качеству. Тогда я и решил купить для этих целей себе проектор.

    Критерии для выбора проектора были простые – разрешение больше, цена и размеры меньше:)
    Выбор остановился на IconBit Tbright x100 - ультракомпактный DLP LED проектор, разрешение 1080 – на тот момент мне казалось, что лучше и не придумаешь, но как выяснилось позже – я ошибался, хотя занимаясь с ним, я получил много интересного опыта.


    Первая проблема, которая возникает при сканировании маленького объекта с помощью проектора, заключается в том, что для лучшего результата, размер проецируемой сетки должен примерно соответствовать размеру сканируемого объекта. Данный проектор позволял получить наименьшую диагональ экрана при самом близком фокусе - примерно в 22 см. Согласитесь, что на таком фоне миниатюра в 3 см высотой далека от понятия «примерно равные размеры». Ответ нашелся на официальном форуме – люди в таких случаях устанавливают на проектор фотоаппаратные линзы для макросъемки. Учитывая небольшие размеры объектива проектора, я остановил свой выбор на линзах marumi с диаметром резьбы 34 мм.

    Используя два таких комплекта, удалось получить экран проектора с диагональю всего около 3 см. Чего оказалось вполне достаточно, чтоб сделать свой первый микроскан –

    Это единичный скан, поэтому и есть «дырки» на модели, рваные края и т.д. Поворачивая монету и сканируя с разных ракурсов, можно получить несколько таких сканов, которые впоследствии объединяются в один объект (сама программа сканирования позволяет правильно совмещать разные сканы, сшивать их и сохранять как единый объект). В процессе сшивания заодно уточняется форма объекта. Но сохранять результаты такого сшивания – возможно только после покупки лицензии.

    И вот настал момент первой вещи, которая для сканирования не обязательна, но с ней процесс намного удобнее – это стойка под проектор с камерой. Сам процесс калибровки нужен не только для того, чтоб программа узнала параметры оборудования - софт также должен расчвитать взаимное расположение камеры и проектора. В процессе работы их изменение не допускается (как и изменение фокусировки камеры), а значит, требуется жестко все это закрепить, ведь количество сканов может быть большим даже для одного объекта.

    На основной странице David"а и изображена подобная система – ничего сложного она собой не представляет. Да и полистав форум и посмотрев, как это организую себе разные люди, понял, что ничего сложного тут не требуется.

    Для этих целей была взята стойка от сгоревшего ЖК монитора, и оргстекло от него же, вырезана и склеена вот такая конструкция, как она выглядела в первом варианте


    К подставке для проектора и был приделан крепеж для установки различных линз, что позволяло менять диагональ экрана, и сканировать объекты разного размера.
    Следует также упомянуть о том, что сканирование с помощью проектора не требует постоянного нахождения в поле зрения калибровочных панелей. После того как произведена калибровка их можно убрать. Это позволяет откалибровав установку спокойно её переносить, двигать и т.д.
    То есть вы можете используя большой калибровочный шаблон произвести дома на стенах калибровку, а затем с этой стойкой и ноутбуком выйти на улицу и отсканировать свой автомобиль, например. Взяли меньший шаблон, поставили пару линз – и можно сканировать ювелирные изделия.

    Недавно фирма выпустила усовершенствованный набор для сканирования, вот там уже стойка намного серьезней и интересней смотрится –

    Как по мне, при стоимости лицензии на программу около 500$ (это они еще цену подняли недавно), отдавать за такой набор более 2000 евро – не совсем оправданно, собрать самому что-то подобное не сложно и значительно дешевле.

    Вернемся к проектору. Как оказалось, у этого проектора был один существенный недостаток для использования в сканере, а именно его родное разрешение (854*480). И все бы ничего, если бы он и на выходе выдавал то же самое, но увы – картинка преобразовывалась к стандартным разрешениям (типа 1024*768), и в результате линия шириной в один пиксель была в разных частях экрана где-то ярче, где-то тусклее, где-то уже а где-то шире… Все это негативно сказывалось на качестве сканирования, выражаясь в виде ряби и полосок на получаемой модели.
    К тому времени я уже задумывался о покупке проектора для стереолитографического 3Д принтера (). Рассмотрев несколько вариантов, я остановился на модели Acer P1500, т.к. ей не нужны никакие доработки для использования в принтере (этот проектор без всяких линз способен дать сфокусированное изображение на экране примерно 4*7 см). А значит, и для сканера он подойдет как нельзя лучше. При этом разрешение в 1920*1080 у него реальное. Так оно и вышло, этим проектором пользуюсь до сих пор и полностью доволен результатами.

    КАМЕРА.

    Критерии при выбора камеры у меня были те же, что и при выборе проектора. Пройдясь по магазинам, остановился на Logitech C615. Скан монеты был сделан именно с неё, без всяких модификаций. Но когда я попытался отсканировать фигурку, то столкнулся с трудностью, которая называется «глубина резкости». Когда объект настолько мал, то фактически у нас получается макросъемка, а резкость при такой съемке достигается только на небольшом отрезке, буквально всего пара миллиметров (именно поэтому монета хорошо отсканировалась – рельеф вполне укладывался в область резкости). Было решено переделать камеру под другой объектив. На Ebay было заказано несколько разных объективов для пробы, а также был вырезан новый корпус под плату камеры. План был такой

    Финальный результат немного отличался


    Основная идея, я думаю, понятна. А сейчас и на Thingiverse и на форуме программы можно скачать stl для печати корпусов под разные типы вебкамер.

    С платы камеры пришлось убрать стандартный объектив, и как выяснилось позже – вместе с ним был убран и ИК-фильтр, так что будьте в этом вопросе аккуратней. Фильтр потом пригодится для использования с другими объективами, хотя можно и отдельно их докупить – цена копеечная.

    Таким образом, у меня вот такая коллекция объективов образовалась.

    Пока я ожидал доставку объективов, читались различные форумы по фотосъемке. Изучая вопрос с глубиной резкости, я выяснил, что увеличить её можно сильнее закрыв диафрагму объектива. А значит и объектив требовался такой, в котором была возможность регулировать диафрагму (увы, среди заказанных не все обладали такой возможностью, но на мое счастье и парочка таких попалась). В общем, для улучшения камеры желательно иметь варифокальный объектив с зумом и регулируемой диафрагмой. На практике все оказалось так, как и было в теории – закрывая диафрагму, сразу было видно увеличение глубины резкости, что позволило-таки сканировать объемные, но мелкие объекты.

    Основной объектив, которым я пользуюсь - на фото выше установлен на камере. Второй, с регулируемой диафрагмой, самый большой, в центре. Его я использую для совсем уж маленьких объектов. Остальные без диафрагмы, так что ими не пользуюсь - оказалось что вполне достаточно и этих двух.

    В планах теперь либо найти вебкамеру с большим разрешением (качество и детальность сканов напрямую зависит от разрешения камеры), либо попробовать использовать для этих целей какой-нибудь цифровой фотоаппарат с возможностью съемки видео – обычно в них намного больше разрешение можно получить, да и объективы лучше.

    Собственно на этом можно было бы и закончить – вроде обо всем рассказал. Я тоже думал что на этом у меня закончилась сборка сканера, но чем дальше в лес… Изучая форум данной программы я часто натыкался на различные схемы поворотных столиков - благо софт позволяет автоматизировать процесс сканирования. После одного скана подается команда на com-порт, поворотный столик вращается, поворачивая объект на заданное количество градусов, и дает команду на следующий скан. В результате одним кликом мышки мы имеем круговые сканы объекта - казалось бы, чего еще желать? Эту систему я с интересом опробовал, но увы – мне такой подход абсолютно не понравился, и тому есть пара причин.

    1 – если объект сложной формы, то просто его вращать его будет недостаточно – требуется еще и наклонять в разные стороны, чтобы камера с проектором дотянулась до всех впадин и других труднодоступных мест.
    2 – даже если таких мест нет, и учитывая все сканы, которые были сделаны, на объекте не осталось частей, которые не попали в скан, остается вопрос точности скана.

    Допустим, какая-то часть модели на одном из сканов вышла идеально. Но это не значит что на всех сканах, в которые эта часть попала, она выглядит также идеально, а при сшивании сканов с разных ракурсов результат будет усреднен, что не может радовать. Программа позволяет немного редактировать полученные сканы (можно вырезать ненужную часть). Если мы вращаем модель на 20 градусов, значит, после полного оборота у нас будет 18 сканов, нужная нам часть вполне может присутствовать на половине из них, следовательно, чтобы оставить наилучший результат надо будет удалить этот кусок из 8ми сканов… А таких кусков при сложной модели может быть много, в результате от каждого скана будет отрезаться чуть ли не половина, что очень трудоемко и требует много времени.

    Вместо этого лучше после первого скана сразу сканировать прилегающие области, и проверять результат. Как только какой-то кусок готов – переходим к сканированию следующего, и так, пока вся модель не будет в идеальном виде. Такой подход дает лучший результат за меньшее время.

    Но возникает вопрос удобства. Согласитесь, неудобно вручную пытаться крутить объект, глядя не на него, а на монитор – чтоб контролировать попадание в объектив, не поменяв расстояние до камеры и проектора при этом (дабы не сбился фокус). При очередной подобной эквилибристике я случайно задел камеру, что соответственно сбило всю калибровку, и весь процесс пришлось начать заново. Такой расклад мне категорически не понравился, и я после некоторых размышлений пришел к плану вот такой конструкции (которую, как вы понимаете, впоследствии и собрал).

    Это не поворотный столик в обычном понимании этого термина. Благодаря такой конструкции я могу не только вращать модель, но и наклонять её, как мне будет нужно. При этом центр модели остается в плоскости фокуса, но даже если и нет – можно вперед-назад крепление с моделью двигать.



    Все это собралось на ардуино, была написана небольшая программа для управления, и в результате мне теперь при сканировании не приходится вставать из-за компьютера – используя программу, я меняю положение сканируемого объекта, и при этом тут же, в окне камеры выбираю оптимальный для сканирования ракурс.

    Внутренности

    В программу я заложил возможность автоматического сканирования, а так же сканирования непросто по кругу, а с наклонами на 45 градусов в одну и другую сторону, что дает в три раза больше сканов. Тем не менее, в итоге, я все-равно никогда этой возможностью не пользуюсь – слишком неудобно потом разбираться в полученной куче сканов и чистить их от неудачных кусков.

    Следует также упомянуть о некоторых нюансах сканирования.
    1 – невозможно сканировать блестящие и зеркальные поверхности. Свет от них отражается, или дает такой блик, что программа не может корректно распознать линию. Если есть необходимость сканирования такого объекта, то подобные части придется чем-то замаскировать (смывающейся краской, бумажным скотчем и т.д.).
    2 – удобнее сканировать монотонные объекты, так как при настройке камеры на светлый цвет выставляется не такая большая яркость проектора, малая экспозиция и т.д. А для объекта темного цвета требуется большая яркость, так что если у вас объект разноцветный, то для разных его частей требуются разные настройки для получения наилучшего результата. Здесь тоже удобней использовать сканирование объекта частями.
    3 – если вы хотите сразу получить цветную текстуру то учтите, что настройки камеры и проектора для скана не влияют на настройки для снятия текстуры (скан вообще в черно-белом режиме делается), так что поиграйтесь настройками в режиме текстуры также, как вы будете это делать в режиме сканирования.

    Процесс сканирования у меня сейчас выглядит таким образом:
    - Фокусировка проектора и камеры

    Свет проектора слишком ярок и на фото не видна проецируемая сетка, но вот вид из камеры в программе

    Калибровка сканера

    Калибровочный угол был сделан из металлических пластин, а калибровочные шаблоны разного размера были напечатаны на магнитной бумаге - так можно очень быстро подстраиваться под разные размеры сканируемых объектов.

    Вид в программе

    Рекомендуется, чтобы совокупный угол между лучом проектора и камеры был около 20 градусов. Поэтому такая стойка и используется - при сканировании больших объектов (например, человека) камеру надо гораздо дальше от проектора отставить, здесь же они у меня вплотную стоят. Расположение камеры относительно проектора может быть только вертикальным, или только горизонтальным - в зависимости от геометрии объекта. В данном случае расположение диагональное (13 градусов по вертикали и 36 по горизонтали).

    Результаты сканирования с разных ракурсов. Это уже подчищенные сканы, т.е. удалены все неудачные и ненужные (подставка фигуры, попавшее в кадр крепление) части.

    Совмещение сканов для последующего объединения в один объект

    Благодаря тому, что каждый скан имеет свой цвет удобно контролировать правильность совмещения.

    Ну и после объединения сканов с разных ракурсов получаем такие модели

    Миниатюра Боромира из властелина колец.

    При сканировании разноцветного объекта результат немного хуже, если сильно не заморачиваться. Но зато можно получить объект сразу с текстурой:)

    Оригиналы моделей

    В галерее работ пользователей на сайте разработчика (http://www.david-3d.com/en/news&community/usergallery) можно найти еще много интересных сканов, даже отпечатки пальцев люди сканируют. И встречаются даже сканы таких же миниатюр из вархаммера

    В заключении хочется сказать о том, что какое бы железо вы не использовали, какой бы дорогой 3д сканер вы не купили, но это не панацея для печати чего угодно. Теоретически конечно можно полученный объект отправлять в слайсер и печатать, но есть несколько причин, почему не стоит так поступать, а стоит в любом случае изучать пакеты 3Д графики.

    1 - Полученные сканы, при хорошем качестве сканирования (а мы ведь хотим получить наилучшее качество) имеют очень много полигонов. Нет, даже ОЧЕНЬ много. Скан Боромира после слияния содержал более 8 миллионов полигонов - не каждый слайсер сможет работать с таким объектом.
    2 - Любые объекты несут на себе следы сборки и изготовления. И если в реальности для исправления этого применяют надфили и наждачку (а иногда все-равно есть недоступные места, где невозможно применить инструменты), то работая с цифровой копией объекта, мы можем изменить его как угодно - убрать дефекты, улучшить детализацию и т.д.
    3 - Как я говорил в начале статьи, когда я задумался о сканере, я хотел не копии объектов печатать, а изменять их как мне будет угодно. Я не скульптор, у меня нет инструментов, материалов и навыков, чтобы вылепить такую мелкую модель. Но умея работать в 3Д, мне намного проще, отсканировав подобного Боромира, сделать из него какого-нибудь Принца датского.


    Кстати, эта модель содержит уже почти в 100 раз меньше полигонов, чем результат сканирования.

    Теги:

    • 3д сканер
    • diy или сделай сам
    • 3д моделирование
    • 3д графика
    Добавить метки

    © 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows