Самодельный ардуино на atmega8. Системный интегратор. Копирование загрузчика на чистый микроконтроллер

Самодельный ардуино на atmega8. Системный интегратор. Копирование загрузчика на чистый микроконтроллер

02.01.2024

Микроконтроллеры – отличная основа для большого количества устройств. По сути своей они напоминают компьютер: постоянная память; оперативная память; вычислительное ядро; тактовая частота.

Среди многих семейств и видов МК новички часто выбирают контроллеры AVR Atmega. Однако язык программирования может показаться сложным, поэтому преподаватель из Италии решил разработать простую и удобную плату для обучения.

Родилась Arduino ATmega8, на основе которой можно собрать очень удобное и простое устройство.

С этими платами от Ардуино вы получаете целый ряд преимуществ:

  • готовая разведенная печатная плата со всеми необходимыми компонентами и разъёмами;
  • микроконтроллеры Atmega;
  • возможность программировать без программаторов – через ЮСБ порт;
  • питание от любого источника 5-20 вольт;
  • простой язык программирования и возможность использования чистой C AVR без переделок платы и прошивки.

Характеристики чипа

  • Частота ATmega8: 0-16 МГц
  • Напряжение ATmega8: 5 В
  • Частота ATmega8L: 0-8 МГц
  • Частоат ATmega8A: 0-16 МГц

В реальности почти все микроконтроллеры при рабочем напряжении в 5 вольт работают с частотой 16 мегагерц, если участвует внешний кварцевый резонатор. Если брать внутренний генератор, то частоты составят: 8, 4, 2 и 1 МГц.

Распиновка Arduino ATmega8

Ниже приводим распиновку атмега8, которую можно также найти на официальном сайте производителя:

Добавление устройств АТмега

Есть один нюанс по работе с эти чипом - нам нужно внести некоторые изменений в один файл, чтобы дальше можно было бы программировать микроконтроллеры Arduino ATmega8.

Вносим следующие изменения в файл hardware/arduino/boards.txt :

Atmega8o.name=ATmega8 (optiboot 16MHz ext) atmega8o.upload.protocol=arduino atmega8o.upload.maximum_size=7680 atmega8o.upload.speed=115200 atmega8o.bootloader.low_fuses=0xbf atmega8o.bootloader.high_fuses=0xdc atmega8o.bootloader.path=optiboot50 atmega8o.bootloader.file=optiboot_atmega8.hex atmega8o.bootloader.unlock_bits=0x3F atmega8o.bootloader.lock_bits=0x0F atmega8o.build.mcu=atmega8 atmega8o.build.f_cpu=16000000L atmega8o.build.core=arduino:arduino atmega8o.build.variant=arduino:standard ############################################################## a8_8MHz.name=ATmega8 (optiboot 8 MHz int) a8_8MHz.upload.protocol=arduino a8_8MHz.upload.maximum_size=7680 a8_8MHz.upload.speed=115200 a8_8MHz.bootloader.low_fuses=0xa4 a8_8MHz.bootloader.high_fuses=0xdc a8_8MHz.bootloader.path=optiboot a8_8MHz.bootloader.file=a8_8MHz_a4_dc.hex a8_8MHz.build.mcu=atmega8 a8_8MHz.build.f_cpu=8000000L a8_8MHz.build.core=arduino a8_8MHz.build.variant=standard ############################################################## a8_1MHz.name=ATmega8 (optiboot 1 MHz int) a8_1MHz.upload.protocol=arduino a8_1MHz.upload.maximum_size=7680 a8_1MHz.upload.speed=9600 a8_1MHz.bootloader.low_fuses=0xa1 a8_1MHz.bootloader.high_fuses=0xdc a8_1MHz.bootloader.path=optiboot a8_1MHz.bootloader.file=a8_1MHz_a1_dc.hex a8_1MHz.build.mcu=atmega8 a8_1MHz.build.f_cpu=1000000L a8_1MHz.build.core=arduino a8_1MHz.build.variant=standard ############################################################## a8noboot_8MHz.name=ATmega8 (no boot 8 MHz int) a8noboot_8MHz.upload.maximum_size=8192 a8noboot_8MHz.bootloader.low_fuses=0xa4 a8noboot_8MHz.bootloader.high_fuses=0xdc a8noboot_8MHz.build.mcu=atmega8 a8noboot_8MHz.build.f_cpu=8000000L a8noboot_8MHz.build.core=arduino a8noboot_8MHz.build.variant=standard

Таким образом, если мы перейдем в меню Сервис → Плата , то увидим устройства:

  • ATmega8 (optiboot 16MHz ext)
  • ATmega8 (optiboot 8 MHz int)
  • ATmega8 (optiboot 1 MHz int)
  • ATmega8 (no boot 8 MHz int)

Платы Arduino

Ардуино продаётся во множестве вариантов; главное, что объединяет платы, – это концепция готового изделия. Вам не нужно травить плату и паять все её компоненты, вы получаете готовое к работе изделие. Можно собирать любые устройства, не используя паяльник. Все соединения в базовом варианте выполняются с помощью макетной платы и перемычек.

Сердце платы – микроконтроллер семейства AVR. Изначально был применён микроконтроллер atmega8, но его возможности не безграничны, и плата подвергалась модернизации и изменениям. Стандартная плата, которая наиболее распространена у любителей – это плата версии UNO, существует много её вариаций, а её размеры сравнимы с кредитной карточкой.

Плата – полный аналог большего собрата, но в гораздо меньших размерах, версия arduino atmega168 была самой популярной и недорогой, но её сменила другая модель – arduino atmega328, стоимость которой аналогична, а возможности больше.

Следующей важной деталью является печатная плата. Разведена и запаяна на заводе, позволяет избежать проблем с её созданием, травлением и пайкой. Качество платы зависит от производителя конкретного экземпляра, но, в основном, оно на высоком уровне. Питание платы осуществляется с помощью пары линейных стабилизаторов, типа L7805 , или других LDO стабилизаторов напряжения.

Клеммная колодка – отличный способ сделать надёжное разъёмное соединение и быстро выполнить изменения в схеме прототипов ваших устройств. Для тех, кому не хватает стандартных разъёмов, есть более крупные и мощные платы, например, на atmega2560, у которой доступно полсотни портов для работы с периферией.

На фото изображена плата . На её основе можно собрать довольно сложного робота, систему умного дома или 3d-принтер на ардуино.

Не стоит думать, что младшие версии слабы, например, микроконтроллер atmega328, на котором построены модели Uno, nano, mini и другие, имеет вдвое больше памяти по сравнению с 168 моделью – 2 кб ОЗУ и 32 кб Flash памяти. Это позволяет записывать более сложные программы в память микроконтроллера.

Проекты на основе Arduino ATmega

Микроконтроллер в современной электронике – основа для любого устройства, начиная от простой мигалки на светодиодах, до универсальных измерительных приборов и даже средств автоматизации производства.

Пример 1

Можно сделать тестер с 11 функциями на микроконтроллере atmega32.

Устройство имеет крайне простую схему, в которой использовано немногим более дюжины деталей. Однако вы получаете вполне функциональный прибор, которым можно производить измерения. Вот краткий перечень его возможностей:

  1. Прозвонка цепи с возможностью измерять падение напряжения на переходе диода.
  2. Омметр.
  3. Измеритель ёмкости.
  4. Измерение активного сопротивления конденсатора или ESR.
  5. Определение индуктивности.
  6. Возможность счёта импульсов.
  7. Измерение частоты – пригодится в диагностике, например, для проверки ШИМ источника питания.
  8. Генератор импульсов – тоже полезен в ремонте.
  9. Логический анализатор позволит просмотреть содержимое пачек цифровых сигналов.
  10. Тестер стабилитронов.

Пример 2

Для радиолюбителей будет полезно иметь качественное оборудование, но станция стоит дорого. Есть возможность собрать паяльную станцию своими руками, для этого нужна плата Arduino, имеющая в своем составе микроконтроллер atmega328.

Пример 3

Для продвинутых радиолюбителей есть возможность собрать более чем бюджетный осциллограф. Мы опубликуем данный урок в дальнейших статьях.

Для этого вам понадобится:

  1. Arduino uno или atmega
  2. Tft дисплей 5 дюйма.
  3. Небольшой набор обвязки.

Или его упрощенный аналог на плате Nano и дисплее от nokia 5110.

Такой осциллографический пробник станет полезным для автоэлектрика и мастера по ремонту радиоэлектронной аппаратуры.

Пример 4

Бывает, что управляемые модули удалены друг от друга или возможностей одной ардуино не хватает – тогда можно собрать целую микроконтроллерную систему. Чтобы обеспечить связь двух микроконтроллеров стоит использовать стандарт RS 485.

На фото приведен пример реализации такой системы и ввода данных с клавиатуры.

Цветомузыка на микроконтроллере Arduino ATmega8

Для школьной дискотеки можно собрать ЦМУ на 6 каналов.

Транзисторы VT1-VT6 нужно подобрать с учетом мощности ваших светодиодов. Это силовые компоненты – они нужны, потому что мощности микроконтроллера не хватит, чтобы запустить мощные лампы или светодиоды.

Если вы хотите коммутировать сетевое напряжение и собрать цветомузыку на лампах накаливания, вместо них нужно установить симисторы и драйвер. Дополнить каждый канал ЦМУ вот такой конструкцией:

Ардуино своими руками

Atmega2560 – хоть и мощный и продвинутый контроллер, но проще и быстрее собрать первую плату на atmega8 или 168.

Левая часть схемы – это модуль связи по USB, иначе говоря, USB-UART/TTL конвертер. Его, вместе с обвязкой, можно выбросить из схемы, для экономии места, собрать на отдельной плате и подключать только для прошивки. Он нужен для преобразования уровней сигнала.

DA1 – это стабилизатор напряжения L7805. В качестве основы можно использовать целый ряд avr микросхем, которые вы найдете, например, серии, arduino atmega32 или собрать arduino atmega16. Для этого нужно использовать разные загрузчики, но для каждого из МК нужно найти свой.

Можно поступить еще проще, и собрать всё на беспаечной макетной плате, как это показано здесь, на примере 328-й атмеги.

Микроконтроллеры – это просто и весело – вы можете сделать кучу приятный и интересных вещей или даже стать выдающимся изобретателем, не имея при этом ни образования, ни знаний о низкоуровневых языках. Ардуино – шаг в электронику с нуля, который позволяет перейти к серьезным проектам и изучению сложных языков, типа C avr и других.

Общие сведения

Этот вариант Arduino-контроллера, если уж не самый простой, то уж наверняка самый доступный для самостоятельного изготовления. В основе - уже ставшая классической схема Arduino на контроллере ATMega8.

Всего разработано два варианта:

  • Модульный
  • Одноплатный

Модульный вариант

Этот вариант контроллера состит из трех плат:

Одноплатный вариант

Все тоже самое, только на одной плате:

Плата выполнена из одностороннего фольгированного текстолита и может быть повторена в домашних условиях с использованием, наприрмер, ЛУТ-технологии. Размеры платы: 95x62

Программирование микроконтроллера

После сборки платы - необходимо "прошить" контроллер, загрузить в него "bootloader" - загрузчик. Для этого потребуется программатор. Берем чистый контроллер типа ATMega8, устанавливаем его в программатор, подключаем к компьютеру. Я использовал программатор Программатор AVR ISP mkII c адаптером ATMega8-48-88-168 . Программируем с помощью Arduino IDE, она сама выставит необходимые fuse bits. Последовательность такая:

1. Выбор программатора (Сервис > Программатор > AVRISP mkII). Если этот программатор используется впервые - необходимо установить драйвер AVRISP-MKII-libusb-drv.zip . Если используется не AVRISP mkII, а другой программатор, то из списка нужно выбрать нужный.

2. Выбор платы для микроконтроллера (Сервис > Плата > Arduino NG or older w/ ATmega8). Если используется не ATmega8, а другой микроконтроллер, то и платку нужно выбирать соответствующую ему.

3. Запись bootloader (Сервис > Записать загрузчик).

4. Устанавливаем контроллер на плату, и все, Arduino готова к работе.

Добрый день. С появлением arduino робототехника, автоматика и другие радио изделия стали нам более доступными. Раньше представить было трудно что с такой простотой можно писать прошивки для микроконтроллеров, с появлением arduino заниматься робототехникой могут даже детишки. Простота платформы arduino позволяет забыть о побитовых операциях и регистрах avr которые использовались повсеместно. Но так как платформа универсальная то и микроконтроллер тоже выбран универсальный. Например в arduino uno предусмотрен atmel atmega328p что даволи излишне для простой обработки нажатий на кнопки, а если делать сразу партию устройств то придется заплатить за незадействованную мощь.

Но так как arduino ide свободно распространяемая, любой без труда может написать дополнения и библиотеки, зачастую они могут быть очень полезными. В данной статье пойдет речь о библиотеке плат на основе ATmega8, ATmega48, ATmega88, ATmega168 под названием Mini Core. Данная библиотека позволят писать скетчи arduino под более слабые микроконтроллеры чем atmega328p, а это позволяет удешевить стоимость устройства за счет рационального использования мощности.

Почему именно эти микроконтроллеры:

  1. Данные микроконтроллеры с теми же выводами и архитектурой и имеют минимальные отличия от atmega328p(заменяемые)
  2. Они дешевые и популярные(некоторые дешевле доллара)
  3. Они все имеют DIP и TQFP корпуса

Данная библиотека поддерживает все индексы микросхемы кроме PB (т.е. A, P, PA), например не стоит использовать ATMEGA168PB-AU.

Микросхемы по характеристикам:

Atmeg328 atmega168 atmega88 atmega48 atmega8
Flash 32 кб 16 кб 8 кб 4 кб 8 кб
ОЗУ 2 кб 1 кб 1 кб 512 б 1 кб
ПЗУ 1 кб 512 б 512 б 256 б 512 б
Каналы ШИМ 6 6 6 6 3

Пора от теории перейти к практике установим Mini Core, для установки понадобиться Arduino IDE версии 1.6.4 и выше. Если у вас нет Arduino или она старше качаем ее с оф. Сайта .

1. Для установки делаем следующее:

2. Запускаем Arduino IDE

3. Откройте меню « Файл» ⇒ «Настройки» .

4. После вышеупомянутых операций закрываем настройки и переходим в меню Откройте меню « Инструменты» ⇒ «Плата:"........."» ⇒ « Менеджер плат...».

5. В менеджере плат выбираем нашу библеотеку и нажимем установка:

Примечание . Если вы используете Arduino IDE 1.6.6, вам может потребоваться закрыть диспетчер плат, а затем снова открыть его.

После установки в меню « Инструменты» ⇒ «Плата:"........."» появятся варианты плат с нашими микроконтроллерами.

Самый удобный вариант для использование данных микроконтроллеров это взять arduino uno с микросхемой в корпусе dip и заменить на нужную. Также можно собрать плату с несложной обвязкой:

Для тех кому нужна распиновка микросхем фото ниже:

Так же не маловажной особенностью является то что авторы добавили возможность выбора кварцевого резонатора по нескольким частотам и параметры контроля питания, что по умолчанию не доступно для стандартных плат. Все манипуляции с данными параметрами производятся в меню-инструменты.

Настройки тактовой частоты:

  • 16 МГц внешний генератор (по умолчанию)
  • 20 МГц внешний генератор
  • 18.432 Mhz внешний генератор *
  • 12 МГц внешний генератор
  • 8 МГц внешний генератор
  • 8 МГц внутренний генератор **
  • 1 МГц встроенный генератор

Очень давно хотел собрать свою плату Arduino, смотрел на схемы, но так и не решался. Причин было несколько:

  • В моем ноутбуке отсутствует COM порт, потому версия с COM портом мне не подходит
  • USB версия использует очень дорогую микросхему FT232R

Ну вот однажды я наткнулся на статью на Хабре, где использовали конвертер на AVR вместо FT232R (схемы там нет), а так же на Zelectro аналогичную реализацию, но на микроконтроллере Atmega8. Последняя была сделана на базе японского проекта . Именно все это и вдохновило меня сделать собственную реализацию Arduino.

И так, если зайти на сайт AVR-CDC и посмотреть последние изменения (в архиве с прошивкой, на сайте нет информации) то там реализованы линии Rx Tx, а так же DTR, CTS, RTS не только на относительно дорогой ATMega8, но и на дешевой AtTiny2313. Работают последние линии только на кварце в 16 или 20 мгц. Именно на основе данного чипа я решил собрать USB — UART преобразователь.

  • Прошивка AtTiny2313 под кварц 16 мгц —
  • USB драйвер —
  • Fuse bits — HFuse: CD; LFuse: FF

Часть Arduino взята с официального сайта практически без изменений.

Плата питается как от USB так и от внешнего питания. На плате установлен стандартный для программатора AVR910 разьем для прошивки основного чипа. В моем случае это AtMega8, но можно использовать и AtMega168.

Для работы программатора AVR910 в фале конфигурации программатора..\Arduino\arduino-1.0.6\hardware\arduino\programmers.txt необходимо добавить следующие строки:

Avr910.name=avr910 avr910.protocol=avr910 avr910.communication=serial avr910.speed=115200

Выше указанный файл редактируется нормально только редактором Notepad++. В обычном Notepad он выглядит не читабельно.

Ниже привожу фото этого Arduino в сборке от Павла!

Самодельное USB Arduino с программатором


Давайте же приступим!

Шаг 1.Введение.


Вопросы,как и что сделать,а вообще зачем оно мне?

После серфа по тоннам информации об Arduino…от изготовления светодиодного кубика,до создания «Умного дома»,до изготовления летающих дронов…
вы,как и я,лихорадочно начали искать более-менее приемлимую инфу об изготовлении этой всемогущей платы.
«Черт возьми,хочу такую!» или «Я хочу сделать это.Прямо сейчас.»И в голове крутятся все возможные применения этого устройства,
руки сами начинают искать детали для платы,заходите в интернет,а там:
АРДУИНО.Всего за 25$.
И все.
Все комбинации выпали из головы.
Безнадега.
Не знаете,как жить дальше.
И тут вы натыкаетесь на этот сайт!
Вы спасены!
Ведь именно сейчас мы с вами соберем ARDUINO-совместимую плату за 15 минут и всего за примерно 300 рублей!

Шаг 2.Приобретите это немедля!


Вам необходимы эти компоненты:
-Макетная плата
-ATMega 328(примечание переводчика: можно использовать также ATMega 8,168)
-Готовая плата Arduino(*и снова переводчик-вместо ардуины можно использовать любой программатор,хоть «5 проводков»)
-1 резонатор на 16мГц
-3 резистора на 100Ом
-1 резистор на 10кОм
-2 конденсатора на 22pF
-3 светодиода(красный,желтый и зеленый)
-1 батарея типа»Крона»(9 вольт) с ответной частью
-USB-кабель
-1 стабилизатор напряжения «КРЕНка»
-Компьютер,ноутбук с установленной Arduino IDE.
И все.

Шаг 3.Начало сборки.


Возьмите макетку и закрепите микроконтроллер так,чтобы его ножки не были замкнуты(он должен стоять над «канавкой»)

Шаг 4.Подключение КРЕНки.

Поместите КРЕНку на макетку рядом с МК.
Распиновка КРЕНки:
-VCC(питание снаружи)
-GND(Земля.Общий контакт)
-Output(Выход)
Подсоедините черный провод к GND.Соедините его другой конец с шиной «GND» на макетке.
VCC подключите к шине питания+ на макетке.
И Output киньте туда,где будет питание чипа.

Шаг 5.Проводим питание к МК.


Хорошенько изучите распиновку АТМеги.
Соедините Output КРЕНки и GND макетки соответственно с Output(7 и 20 пин) и GND(8 и 22 пин) МК.

Шаг 6.Добавим точности.



Подключите конденсатор на 22pF между GND и 9 пином АТМеги.
И второй конденсатор между 10 пином АТМеги и,опять же,землей.
Добавьте резистор на 10кОм между 5v и RESET(1 пин).

Шаг 7.Добавляем светодиоды.

Воткните провод в любое место платы.
Подключите резистор 100Ом к одному из концов провода(см.картинку)
Длинную ножку диода (+) желтого диода подсоедините к другому концу резистора.
Короткую ножку(-) подключите к земле.
Повторите для красного и зеленого диодов.

Шаг 8.Подключаем все это к ARDUINO.
Далеко зашли мы,однако!

Подключите желтый диод к 9 пину Arduino.
Желтый диод отображает работу программатора.
Подключите красный диод к 8 пину Ардуины.
Он загорается,если что-то пошло не так.
И зеленый диод подключите к 7 пину.
Он показывает статус заливки bootloader’а.
Подсоедините 4 провода(на картинке-3 желтых и зеленый) к пинам АТМеги на макетке(см.рисунок).
А затем эти провода к 10-13 пинам Ардуино.
Не забудьте соединить 5 и GND Ардуины и макетки!

Шаг 9.Программирование.
Фух,добрались и до заливки бутлоадера.
Как,спросите вы?
АК вот так!
1)Запустите Arduino IDE.
2)Выберите Файл-Примеры-Arduino ISP.
3)Скомпилируйте скетч и залейте его в Ардуину.
После заливки скетча Вы увидите,что желтый диод начал мигать.
Теперь добавьте резистор на 100 Ом между землей и Reset Ардуины.

Шаг 10.Собственно заливка загрузчика.


В Arduino IDE выберите:
Tools-Board-Arduino Duemilkanove with AtMega 328(* Если вы используете не АТМегу 328,найдите в списке модель с тем контроллером,который установлен у вас)
Tools-Programmer-Arduino as ISP.
И снова в меню Tools.Зайдите и нажмитье «Burn Bootloader»
Прошивка начнется(займет около минуты)
На экране появится надпеись «Done Burning Bootloader»

Если что-то пойдет не так,загорится красный диод,то не получилось.Обращайтесь в личку или на [email protected] .
Вуаля!У вас есть свой Ардуино!
Счастливой работы!



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows