Трансформатор тесла своими руками: подробная инструкция. Как сделать катушку Тесла своими руками. Бифилярная катушка Тесла

Трансформатор тесла своими руками: подробная инструкция. Как сделать катушку Тесла своими руками. Бифилярная катушка Тесла

27.09.2019

Сегодня трансформатором Тесла называют высокочастотный высоковольтный резонансный трансформатор, и в сети можно найти множество примеров ярких реализаций этого необычного устройства. Катушка без ферромагнитного сердечника, состоящая из множества витков тонкого провода, увенчанная тором, испускает настоящие молнии, впечатляя изумленных зрителей. Но все ли помнят, как и для чего создавался изначально этот удивительный прибор?

История данного изобретения начинается с конца 19 века, когда гениальный ученый-экспериментатор , работая в США, только поставил перед собой задачу научиться передавать электрическую энергию на большие расстояния без проводов.

Указать конкретный год, когда именно пришла к ученому эта идея, вряд ли можно точно, однако известно, что 20 мая 1891 года Никола Тесла выступил с подробной лекцией в Колумбийском университете, где представил сотрудникам Американского института электроинженеров свои идеи, и кое-что проиллюстрировал, показав наглядные эксперименты.

Целью первых демонстраций было — показать новый способ получения света посредством использования для этого токов высокой частоты и высокого напряжения, а также раскрыть особенности этих токов. Справедливости ради отметим, что современные энергосберегающие люминесцентные лампы работают именно на принципе, который как раз и предложил для получения света Тесла.

Окончательная теория относительно именно вырисовывалась постепенно, ученый потратил несколько лет жизни, доводя до ума свою технологию, много экспериментируя и совершенствуя кропотливо каждый элемент схемы, он разрабатывал прерыватели, изобретал стойкие высоковольтные конденсаторы, придумывал и модифицировал контроллеры цепей, но так и не смог воплотить свой замысел в жизнь в том масштабе, в каком хотел.

Однако теория до нас дошла. Доступны дневники, статьи, патенты и лекции Николы Тесла, в которых можно найти исходные подробности относительно данной технологии. Принцип действия резонансного трансформатора можно узнать, прочитав например патенты Николы Тесла №787412 или №649621, уже доступные сегодня в сети.

Если попробовать кратко разобраться в том, как же работает трансформатор Тесла, рассмотреть его устройство и принцип действия, то в этом нет ничего сложного.

Вторичная обмотка трансформатора изготавливается из провода в изоляции (например из эмальпровода), который укладывается виток к витку в один слой на полый цилиндрический каркас, отношение высоты каркаса к его диаметру обычно берут равным от 6 к 1 до 4 к 1.

После намотки вторичную обмотку покрывают эпоксидной смолой или лаком. Первичная обмотка изготавливается из провода относительно большого сечения, она содержит обычно от 2 до 10 витков, и укладывается в форму плоской спирали, либо наматывается подобно вторичной — на цилиндрический каркас диаметром несколько большим, чем у вторичной.

Высота первичной обмотки, как правило, не превышает 1/5 высоты вторичной. К верхнему выводу вторичной обмотки подключают тороид, а нижний ее вывод заземляют. Далее рассмотрим все более подробно.

Например: вторичная обмотка навита на каркас диаметром 110 мм, эмальпроводом ПЭТВ-2 диаметром 0,5 мм, и содержит 1200 витков, таким образом высота ее получается равной примерно 62 см, а длина провода составляет около 417 метров. Пусть первичная обмотка содержит 5 витков толстой медной трубки, навитых на диаметр 23 см, и имеет высоту 12 см.

Далее изготавливают тороид. Его емкость в идеале должна быть такой, чтобы резонансной частоте вторичного контура (заземленная вторичная катушка вместе с тороидом и окружающей средой) соответствовала бы длина провода вторичной обмотки так, что эта длина равнялась бы четверти длины волны (для нашего примера частота получается равной 180 кГц).

Для точного расчета полезной может стать специальная программа для рассчета катушек Тесла, например VcTesla или inca. К первичной обмотке подбирается высоковольтный конденсатор, емкость которого вместе с индуктивностью первичной обмотки образовывала бы колебательный контур, собственная частота которого была бы равна резонансной частоте вторичного контура. Обычно берут близкий по емкости конденсатор, а настройку осуществляют подбором витков первичной обмотки.

Суть работы трансформатора Тесла в каноническом виде заключается в следующем: конденсатор первичного контура заряжается от подходящего источника высокого напряжения, затем он соединяется коммутатором с первичной обмоткой, и так повторяется много раз в секунду.

В результате каждого цикла коммутации возникают затухающие колебания в первичном контуре. Но первичная катушка является для вторичного контура индуктором, поэтому электромагнитные колебания возбуждаются соответственно и во вторичном контуре.

Поскольку вторичный контур настроен в резонанс с первичными колебаниями, то на вторичной обмотке возникает резонанс напряжений, а значит коэффициент трансформации (соотношение витков первичной обмотки и охваченных ею витков вторичной обмотки) нужно умножить еще и на Q - добротность вторичного контура, тогда получится значение реального соотношения напряжения на вторичной обмотке к напряжению на первичной.

А так как длина провода вторичной обмотки равна четверти длины волны индуцируемых в ней колебаний, то именно на тороиде будет находиться пучность напряжения (а в точке заземления — пучность тока), и именно там может иметь место максимально эффектный пробой.

Для питания первичной цепи используют разные схемы, от статичного искрового промежутка (разрядника) с питанием от МОТов (МОТ — высоковольтный трансформатор от микроволновой печи) до резонансных транзисторных схем на программируемых контроллерах с питанием выпрямленным сетевым напряжением, однако суть от этого не меняется.

Вот самые распространенные типы катушек Тесла в зависимости от способа управления ими:

SGTC (СГТЦ, Spark Gap Tesla Coil) - трансформатор Тесла на искровом промежутке. Это классическая конструкция, подобную схему изначально применял сам Тесла. В качестве коммутирующего элемента здесь используется разрядник. В конструкциях малой мощности разрядник представляет собой два куска толстого провода, расположенных на некотором расстоянии, а в более мощных применяются сложные вращающиеся разрядники с использованием двигателей. Трансформаторы этого типа изготавливают если требуется лишь большая длинна стримера, и не важна эффективность.

VTTC (ВТТЦ, Vacuum Tube Tesla Coil) - трансформатор Тесла на электронной лампе. В качестве коммутирующего элемента здесь используется мощная радиолампа, например ГУ-81. Такие трансформаторы могут работать в непрерывном режиме и производить довольно толстые разряды. Данный тип питания чаще всего используют для построения высокочастотных катушек, которые из-за типичного вида своих стримеров получили название “факельники”.

SSTC (ССТЦ, Solid State Tesla Coil) - трансформатор Тесла, в котором в качестве ключевого элемента применяются полупроводники. Обычно это . Данный тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых такой катушкой может быть самым разным. Этим типом трансформаторов Тесла проще управлять, например можно играть на них музыку.

DRSSTC (ДРССТЦ, Dual Resonant Solid State Tesla Coil) - трансформатор Тесла с двумя резонансными контурами, здесь в качестве ключей используются, как и в SSTC, полупроводники. ДРССТЦ - наиболее сложный в управлении и настройке тип трансформаторов Тесла.

Для получения более эффективной и эффектной работы трансформатора Тесла применяют именно схемы топологии DRSSTC, когда мощный резонанс достигается и в самом первичном контуре, а во вторичном соответственно — более яркая картина, более длинные и толстые молнии (стримеры).

Сам Тесла как мог пытался добиться именно такого режима работы своего трансформатора, и зачатки этой идеи можно увидеть в патенте № 568176, где применяются зарядные дроссели, Тесла потом развивал схему именно по этому пути, то есть стремился максимально эффективно использовать первичную цепь, создавая в ней резонанс. Об этих экспериментах ученого можно прочитать в его дневнике (в печатном виде уже изданы записи ученого об экспериментах в Колорадо-Спрингс, которые он проводил с 1899 по 1900 год).

Говоря о практическом применении трансформатора Тесла не стоит ограничиваться лишь восхищением эстетическим характером получаемых разрядов, и относиться к устройству как к декоративному. Напряжение на вторичной обмотке трансформатора может достигать миллионов вольт, это в конце концов - эффективный источник сверхвысокого напряжения.

Сам Тесла разрабатывал свою систему для передачи электроэнергии на большие расстояния без проводов, используя проводимость верхних воздушных слоев атмосферы. Предполагалось наличие и приемного трансформатора аналогичной конструкции, который бы понижал принятое высокое напряжение до приемлемого для потребителя значения, об этом можно узнать, прочитав патент Тесла №649621.

Особого внимания заслуживает характер взаимодействия трансформатора Тесла с окружающей средой. Вторичный контур является открытым контуром, и система термодинамически отнюдь не является изолированной, она даже не закрытая, это - открытая система. Современные исследования в этом направлении ведутся многими исследователями, и точка на этом пути еще не поставлена.

Андрей Повный

XIX век был этакой эпохой дикого Запада в экспериментальной физике электромагнетизма. Роберт Ван де Грааф, лорд Кельвин, Никола Тесла и многие другие учёные, исследователи и инженеры открывали всё новые и новые явления, а затем масштабировали производящие их установки до колоссальных размеров. Некоторые из их творений функционируют до сих пор - например, шестиметровый гигантский генератор Ван де Граафа в Бостонском музее науки , а некоторые, как широко известная башня Уорденклифф, так никогда и не появились на свет.

С течением времени и развитием науки и техники внимание учёных переключилось на другие направления, но отдельные энтузиасты продолжали собирать, изучать и совершенствовать классические разработки в области высоких напряжений, электростатики, физики плазмы - кто-то вследствие неугасающей веры в теорию эфира и бесплатную энергию, кто-то из любопытства, или для решения узкоспециальных прикладных задач, кто-то просто потому что ему это доставляло.

В последнее время, примерно с конца 90-х годов, эта отрасль инженерных задач переживает ренессанс, связанный с интересом шоу-бизнеса и индустрии развлечений к притягивающим внимание разрядам катушек Тесла , усилившийся в последнее десятилетие после изобретения DRSSTC , которая на настоящий момент представляет собой наиболее технически совершенный вид катушки Тесла, использующий вместо классического искрового разрядника силовые транзисторы, что позволяет быстро - в течение нескольких периодов колебаний - менять частоту появления разряда (BPS) и, как следствие, воспроизводить музыку непосредственно при помощи появляющихся молний. Один из примеров - известная серийная модель OneTesla, которая, при всей непродуманности предлагаемого авторами конструктора, вполне работоспособна при определённом приложении рук.

На настоящий момент трансформаторы Тесла и родственные им устройства (лестницы Иакова, генераторы Маркса и Кокрофта-Уолтона, плазменные колонны, генераторы Ван де Граафа и т. д.) разных размеров и зрелищности используются на постоянной основе в ряде организованных вокруг них шоу-проектов в США (Arc Attack), России (TeslaFX), Великобритании (Lords of Lightning), Китае (увы, иероглифам не обучен) и других странах, периодически светятся в шоу-бизнесе (спецэффекты в Гарри Поттере, Ученике Чародея, концерты Металлики и пр.), а также присутствуют в качестве экспоната в каждом уважающем себя музее науки.

Размер имеет значение

Короче говоря, в один момент группа инженеров-любителей, давно и прочно погрязших в коллективном тесластроении, решила, что играть в песочнице, делая небольшие комнатные (и даже среднеразмерные уличные) катушки, им уже скучно, и решила сделать что-то особенное. На тот момент у нас уже было (как нам казалось) достаточно опыта в разработке катушек Тесла различных топологий и имеющаяся математическая модель допускала масштабирование типовой конструкции в несколько раз. По факту, единственными явно заметными ограничениями были габариты доступного помещения, мощность розетки, и финансы (хотя, чего уж там, в итоге всё упирается в финансы). Прикинув бюджет, человекочасы и прочие скучные мелочи, было решено ограничиться габаритами установки примерно в три метра высоты, с расчётной мощностью около 30-40 кВт. Для разбирающихся в вопросе:

Итоговые технические характеристики

  • Технология: DRSSTC
  • Общая высота: 3.3 метра
  • Общая масса: ~130 кг
  • Питание: 3ф 380 В
  • Резонансная частота: ~50 кГц
  • Габариты вторичной обмотки: 310х1800 мм, провод 1.06 мм
  • Топология силовой части: полный мост, транзисторы CM600DU-24NFH
  • Пиковая потребляемая мощность: ~35 кВт
  • Пиковая мощность в контуре: ~2 МВт
  • Пиковый ток в контуре: 3800 А
  • Ёмкость первичного контура: 1.2 мкФ
  • Ёмкость электролитов инвертора: 18000 мкФ, 900 вольт
  • Максимальная зарегистрированная длина разряда: 6 метров

Технология, разумеется, была выбрана именно DRSSTC, поскольку при правильном подходе и отсутствии ошибок её стоимость (а также массогабариты) оказывается значительно ниже, чем у других вариантов (искровой разрядник или радиолампа) при тех же конечных параметрах. Ну и ещё, конечно же, на ней можно играть музыку.

Модульный принцип

При первичной проектировке достаточно крупной катушки Тесла проект можно разбить на несколько модулей (первичная обмотка, вторичная обмотка, тороид, корпус, силовой инвертор, драйвер, пульт управления, вспомогательная электрика и т. п.), каждый из которых придумывается и изготавливается в отдельности, после чего они собираются вместе, последовательно настраиваются и отлаживаются в процессе, и в итоге взрываются начинают испускать молнии. Обычно большинство трансформаторов Тесла собираются энтузиастами в одиночку от начала до конца, но у нас, во-первых, уже имелась более-менее слаженная команда с распределением функций (проект-менеджер, проектировщик, разработчик (он же тестировщик), и несколько человек на подхвате - монтажник, слесарь и так далее), а, во-вторых, сама по себе задача стояла довольно амбициозная, и хотелось сделать её без лишних расходов, но при этом более или менее качественно, насколько это возможно для прототипной и уникальной конструкции. Поэтому каждый мог заниматься своим делом, параллельно общаясь для синхронизации модулей между собой, а я, будучи этим самым проект-менеджером, могу рассказать про каждый из модулей по отдельности, а также показать, что получилось в итоге.

Подготовка и материалообработка

После обсуждения, осмысления и различного словоблудия по теме, общий концепт был утверждён коллективным решением и я изобразил примитивный эскиз в 3ds max. Эскиз был нужен для осознания масштабов задачи, понимания основных взаимных пропорций модулей, в качестве отправной точки для проектировки и для поднятия боевого духа команды. На основе эскиза проектировщик собрал проект в Creo Elements (тогда ещё Pro/Engineer), уже с соблюдением конкретных размеров, способов соединения деталей между собой и прочими нюансами. По результатам этого проекта были созданы чертежи: деталей корпуса, основания первичной обмотки, тороида, коробки для автоматики и электрики, а также блока конденсаторов первичного контура (MMC).

В качестве конструкционных материалов мы использовали стеклотекстолит толщиной 18 мм, обработанный методом гидроабразивной резки (ввиду его высокой конструкционной и термической устойчивости, другие методы обработки оказались нерентабельны), толстую фанеру для корпуса и алюминиево-пластиковый композит для блока автоматики (для экранировки от создаваемого катушкой мощного фронта электромагнитных помех, пагубно влияющего на её же собственные управляющие схемы), а также поликарбонат в ряде мест. Фанеру и пластик обрабатывали на ЧПУ фрезере, имевшемся во владении соседа по заводику, где наш коллектив занимался всем этим непотребством. Creo Elements позволяет создавать сразу готовые управляющие программы для ЧПУ, что очень сильно помогло в процессе - мы просто, по факту, арендовали станок и делали на нём что надо когда надо.

Первичка и вторичка

Вторичную обмотку намотали на классическом каркасе - большой оранжевой канализационной трубе из ПВХ (серьёзно, это лучший из имеющихся вариантов для катушек Тесла любых габаритов по соотношению цены, доступности и соответствия задаче). Намотанный виток к витку эмалированный провод (диаметр 1.06 мм) в один слой, покрытый затем эпоксидной смолой, превратил трубу в огромного размера индуктор, с нетерпением ожидающий своей минуты славы - вторичку гигантской катушки Тесла. Итоговые габариты трубы получились 310х1800 мм.

Первичную обмотку - тоже классика - мы намотали медной трубкой для кондиционеров, диаметром 22 мм (7/8 дюйма). Витки аккуратно ложились в пазы, вырезанные в стеклотекстолите струёй воды с абразивом под давлением в тысячи атмосфер, и вот уже два модуля, первичка и вторичка - скелет любой катушки Тесла - соединились друг с другом. Проект понемногу обретал форму и цвет.

Тороид

С тороидом, необходимым элементом любой мощной катушки Тесла, однако, всё оказалось сложнее. Изначально предполагалось также последовать проверенной дорогой и использовать алюминиевую гофру для вентиляции. На практике же обнаружилось, что это чрезвычайно одноразовое решение - гофра мгновенно мнётся от любых неосторожных движений, и при планируемых габаритах её придётся заменять при каждой транспортировке устройства.

Поэтому, после некоторого исследования вопроса, я украл идею наткнулся на один любопытный вариант в Сети, а проектировщик смоделировал его с учётом наших масштабов и выдал проект для сборки. Дело в том, что основное требование к тороиду катушки Тесла - это его «гладкость» с точки зрения электромагнитных полей, поскольку любые заострения или неровности представляют собой точки формирования коронного разряда, который вызывает пробой воздуха раньше, чем достигается максимальная мощность, а, кроме того, забирают на себя часть полезной длины молнии. Но здесь есть один нюанс, связанный с тем, что силовые линии поля как бы обтягивают тороид эквипотенциальными зонами, вследствие чего его можно собрать из составных частей, которые, будучи сложены вместе правильным образом, образуют при работе катушки Тесла поле достаточно гладкое, чтобы предотвратить появление разряда там, где не надо.

В общем, результат оказался очень необычным внешне, относительно простым в производстве, надёжным в эксплуатации и на удивление эффективным в сравнении с другими известными вариантами исполнения этой важной части катушки Тесла. Диаметр алюминиевой трубы - 50 мм, а общий размер всей получившейся штуки, напоминающей НЛО - около двух метров в диаметре. Круги-проставки для трубок вырезали из фанеры всё на том же ЧПУ-фрезере, а центральную раму я сварил из стального уголка.

На этом, в принципе, конструкционная часть была закончена.

Силовая часть

В силовом инверторе для больших катушек Тесла часто используются IGBT-модули - этакие чёрные (или белые) кирпичики с двумя-тремя (иногда до 10) силовыми клеммами и несколькими выводами для управления, штатно используемые в силовых инверторах - мощные блоки зарядки, трансформаторные подстанции, частотные преобразователи для двигателей, электротранспорт и т. п. Вследствие большого размера кристалла, эти модули оказываются способны выдержать значительную кратковременную перегрузку по рабочему току (до 10 раз от номинального), что чрезвычайно выгодно в импульсном инверторе катушки Тесла по DRSSTC-технологии, поскольку рабочий цикл (время, в течение которого происходят колебания в контурах и через транзисторы течёт ток, разогревающий их кристаллы), в нём обычно составляет около 5-10%. Но, с другой стороны, абсолютное большинство этих IGBT-модулей рассчитаны на рабочие частоты порядка единиц, реже десятков килогерц (впрочем, в последнее время ситуация улучшается и современные модули могут работать до 100 кГц). Использование их на большей частоте часто ведёт к проблемам с управлением затворами, перегреву и взрывам (куда ж без взрывов).

Стоимость одного модуля, даже б/у, может быть сравнительно велика (от единиц до сотен тысяч рублей), так что мы решили перестраховаться и поставить с запасом по импульсному току два модуля CM600DU-24NFH (600 ампер непрерывного тока, 1200 вольт, два транзистора в полумостовом включении) по схеме «полный мост» (как известно, полный мост делается из двух полумостов - К. О.), или просто «мост». Посаженные на соответствующий их габаритам радиатор через пару чайных ложек термопасты КПТ-8, они были соединены медными шинами и снабжены необходимым обвесом - силовыми электролитическими и плёночными конденсаторами.

В придумывании актуального способа соединения этих деталей между собой есть масса хитрых эмпирических ноу-хау, призванных сократить риски и максимизировать надёжность подобных конструкций, но поля этой записи слишком узки, чтобы я мог рассказать про них, если вы понимаете о чём я. Не было никаких гарантий, что получившаяся штука не взорвётся при первой же попытке её включить, но на тот момент это казалось приемлемым риском.

Автоматика и электрика

Управляющая электрика не содержала в себе ничего особенно интересного. Нужно было обеспечить плавную зарядку электролитов (чтобы они не выбивали автоматы в щитке в момент включения установки) - с этим справились автоматический пускатель (по сути, большое силовое реле) и несколько силовых резисторов.

Диодный мост на 150 ампер выпрямлял сеть (кстати, вся конструкция создавалась, конечно же, под трёхфазное питание, с чем была связана масса разных интересных открытий - раньше мы не делали ничего под три фазы, тем более такой мощности), вентиляторы обдували диодный мост и заодно радиатор силовой части, а лампочки на передней панели изображали светофор, любезно сообщая, когда можно трогать части катушки руками, когда лучше не стоит, и когда желательно оказаться от неё на максимально возможном расстоянии, чтобы не словить разряд в макушку.

Поскольку продавался пульт в виде распаянной и прошитой платы с россыпью выносных деталек, нам пришлось разработать к ней корпус, куда встали бы сама плата, питание, четыре энкодера, четыре кнопки, дисплей и многочисленные разъёмы (четыре оптопередатчика, MIDI вход, USB вход, слот для SD карты). По ходу дела обнаружилась масса разного рода недоработок автора, в частности, отсутствие какого-либо контроля питания (питать от «Кроны»? Литий-ион? не, не слышал), что пришлось исправлять и доделывать, чтобы этим можно было пользоваться по назначению. Получившаяся в итоге химера, несмотря на ряд отвратительных глюков при некоторых неудачных условиях, успешно справляется с основной задачей и по сей день. Фотографии его у меня как-то не нашлось, но его можно заметить на одном из кадров ниже, в параграфе «первичная проверка» - чёрная коробочка рядом с силовым кабелем в правой части снимка. Ещё есть кадр из видео от автора схемы и прошивки - вот он.

Конденсаторная батарея

В качестве резонансного конденсатора мы выбрали силовые плёночные конденсаторы одного из отечественных производителей, специально разрабатывавшиеся (если верить каталогу производителя) для импульсных режимов работы. Пять штук общей ёмкостью около 1.2 мкф, и максимальным напряжением 20 киловольт, соединённые медной шиной с латунными винтами. Латунного крепежа, кстати, на весь проект ушло значительное количество - из-за огромных токов в килоамперы, в сочетании с мощным магнитным полем от первичной обмотки, и стальной оцинкованный и нержавеющий крепёж моментально разогреваются докрасна, что может в итоге приводить к незапланированным спецэффектам (да-да, взрывам). Поэтому и в ошиновке конденсаторов, и вообще во всех силовых соединениях в первичном контуре пришлось использовать только медь и латунь. Первые же тесты показали наивность попыток поставить туда что-то ферромагнитное и/или недостаточно хорошо пропускающее электрический ток.

Первичная проверка

Следующим этапом была настройка драйвера. Для этого достаточно собрать в одно целое первичный контур (конденсаторную батарею, первичку и мост), подключить к транзисторам моста драйвер и плавно начать подавать напряжение, отслеживая на осциллографе формы сигналов в различных участках схемы. Если всё сделано правильно, то в первичном контуре возникает автогенерация на расчётной частоте (в нашем случае около 50 кГц). Вторичка при этом не нужна, и никаких разрядов не возникает, но собираемых данных достаточно, чтобы настроить предиктор, OCD и заметить ошибки в монтаже или выбранных параметрах деталей. Эта часть оказалась простой и лёгкой (кстати, в таком режиме первичная обмотка вполне может работать как индукционная плита для приготовления пищи - есть прецеденты жарки яичницы на сковороде, стоящей поверх первички), и мы отправились вместе с почти родившимся детищем в один большой и полузаброшенный цех заводика, чтобы проверить наконец наше творение in vivo.

Проверка оказалась быстрой, яркой и немного предсказуемой: выдав несколько четырёхметровых разрядов, катушка Тесла сказала «вы мне надоели, я ухожу» и прекратила работать с громким хлопком где-то внутри корпуса. Последующее исследование этого феномена показало, что в процессе подбора оптимальной частоты мы ошиблись на один виток первичной обмотки, и возникшего рассогласования при переключении транзисторов оказалось достаточно, чтобы они, как это говорят на профессиональном тесластроительном арго, насиланили, то есть пришли в полную негодность ввиду перехода содержащегося в них кремния в газообразное состояние (как в том анекдоте, что транзисторы работают, мол, на волшебном дыме - когда он выходит, они работать перестают). Запасной комплект транзисторов остался в лаборатории, и остаток отведённого времени мы вяло переругивались друг с другом и запускали другие взятые с собой катушки Тесла в рамках репетиции к фестивалю GEEK PICNIC (под который был приурочен релиз проекта).

Работа кинескопных телевизоров, люминесцентных и энергосберегающих лампочек, дистанционная зарядка аккумуляторов обеспечивается специальным устройством - трансформатором (катушкой) Тесла. Для создания эффектных световых зарядов фиолетового цвета, напоминающих молнию, также применяется катушка Тесла. Схема на 220 В позволяет понять устройство этого прибора и при необходимости сделать его своими руками.

Механизм работы

Катушка Тесла представляет собой электроаппарат, способный в несколько раз увеличивать напряжение и токовую частоту. Во время её работы образуется магнитное поле, которое может влиять на электротехнику и состояние человека. Попадающие в воздух разряды способствуют выделению озона. Конструкция трансформатора состоит из следующих элементов:

  • Первичной катушки. Имеет в среднем 5−7 витков провода с диаметром сечения не меньше 6 мм².
  • Вторичной катушки. Состоит из 70−100 витков диэлектрика с диаметром не более 0,3 мм.
  • Конденсатора.
  • Разрядника.
  • Излучателя искрового свечения.

Трансформатор, созданный и запатентованный Николой Тесла в 1896 году, не имеет ферросплавов, которые в других аналогичных приборах используются для сердечников. Мощность катушки ограничивается электрической прочностью воздуха и не зависит от мощности источника напряжения.

При попадании напряжения на первичный контур на нём генерируются высокочастотные колебания. Благодаря им на вторичной катушке возникают резонансные колебания, результатом которых является электрический ток, характеризующийся большим напряжением и высокой частотой. Прохождение этого тока через воздух приводит к возникновению стримера - фиолетового разряда, напоминающего молнию.

Колебания контуров, возникающие в процессе работы катушки Тесла, могут быть сгенерированы разными способами. Чаще всего это происходит с помощью разрядника, лампы или транзистора. Наиболее мощными являются устройства, в которых используются генераторы двойного резонанса.

Исходные материалы

Человеку, обладающему основными знаниями в области физики и электрики, собрать трансформатор Тесла своими руками не составит труда. Необходимо лишь приготовить набор основных деталей:

Обязательным элементом первичной катушки является охлаждающий радиатор, размер которого напрямую влияет на эффективность охлаждения оборудования. В качестве обмотки может быть использована трубка из меди или провод диаметром 5−10 мм.

Вторичная катушка требует обязательной изоляции в виде обработки краской, лаком или другим диэлектриком. Дополнительной деталью этого контура является последовательно подключённый терминал. Его использование целесообразно только при мощных разрядах, при небольших стримерах достаточно вывести конец обмотки вверх на 0,5−5 см.

Схема подключения

Трансформатор Тесла собирается и подключается в соответствии с электрической схемой. Монтаж маломощного устройства следует проводить в несколько этапов:

Сборка более мощного трансформатора происходит по аналогичной схеме. Чтобы добиться большой мощности, потребуется :

Максимальная мощность, которую может достигать правильно собранный трансформатор Тесла, доходит до 4,5 кВт. Такой показатель может быть достигнут с помощью уравнивания частот обоих контуров.

Собранную своими руками катушку Тесла обязательно необходимо проверить. Во время проверочного подключения следует:

  1. Установить переменный резистор в среднюю позицию.
  2. Отследить наличие разряда. При его отсутствии нужно поднести к катушке люминесцентную лампу или лампу накаливания. Её свечение будет свидетельствовать о наличии электромагнитного поля и о работоспособности трансформатора. Также исправность прибора можно определить по самостоятельно зажигающимся радиолампам и вспышкам на конце излучателя.

Первый запуск прибора должен осуществляться при отслеживании температуры. При сильном нагревании требуется подключить дополнительное охлаждение.

Применение трансформатора

Катушка может создавать разные виды зарядов. Чаще всего при её работе возникает заряд в форме дуги.

Свечение воздушных ионов в электрическом поле с повышенным напряжением называют коронным разрядом. Он представляет собой голубоватое излучение, образующееся вокруг деталей катушки, имеющих значительную кривизну поверхности.

Искровой разряд или спарк проходит от терминала трансформатора до поверхности земли либо до заземлённого предмета в виде пучка быстро меняющих форму и гаснущих ярких полос.

Стример выглядит как тонкий слабо светящийся световой канал, имеющий множество разветвлений и состоящий из свободных электронов и ионизированных частиц газа, не уходящих в землю, а протекающих по воздуху.

Создание разного рода электроразрядов при помощи катушки Тесла происходит при большом увеличении тока и энергии, вызывающем треск. Расширение каналов некоторых разрядов провоцирует увеличение давления и образование ударной волны. Совокупность ударных волн по звуку напоминает треск искр при горении пламени.

Эффект от трансформатора такого рода ранее использовали в медицине для лечения заболеваний. Высокочастотный ток, протекая по коже человека, давал оздоровительный и тонизирующий эффект. Он оказывался полезным только при условии невысокой мощности. При возрастании мощности до больших значений получался обратный результат, негативно влияющий на организм.

С помощью такого электроприбора разжигают газоразрядные лампы и обнаруживают течь в вакуумном пространстве. Также его успешно применяют в военной сфере с целью быстрого уничтожения электрооборудования на кораблях, танках или в зданиях. Мощный импульс, генерируемый катушкой за очень короткий период, выводит из строя микросхемы, транзисторы и прочие аппараты, находящиеся в радиусе десятков метров. Процесс уничтожения техники происходит бесшумно.

Самой зрелищной сферой применения являются показательные световые шоу . Все эффекты создаются благодаря формированию мощных воздушных зарядов, длина которых измеряется несколькими метрами. Это свойство позволяет широко применять трансформатор при съёмках фильмов и создании компьютерных игр.

При разработке этого устройства Никола Тесла планировал использовать его для передачи энергии в глобальном масштабе. Идея учёного базировалась на применении двух сильных трансформаторов, располагающихся на разных концах Земли и функционирующих с равной резонансной частотой.

В случае успешного использования такой системы энергопередачи необходимость в электростанциях, медных кабелях и поставщиках электричества полностью бы отпала. Каждый житель планеты смог бы использовать электроэнергию в любом месте абсолютно безвозмездно. Однако в силу экономической нерентабельности замысел знаменитого физика до сих пор не был (и вряд ли когда-то будет) реализован.

Катушка Тесла представляет две катушки L1 и L2, которая посылает большой импульс тока в катушку L1. У катушек Тесла нет сердечника. На первичной обмотке наматывают более 10 витков. Вторичная обмотка тысячу витков. Еще добавляют конденсатор, чтобы минимизировать потери на искровой разряд.

Катушка Тесла выдает большой коэффициент трансформации. Он превышает отношение числа витков второй катушки к первой. Выходная разность потенциалов катушки Тесла бывает больше нескольких млн вольт. Это создает такие разряды электрического тока, что эффект получается зрелищным. Разряды бывают длины в несколько метров.

Принцип катушки Тесла

Чтобы понять, как работает катушка Тесла, нужно запомнить правило по электронике: лучше раз увидеть, чем сто услышать. Схема катушки Тесла простая. Это простейшее устройство катушки Тесла создает стримеры.

Из высоковольтного конца катушки Тесла вылетает стример фиолетового цвета. Вокруг нее есть странное поле, которое заставляет светиться люминесцентную лампу, которая не подключена и находится в этом поле.

Стример – это потери энергии в катушке Тесла. Никола Тесла старался избавляться от стримеров за счет того, чтобы подсоединить его к конденсатору. Без конденсатора стримера нет, а лампа горит ярче.

Катушку Тесла можно назвать игрушкой, кто показывает интересный эффект. Она поражает людей своими мощными искрами. Конструировать трансформатор – дело интересное. В одном устройстве совмещаются разные эффекты физики. Люди не понимают, как функционирует катушка.

Катушка Тесла имеет две обмотки. На первую подходит напряжение переменного тока, создающее поле потока. Энергия переходит во вторую катушку. Похожее действие у трансформатора.

Вторая катушка и C s образуют дают колебания, суммирующие заряд. Некоторое время энергия держится в разности потенциалов. Чем больше вложим энергии, на выходе будет больше разности потенциалов.

Главные свойства катушки Тесла:

  • Частота второго контура.
  • Коэффициент обеих катушек.
  • Добротность.

Коэффициент связи обуславливает быстроту передачи энергии из одной обмотки во вторичную. Добротность дает время сохранения энергии контуром.

Подобие с качелями

Для лучшего понимания накапливания, большой разности потенциалов контуром, представьте качели, раскачивающиеся оператором. Тот же контур колебания, а человек служит первичной катушкой. Ход качели – это электрический ток во второй обмотке, а подъем – разность потенциалов.

Оператор раскачивает, передает энергию. За несколько раз они сильно разогнались и поднимаются очень высоко, они сконцентрировали в себе много энергии. Такой же эффект происходит с катушкой Тесла, наступает переизбыток энергии, случается пробивание и виден красивый стример.

Раскачивать колебания качелей нужно в соответствии с тактом. Частота резонанса – число колебаний в сек.

Длину траектории качели обуславливает коэффициент связи. Если раскачивать качели, то они быстро раскачаются, отойдут ровно на длину руки человека. Этот коэффициент единица. В нашем случае катушка Тесла с повышенным коэффициентом – тот же .

Человек толкает качели, но не держит, то коэффициент связи малый, качели отходят еще дальше. Раскачивать их дольше, но для этого не требуется сила. Коэффициент связи больше, чем быстрее в контуре накапливается энергия. Разность потенциалов на выходе меньше.

Добротность – противоположно трению на примере качелей. Когда трение большое, то добротность маленькая. Значит, добротность и коэффициент согласовываются для наибольшей высоты качели, или наибольшего стримера. В трансформаторе второй обмотки катушки Тесла добротность – значение переменное. Два значения сложно согласовать, его подбирают в результате опытов.

Главные катушки Тесла

Тесла изготовил катушку одного вида, с разрядником. База элементов намного улучшилась, возникло много видов катушек, по подобию их также называют катушками Тесла. Виды называют и по-английски, аббревиатурами. Их называют аббревиатурами по-русски, не переводя.

  • Катушка Тесла, имеющая в составе разрядник. Это начальная обычная конструкция. С малой мощностью это два провода. С большой мощностью – разрядники с вращением, сложные. Эти трансформаторы хороши, если необходим мощный стример.
  • Трансформатор на радиолампе. Он работает бесперебойно и дает утолщенные стримеры. Такие катушки применяют для Тесла высокой частоты, они по виду похожи на факелы.
  • Катушка на полупроводниковых приборах. Это транзисторы. Трансформаторы действуют постоянно. Вид бывает различным. Этой катушкой легко управлять.
  • Катушки резонанса в количестве двух штук. Ключами являются полупроводники. Эти катушки самые сложные для настройки. Длина стримеров меньше, чем с разрядником, они хуже управляются.

Чтобы иметь возможность управлять видом, создали прерыватель. Этим устройством тормозили, чтобы было время на заряд конденсаторов, снизить температуру терминала. Так увеличивали длину разрядов. В настоящее время имеются другие опции (играет музыка).

Главные элементы катушки Тесла

В разных конструкциях основные черты и детали общие.

  • Тороид – имеет 3 опции.Первая – снижение резонанса.
    Вторая – скапливание энергии разряда. Чем больше тороид, тем содержится больше энергии. Тороид выделяет энергию, повышает его. Это явление будет выгодным, если применять прерыватель.
    Третья – создание поля со статическим электричеством, отталкивающим от второй обмотки катушки. Эта опция выполняется самой второй катушкой. Тороид ей помогает. Из-за отталкивания стримера полем, он не бьет по короткому пути на вторую обмотку. От применения тороида несут пользу катушки с накачкой импульсами, с прерывателями. Значение наружного диаметра тороида в два раза больше второй обмотки.
    Тороиды можно изготовить из гофры и других материалов.
  • Вторичная катушка – базовая составляющая Тесла.
    Длина в пять раз больше диаметра мотки.
    Диаметр провода рассчитывают, на второй обмотке влезало 1000 витков, витки наматывают плотно.
    Катушку покрывают лаком, чтобы защитить от повреждений. Можно покрывать тонким слоем.
    Каркас делают из труб ПВХ для канализации, которые продаются в магазинах для строительства.
  • Кольцо защиты – служит для попадания стримера в первую обмотку, не повреждая. Кольцо ставится на катушку Тесла, стример по длине больше второй обмотки. Он похож на виток провода из меди, толще провода первой обмотки, заземляется кабелем к земле.
  • Обмотка первичная – создается из медной трубки, использующейся в кондиционерах. Она имеет низкое сопротивление, чтобы большой ток шел по ней легко. Толщину трубы не рассчитывают, берут примерно 5-6 мм. Провод для первичной обмотки применяют с большим размером сечения.
    Расстояние от вторичной обмотки выбирается из расчета наличия необходимого коэффициента связи.
    Обмотка является подстраиваемой тогда, когда первый контур определен. Место, перемещая ее регулирует значение частоты первички.
    Эти обмотки изготавливают в виде цилиндра, конуса.

  • Заземление – это важная составляющая часть.
    Стримеры бьют в заземление, замыкают ток.
    Будет недостаточное заземление, то стримеры будут ударять в катушку.

Катушки подключены к питанию через землю.

Есть вариант подключения питания от другого трансформатора. Этот способ называется «магниферным».

Биполярные катушки Тесла производят разряд между концами вторичной обмотки. Это обуславливает замыкание тока без заземления.

Для трансформатора в качестве заземления применяют заземление большим предметом, проводящим электрический ток – это противовес. Таких конструкций немного, они опасны, так как имеет место высокая разность потенциалов между землей. Емкость от противовеса и окружающих вещей отрицательно влияет на них.

Это правило действует для вторичных обмоток, у которых длина больше диаметра в 5 раз, и мощностью до 20 кВА.

Как изготовить что-то эффектное по изобретениям Тесла? Увидев его идеи и изобретения, будет сделана катушка Тесла своими руками.

Это трансформатор, создающий высокое напряжение. Вы можете трогать искру, зажигать лампочки.

Для изготовления нам нужен медный провод в эмали диаметром 0,15 мм. Подойдет любой от 0,1 до 0,3 мм. Вам нужно порядка двухсот метров. Его можно достать из различных приборов, допустим, из трансформаторов, либо купить на рынке, это будет лучше. Еще вам понадобится несколько каркасов. Во-первых, это каркас для вторичной обмотки. Идеальный вариант – это 5 метровая канализационная труба, но, подойдет что угодно диаметром от 4 до 7 см, длиной 15-30 см.

Для первичной катушки вам понадобится каркас на пару сантиметров больше первого. Также понадобится несколько радиодеталей. Это транзистор D13007, либо его аналоги, небольшая плата, несколько резисторов, 5, 75 килоом 0,25 Вт.

Проволоку мотаем на каркас около 1000 витков без перехлестов, без больших промежутков, аккуратно. Можно управиться за 2 часа. Когда намотка закончена, намазываем обмотку лаком в несколько слоев, либо другим материалом, чтобы она не пришла в негодность.

Намотаем первую катушку. Она мотается на каркасе больше и мотается проводом порядка 1 мм. Здесь подойдет провод, порядка 10 витков.

Если изготавливать трансформатор простого типа, то состав его – это две катушки без сердечника. На первой обмотке около десяти витков толстого провода, на второй – не менее тысячи витков. При изготовлении, катушка Тесла своими руками имеет коэффициент в десятки раз больше, чем число витков второй и первой обмоток.

Выходное напряжение трансформатора будет достигать миллионы вольт. Это дает красивое зрелище в несколько метров.

Сложно намотать катушку Тесла своими руками. Еще труднее создать облик катушке для привлечения зрителей.

Сначала необходимо определиться с питанием в несколько киловольт, закрепить к конденсатору. При лишней емкости изменяется значение параметров диодного моста. Далее, подбирается промежуток искры для создания эффекта.

  • Два провода скрепляются, оголенные концы были повернуты в сторону.
  • Выставляется зазор из расчета пробивания немного большем напряжении данной разности потенциалов. Для переменного тока разность потенциалов будет выше определенного.
  • Подключается питание катушке Тесла своими руками.
  • Наматывается вторичная обмотка 200 витков на трубу из изоляционного материала. Если все изготовлено по правилам, то разряд будет хороший, с ветвями.
  • Заземление второй катушки.

Получается катушка Тесла своими руками, которую можно изготовить дома, владея элементарными познаниями в электричестве.

Безопасность

Вторичная обмотка находится под напряжением, способным убить человека. Ток пробивания достигает сотен ампер. Человек может выжить до 10 ампер, поэтому не нужно забывать о мехах защиты.

Расчет катушки Тесла

Без расчетов можно изготовить слишком большой трансформатор, но разряды искры сильно разогревают воздух, создают гром. Электрическое поле выводит из строя электрические приборы, поэтому трансформатор необходимо располагать подальше.

Для расчета длины дуги и мощности расстояние между проводами электродов в см делится на 4,25, далее производится в квадрат, получается мощность (Вт).

Для определения расстояния корень квадратный от мощности умножается на 4,25. Обмотка, создающая разряд дуги в 1,5 метра, должна получать мощность1246 ватт. Обмотка с питанием в 1 кВт создает искру в 1,37 м длины.

Бифилярная катушка Тесла

Такой метод намотки провода распределяет емкость больше, чем при стандартной намотке.

Такие катушки обуславливают приближения витков. Градиент конусообразный, а не плоский, в середине катушки, или с провалом.

Емкость тока не изменяется. Из-за сближения участков разность потенциалов между витков во время колебаний повышается. Следовательно, сопротивление емкости при большой частоте в несколько раз снижается, а емкость увеличивается.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Трансформатор Тесла (принцип работы аппарата рассмотрим далее) был запатентован в 1896-м году, 22 сентября. Аппарат представили как прибор, производящий электрические токи высокого потенциала и частоты. Устройство было изобретено Николой Тесла и названо его именем. Рассмотрим далее этот аппарат подробнее.

Трансформатор Тесла: принцип работы

Суть действия прибора можно объяснить на примере всем известных качелей. При их раскачивании в условиях принудительных которая будет максимальной, станет пропорциональной прилагаемому усилию. При раскачивании в свободном режиме максимальная амплитуда при тех же усилиях многократно возрастет. Такова суть и трансформатора Тесла. В качестве качелей в аппарате используется колебательный вторичный контур. Генератор играет роль прилагаемого усилия. При их согласованности (подталкивании в строго необходимые периоды времени) обеспечивается задающий генератор либо первичный контур (в соответствии с устройством).

Описание

Простой трансформатор Тесла включает в себя две катушки. Одна - первичная, другая - вторичная. Также Тесла состоит из тороида (применяется не всегда), конденсатора, разрядника. Последний - прерыватель - встречается в английском варианте Spark Gap. Трансформатор Тесла также содержит "выход" - терминал.

Катушки

Первичная содержит, как правило, провод большого диаметра либо медную трубку с несколькими витками. Во вторичной катушке имеется кабель меньшего сечения. Его витков - около 1000. Первичная катушка может иметь плоскую (горизонтальную), коническую или цилиндрическую (вертикальную) форму. Здесь, в отличие от обычной трансформатора, нет ферромагнитного сердечника. За счет этого существенно снижается взаимоиндукция между катушками. Вместе с конденсатором первичный элемент формирует колебательный контур. В него включен разрядник - нелинейный элемент.

Вторичная катушка тоже формирует колебательный контур. В качестве конденсатора выступают тороидная и собственная катушечная (межвитковая) емкости. Вторичная обмотка часто покрыта слоем лака либо эпоксидной смолы. Это делается во избежание электрического пробоя.

Разрядник

Схема трансформатора Тесла включает в себя два массивных электрода. Эти элементы должны обладать устойчивостью к протеканию сквозь больших токов. Обязательно наличие регулируемого зазора и хорошего охлаждения.

Терминал

В резонансный трансформатор Тесла этот элемент может быть инсталлирован в разном исполнении. Терминал может представлять собой сферу, заточенный штырь или диск. Он предназначается для получения искровых предсказуемых разрядов с большой длиной. Таким образом, два связанных колебательных контура образуют трансформатор Тесла.

Энергия из эфира - одна из целей функционирования аппарата. Изобретатель прибора стремился достичь волнового числа Z в 377 Ом. Он изготавливал катушки все большего размера. Нормальная (полноценная) работа трансформатора Тесла обеспечивается в случае, когда оба контура настроены на одну частоту. Как правило, в процессе корректировки осуществляется подстройка первичного под вторичный. Это достигается за счет изменения емкости конденсатора. Также меняется количество витков у первичной обмотки до появления на выходе максимального напряжения.

В будущем предполагается создать несложный трансформатор Тесла. Энергия из эфира будет работать на человечество в полной мере.

Действие

Трансформатор Тесла функционирует в импульсном режиме. Первая фаза - конденсаторный заряд до напряжения пробоя разрядного элемента. Вторая - генерация высокочастотных колебаний в первичном контуре. Включенный параллельно разрядник замыкает трансформатор (источник питания), исключая его из контура. В противном случае он будет вносить определенные потери. Это, в свою очередь, снизит добротность первичного контура. Как показывает практика, такое влияние существенно уменьшает длину разряда. В связи с этим в построенной грамотно схеме разрядник всегда ставится параллельно источнику.

Заряд

Его производит внешний источник на основе низкочастотного повышающего трансформатора. Конденсаторная емкость выбирается так, чтобы она составляла вместе с индуктором определенный контур. Частота его резонанса должна быть равна высоковольтному контуру.

На практике все несколько иначе. Когда осуществляется расчет трансформатора Теслы, не учитывается энергия, которая пойдет на накачку второго контура. Напряжение заряда ограничивается напряжением у пробоя разрядника. Его (если элемент воздушный) можно регулировать. Напряжение пробоя корректируется при изменении формы либо расстояния между электродами. Как правило, показатель находится в пределах 2-20 кВ. Знак напряжения не должен слишком "закорачивать" конденсатор, на котором происходит постоянная смена знака.

Генерация

После того как будет достигнуто напряжение пробоя между электродами, в разряднике формируется электрический лавинообразный пробой газа. Происходит разряжение конденсатора на катушку. После этого резко снижается напряжение пробоя в связи с оставшимися ионами в газе (носителями заряда). Вследствие этого состоящая из конденсатора и первичной катушки цепь контура колебания через разрядник остается замкнутой. В ней образуются высокочастотные колебания. Они постепенно затухают, преимущественно вследствие потерь в разряднике, а также ухода на вторичную катушку электромагнитной энергии. Тем не менее колебания продолжаются, пока током создается достаточное количество зарядных носителей для поддержания в разряднике существенно меньшего напряжения пробоя, чем амплитуда колебаний LC-контура. Во появляется резонанс. Это приводит к возникновению высокого напряжения на терминале.

Модификации

Какого бы типа ни была схема трансформатора Тесла, вторичный и первичный контуры остаются неизменными. Тем не менее один из компонентов основного элемента может быть разной конструкции. В частности, речь идет о колебаний. Например, в модификации SGTC этот элемент выполняется на искровом промежутке.

RSG

Трансформатор Тесла высокой мощности включает в себя более сложную конструкцию разрядника. В частности, это касается модели RSG. Аббревиатура расшифровывается как Rotary Spark Gap. Ее можно перевести следующим образом: вращающийся/роторный искровой либо статический промежуток с дугогасительными (дополнительными) устройствами. В таком случае частота работы промежутка подбирается синхронно частоте конденсаторной подзарядки. Конструкция искрового роторного промежутка включает в себя двигатель (как правило, он электрический), диск (вращающийся) с электродами. Последние или замыкают, или приближаются к ответным компонентам для замыкания.

В некоторых случаях обычный разрядник заменяют многоступенчатым. Для охлаждения этот компонент иногда помещают в газообразные или жидкие диэлектрики (в масло, к примеру). В качестве типового приема гашения дуги статистического разрядника используется продувка электродов с помощью мощной воздушной струи. В ряде случаев трансформатор Тесла классической конструкции дополняется вторым разрядником. Задача этого элемента состоит в обеспечении защиты низковольтной (питающей) зоны от высоковольтных выбросов.

Ламповая катушка

В модификации VTTC используют электронные лампы. Они играют роль генератора колебаний ВЧ. Как правило, это достаточно мощные лампы типа ГУ-81. Но иногда можно встретить и маломощные конструкции. Одной из особенностей в данном случае является отсутствие необходимости обеспечения высокого напряжения. Чтобы получить относительно небольшие разряды, нужно порядка 300-600 В. Кроме того, VTTC почти не издает шума, который появляется, когда трансформатор Тесла функционирует на искровом промежутке. С развитием электроники появилась возможность значительно упростить и уменьшить размер прибора. Вместо конструкции на лампах стали применять трансформатор Тесла на транзисторах. Обычно используется биполярный элемент соответствующей мощности и тока.

Как сделать трансформатор Тесла?

Как выше было сказано, для упрощения конструкции используется биполярный элемент. Несомненно, намного лучше применить полевой транзистор. Но с биполярным проще работать тем, кто недостаточно опытен в сборке генераторов. Обмотка катушек связи и коллектора осуществляется проводом в 0.5-0.8 миллиметров. На высоковольтной детали провод берется 0.15-0.3 мм толщиной. Делается приблизительно 1000 витков. На "горячем" конце обмотки ставится спираль. Питание можно взять с трансформатора в 10 В, 1 А. При использовании питания от 24 В и более значительно увеличивается длина Для генератора можно использовать транзистор КТ805ИМ.

Применение прибора

На выходе можно получить напряжение в несколько миллионов вольт. Оно способно создавать в воздухе внушительные разряды. Последние, в свою очередь, могут обладать многометровой длиной. Эти явления очень привлекательны внешне для многих людей. Любителями трансформатор Тесла используется в декоративных целях.

Сам изобретатель применял аппарат для распространения и генерации колебаний, которые направлены на беспроводное управление приборами на расстоянии (радиоуправление), передачи данных и энергии. В начале ХХ столетия катушка Тесла стала использоваться в медицине. Больных обрабатывали высокочастотными слабыми токами. Они, протекая по тонкому поверхностному слою кожи, не вредили внутренним органам. При этом токи оказывали оздоравливающее и тонизирующее воздействие на организм. Кроме того, трансформатор используется при поджиге газоразрядных ламп и при поиске течей в вакуумных системах. Однако в наше время основным применением аппарата следует считать познавательно-эстетическое.

Эффекты

Они связаны с формированием разного рода газовых разрядов в процессе функционирования устройства. Многие люди коллекционируют трансформаторы Тесла, чтобы иметь возможность наблюдать за захватывающими эффектами. Всего аппарат производит разряды четырех видов. Зачастую можно наблюдать, как разряды не только отходят от катушки, но и направлены от заземленных предметов в ее сторону. На них также могут возникать коронные свечения. Примечательно, что некоторые химические соединения (ионные) при нанесении на терминал могут изменить цвет разряда. К примеру, натриевые ионы делают спарк оранжевым, а борные - зеленым.

Стримеры

Это тускло светящиеся разветвленные тонкие каналы. Они содержат ионизированные газовые атомы и свободные электроны, отщепленные от них. Эти разряды протекают от терминала катушки или от самых острых частей непосредственно в воздух. По своей сути стример можно считать видимой ионизацией воздуха (свечением ионов), которая создается ВВ-полем у трансформатора.

Дуговой разряд

Он образуется достаточно часто. К примеру, если у трансформатора достаточная мощность, при поднесении к терминалу заземленного предмета может образоваться дуга. В некоторых случаях требуется прикосновение предмета к выходу, а затем отведение на все большее расстояние и растягивание дуги. При недостаточной надежности и мощности катушки такой разряд может повредить компоненты.

Спарк

Этот искровой заряд отходит с острых частей или с терминала напрямую в землю (заземленный предмет). Спарк представлен в виде быстро сменяющихся или исчезающих ярких нитевидных полосок, разветвленных сильно и часто. Существует также особый тип искрового разряда. Он называется скользящим.

Коронный разряд

Это свечение ионов, содержащихся в воздухе. Оно происходит в высоконапряженном электрическом поле. В результате создается голубоватое, приятное для глаза свечение около ВВ-компонентов конструкции со значительной кривизной поверхности.

Особенности

В процессе функционирования трансформатора можно услышать характерный электрический треск. Это явление обусловлено процессом, в ходе которого стримеры превращаются в искровые каналы. Он сопровождается резким увеличением количества энергии и Происходит быстрое расширение каждого канала и скачкообразное повышение давления в них. В итоге на границах образуются ударные волны. Их совокупность от расширяющихся каналов формирует звук, который воспринимается как треск.

Воздействие на человека

Как и другой источник такого высокого напряжения, катушка Тесла может быть смертельно опасной. Но существует иное мнение, касающееся некоторых типов аппарата. Поскольку у высокочастотного высокого напряжения есть скин-эффект, а ток существенно отстает от напряжения по фазе и сила тока очень мала, несмотря на потенциал, разряд в человеческое тело не может спровоцировать ни остановку сердца, ни прочие серьезные нарушения в организме.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows