Высокая скорость передачи информации. Скорость и каналы передачи данных. a. Реальные скорости технологии Wi-FI

Высокая скорость передачи информации. Скорость и каналы передачи данных. a. Реальные скорости технологии Wi-FI

31.08.2020

Серьезный интерес к вопросу скорости интернет соединения обычно возникает после или блога в процессе их Обусловлено это необходимостью узнать и, как правило, повысить скорость загрузки сайта, зависящей, помимо других факторов, в большой степени именно от скорости интернета. В данной статье коротко рассмотрим, что такое входящая скорость, исходящая скорость, а главное, разберемся с единицами измерения скорости передачи данных , понятие о которых у многих начинающих пользователей весьма расплывчатое. Кроме того, приведем простые методы измерения скорости интернет соединения посредством наиболее распространенных онлайн сервисов.

Что же такое, скорость интернет соединения? Под скоростью интернет соединения понимают объём передаваемой информации в единицу времени. Различают входящую скорость (скорость получения) – скорость передачи данных из интернета к нам на компьютер; исходящую скорость (скорость передачи) – скорость передачи данных от нашего компьютера в интернет.

Основные единицы измерения скорости интернета

Базовой единицей измерения количества передаваемой информации является бит (bit ). В качестве единицы времени принята секунда. Значит, скорость передачи будет измеряться бит/сек. Обычно оперируют единицами«килобит в секунду» (Кбит/сек), «мегабит в секунду» (Мбит/сек), «гигабит в секунду» (Гбит/сек).

1 Гбит/сек = 1000 Мбит/сек = 1 000 000 Кбит/сек = 1 000 000 000 бит/сек.

На английском языке базовая единица для измерения скорости передачи информации, используемая в вычислительной технике — бит в секунду или бит/с будет bits per second или bps.

Килобиты в секунду и, в большинстве случаев, Мегабиты в секунду (Кбит/с; Кб/с; Kb/s; Kbps, Мбит/с; Мб/с; Мb/s; Мbps - буква «б» маленькая ) используются в технических спецификациях и договорах на оказание услуг интернет провайдерами.Именно в приведенных единицах определяется скорость интернет соединения в нашем тарифном плане. Обычно, эта обещанная провайдером скорость, называется заявленной скоростью.

И так, количество передаваемой информации измеряется в битах. Размер же передаваемого или располагающегося на жестком диске компьютера файла, измеряется в байтах (Килобайтах, Мегабайтах, Гигабайтах).Байт (byte) – это также единица количества информации. Один байт равен восьми битам (1 Байт = 8 бит).

Чтобы было проще понимать различие между битом и байтом, можно сказать другими словами. Информация в сети передается «бит за битом», поэтому и скорость передачи измеряется в бит в секунду. Объем же хранимых данных измеряется в байтах. Поэтому и скорость закачки определенного объема измеряется в байтах в секунду.

Скорость передаваемого файла, использующаяся многими пользовательскими программами (программы-загрузчики, интернет браузеры, файлообменники) измеряется в Килобайтах, Мегабайтахи Гигабайтах в секунду.

Другими словами, при подключении к интернету, в тарифных планах указана скорость передачи данных в Мегабитах в секунду. А прискачивании файлов из интернета показывается скорость в Мегабайтах в секунду.

1 ГБайт = 1024 МБайта = 1 048 576 КБайта = 1 073 741 824 Байта;

1 МБайт = 1024 КБайта;

1 КБайт = 1024 Байта.

На английском языке базовая единица для измерения скорости передачи информации — Байт в секунду или Байт/с будет byte per second или Byte/s.

Килобайты в секунду обозначаются, как КБайт/с, КБ/с, KB/s или KBps.

Мегабайты в секунду - МБайт/с, МБ/с, МB/s или МBps.

Килобайты и Мегабайты в секунду всегда пишутся с большой буквой «Б», как в латинской транскрипции, так и в русском варианте написания: МБайт/с, МБ/с, МB/s, МBps.

Как определить, сколько мегабит в мегабайте и наоборот?!

1 МБайт/с = 8Мбит/с.

Например, если скорость передачи данных, отображаемая браузером, равна 2 МБ/с (2 Мегабайта в секунду), то в Мегабитах это будет в восемь раз больше - 16 Мбит/с (16 Мегабит в секунду).

16 Мегабит в секунду = 16 / 8 = 2,0 Мегабайт в секунду.

Т.е, чтобы получить величину скорости в «Мегабайтах в секунду», нужно значение в «Мегабитах в секунду» разделить на восемь и наоборот.

Кроме скорости передачи данных, важным измеряемым параметром является время реакции нашего компьютера, обозначаемое Ping. Другими словами, пинг – это время ответа нашего компьютера на посланный запрос. Чем меньше ping, тем меньше, например, время ожидания, необходимое для открытия интернет страницы. Понятно, что чем меньше пинг, тем лучше. При измерении пинга определяется время, затрачиваемое для прохождения пакета от сервера измеряющего онлайн сервиса к нашему компьютеру и обратно.

Определение скорости интернет соединения

Для определения скорости интернет соединения существует несколько методов. Одни более точные, другие менее точные. В нашем же случае, для практических нужд, считаю, достаточно использования некоторых наиболее распространенных и неплохо себя зарекомендовавших онлайн сервисов. Почти все они, кроме проверки скорости интернета содержат многие другие функции, среди которых наше местоположение, провайдер, время реакции нашего компьютера (пинг) и др.

При желании можно много экспериментировать, сопоставляя результаты измерений различных сервисов и выбирая понравившиеся. Меня, например, устраивают такие сервисы, как известный Яндекс интернетометр, а также еще два – SPEED . IO и SPEEDTEST . NET .

Страница измерения скорости интернетавЯндекс интернетометре открывается по адресу ipinf.ru/speedtest.php (рисунок 1). Для повышения точности измерения выбираем меткой на карте свое местоположение и нажимаем левой кнопкой мыши. Процесс измерения начинается. Результаты измеренных входящей (download ) и исходящей (upload ) скоростей отражаются во всплывающей таблице и слева в панели.

Рисунок 1. Страница измерения скорости интернета в Яндекс интернетометре

Сервисами SPEED.IO и SPEEDTEST.NET, процесс измерения в которых анимируется в панели приборов, подобной автомобильной (рисунки 2, 3), пользоваться просто приятно.

Рисунок 2. Измерение скорости интернет соединения в сервисе SPEED.IO

Рисунок 3. Измерение скорости интернет соединения в сервисе SPEEDTEST.NET

Пользование приведенными сервисами интуитивно понятно и обычно не вызывает никаких затруднений. Опять же определяются входящая (download), исходящая (upload) скорости, ping . Speed.io измеряет текущую скорость интернета до ближайшего от нас сервера компании.

Кроме того в сервисе SPEEDTEST.NET можно протестировать качество сети, сравнить свои предыдущие результаты измерений с настоящими, узнать результаты других пользователей, сравнить свои результаты с обещанной провайдером скоростью.

Наряду с указанными, широко используются сервисы: CY - PR . com , SPEED . YOIP

Скорость интернета – это объем информации, принятой и переданной компьютером за промежуток времени. Сейчас этот параметр чаще всего измеряется в Мегабитах в секунду, но это не единственная величина, также могут использоваться килобиты в секунду. Гигабиты пока еще в повседневной жизни не используются.

В то же время, размер переданных файлов измеряется обычно в байтах, но не берется в расчет время. Например: Байты, Мбайты или Гбайты.

Очень просто посчитать время, за которое получится скачать файл из сети, используя простую формулу. Известно, что наименьшее количество информации – это бит. Затем идет байт, в котором содержится 8 бит информации. Таки образом скорость в 10 Мегабит в секунду (10/8 = 1,25) позволяет передать 1,25 Мбайта в секунду. Ну а 100 Мбит/сек – 12,5 Мегабайт (100/8) соответственно.

Также можно рассчитать, за сколько загрузиться файл определенного размера из интернета. Например, фильм в 2 Гб загружаемый со скорость 100 Мегабит в секунду, можно скачать за 3 минуты. 2 Гб – это 2048 Мегабайт, которые следует поделить на 12,5. Получим 163 секунды, что равно примерно 3 минутам.
К сожалению, не все знакомы с единицами в которых принято измерять информацию, поэтому упомянем основные единицы:

1 байт – это 8 бит
1 Килобайт (Кб) соответствует 1024 байта
1 Мегабайт (Мб) будет равен 1024 Кб
1 Гигабайт (Гб) соответственно равняется 1024 Мб
1 Терабайт – 1024 Гб

Что влияет на скорость

То, с какой скоростью будет работать интернет на устройстве, зависит прежде всего:

От тарифного плана, предоставляемого провайдером
От пропускной возможности канала. Часто провайдер предоставляет общую скорость абонентам. То есть канал делится на всех, и если все пользователи активно используют сеть, то и скорость может снижаться.
От расположения и настроек сайта, к которому обращается пользователь. Некоторые ресурсы имеют ограничения и не позволяют превышать определенный порог при загрузке. Также сайт может находится на другом континенте, что также повлияет на загрузку.

На скорость передачи данных в некоторых случаях, влияют как внешние, так и внутренние факторы, среди которых:

Расположение сервера, к которому идет обращение
Настройка и ширина канал Wi-Fi роутера, если подключение происходит «по воздуху»
Приложения, запущенные на устройстве
Антивирусы и фаерволы
Настройка ОС и ПК

Мы живем в эпоху стремительно развивающихся цифровых технологий. Современную реальность уже трудно представить без персональных компьютеров, ноутбуков, планшетов, смартфонов и прочих электронных гаджетов, которые функционируют не изолированно друг от друга, а объединены в локальную сеть и подключены к глобальной сети

Важной характеристикой всех этих устройств является пропускная способность сетевого адаптера, определяющая скорость передачи данных в локальной или глобальной сети. Кроме этого, имеют значение скоростные характеристики канала передачи информации. В электронных устройствах нового поколения возможно не только чтение текстовой информации без сбоев и зависаний, но и комфортное воспроизведение мультимедийных файлов (картинки и фотографии в высоком разрешении, музыка, видео, онлайн-игры).

В чем измеряется скорость передачи данных?

Чтобы определить этот параметр, надо знать время, за которые были переданы данные, и количество переданной информации. Со временем все понятно, а что такое количество информации и как его можно измерить?

Во всех электронных устройствах, являющихся по сути компьютерами, хранимая, обрабатываемая и передаваемая информация кодируется в двоичной системе нулями (нет сигнала) и единицами (есть сигнал). Один нуль или одна единица – это один бит, 8 бит составляют один байт, 1024 байт (два в десятой степени) – один килобайт, 1024 килобайта – один мегабайт. Далее идут гигабайты, терабайты и более крупные единицы измерения. Данные единицы обычно используются для определения объема информации, хранящейся и обрабатываемой на каком-либо конкретном устройстве.

Количество же передаваемой от одного устройства к другому информации измеряют в килобитах, мегабитах, гигабитах. Один килобит – это тысяча бит (1000/8 байт), один мегабит – тысяча килобит (1000/8 мегабайт) и так далее. Скорость, с которой передаются данные, принято указывать в количестве информации, проходящей за одну секунду (число килобит в секунду, мегабит в секунду, гигабит в секунду).

Скорость передачи данных по телефонной линии

В настоящее время для подключения к глобальной сети по телефонной линии, которая изначально была единственным каналом подключения к Интернету, используется преимущественно модемная технология ADSL. Она способна превратить аналоговые телефонные линии в средства высокоскоростной передачи данных. Интернет-соединение достигает скорости 6 мегабит в секунду, а максимальная скорость передачи данных по телефонной линии по древним технологиям не превышала 30 килобит в секунду.

Скорость передачи данных в мобильных сетях

Стандарты 2g, 3g и 4g используются в мобильных сетях.

2g пришел на замену 1g в связи с необходимостью перехода аналогового сигнала на цифровой в начале 90-х годов. На мобильных телефонах, поддерживавших 2g, стало возможно пересылать графическую информацию. Максимальная скорость передачи данных 2g превысила показатель 14 килобит в секунду. В связи с появлением мобильного интернета была также создана сеть 2,5g.

В 2002 году в Японии была разработана сеть третьего поколения, но массовое производство мобильных телефонов с поддержкой 3g началось значительно позже. Максимальная скорость передачи данных по 3g выросла на порядки и достигла 2 мегабит в секунду.

Обладатели новейших смартфонов имеют возможность воспользоваться всеми преимуществами сети 4g. Ее усовершенствование продолжается до сих пор. Она позволит людям, проживающим в малых населенных пунктах, свободно получать доступ в Интернет и сделает его значительно выгоднее подключения со стационарных устройств. Максимальная скорость передачи данных 4g просто огромная – 1 гигабит в секунду.

К тому же поколению, что и 4g, принадлежат сети lte. Стандарт lte является первой, самой ранней версией 4g. Следовательно, максимальная скорость передачи данных в lte существенно ниже и составляет 150 мегабит в секунду.

Скорость передачи данных по оптоволоконному кабелю

Передача информации по оптоволоконному кабелю на сегодняшний день является самой быстрой в компьютерных сетях. В 2014 году в Дании учеными была достигнута максимальная скорость передачи данных по оптоволокну 43 терабита в секунду.

Через несколько месяцев ученые из США и Нидерландов продемонстрировали скорость 255 терабит в секунду. Величина колоссальная, но это далеко не предел. В 2020 году планируется достижение показателя 1000 терабит в секунду. Скорость передачи данных по оптоволокну практически не ограничена.

Скорость загрузки информации по Wi-Fi

Wi-Fi – торговая марка, обозначающая беспроводные компьютерные сети, объединенные стандартом IEEE 802.11, в которых информация передается по радиоканалам. Теоретически максимальная скорость передачи данных wifi составляет 300 мегабит в секунду, а в реальности у лучших моделей роутеров она не превышает 100 мегабит в секунду.

Преимуществами Wi-Fi являются возможность беспроводного подключения к Интернету с помощью одного роутера сразу нескольких устройств и низкий уровень радиоизлучения, который на порядок меньше, чем у сотовых телефонов в момент их использования.


Все виды информации кодируются в последовательности электрических импульсов: есть импульс (1), нет импульса (0), то есть в последовательности нулей и единиц. Такое кодирование информации в компьютере называется двоичным кодированием, а логические последовательности нулей и единиц – машинным языком.

Эти цифры можно рассматривать как два равновероятностных состояния (события). При записи двоичной цифры реализуется выбор одного из двух возможных состояний (одной из двух цифр) и, следовательно, она несет количество информации, равное 1 биту.

Даже сама единица измерения количества информации бит (bit) получила свое название от английского словосочетания Binary digit, то есть двоичный разряд.

Важно, что каждая цифра машинного двоичного кода несет информацию в 1 бит. Таким образом две цифры несут информацию 2 бита, три разряда – 3 бита и т.д. Количество информации в битах равно количеству цифр двоичного машинного кода.

Передача информации в информационной системе.

Система состоит из отправителя информации, линии связи и получателя информации. Сообщение для передачи его в соответствующий адрес должно быть предварительно преобразовано в сигнал. Под сигналом понимается изменяющаяся физическая величина, отображающее сообщение. Сигнал – материальный переносчик сообщения, то есть изменяющаяся физическая величина, обеспечивающая передачу информации по линии связи. Физическая среда, по которой происходит передача сигналов от передатчика к приемнику, называется линией связи.

В современной технике нашли применение электрические, электромагнитные, световые, механические, звуковые, ультразвуковые сигналы. Для передачи сообщений необходимо принять тот переносчик, который способен эффективно распределяться по используемой в системе линии связи.

Преобразование сообщений в сигналы, удобные для прохождения по линии связи, осуществляется передатчиком.

В процессе преобразования дискретных сообщений в сигнал происходит кодирование сообщения. В широком смысле кодированием называется преобразование сообщений в сигнал. В узком смысле кодирование – это отображение дискретных сообщений сигналами в виде определенных сочетаний символов. Устройство, осуществляющее кодирование называется кодером.

При передаче сигналы подвергаются воздействию помех. Под помехами подразумеваются любые мешающие внешние возмущения или воздействия (атмосферные помехи, влияние посторонних источников сигналов), а также искажения сигналов в самой аппаратуре (аппаратурные помехи), вызывающие случайное отклонение принятого сообщения (сигнала) от передаваемого.

На приемной стороне осуществляется обратная операция декодирования, т.е. восстановление по принятому сигналу переданного сообщения.

Решающее устройство, помещенное после приемника, осуществляет обработку принятого сигнала с целью наиболее полного извлечения из него информации.

Декодирующее устройство, (декодер) преобразует принятый сигнал к виду удобному для восприятия получателем.

Совокупность средств, предназначенных для передачи сигнала, называется каналом связи. Одна и та же линия связи может использоваться для передачи сигналов между многими источниками и приемниками, то есть линия связи может обслуживать несколько каналов.

При синтезе систем передачи информации приходится решать две основные проблемы, связанные с передачей сообщений:

Обеспечение помехоустойчивости передачи сообщений

Обеспечение высокой эффективности передачи сообщений

Под помехоустойчивостью понимается способность информации противостоять вредному воздействию помех. При данных условиях, т.е. при заданной помехе, помехоустойчивость определяет верность передачи информации. Под верностью понимается мера соответствия принятого сообщения (сигнала) переданному сообщению (сигналу).

Под эффективностью системы передачи информации понимается способность системы обеспечивать передачу заданного количества информации наиболее экономичным способом. Эффективность характеризует способность системы обеспечить передачу данного количества информации с наименьшими затратами мощности сигнала, времени и полосы частот.

Теория информации устанавливает критерии оценки помехоустойчивости и эффективности информационных систем, а также указывает общие пути повышения помехоустойчивости и эффективности.

Скорость передачи данных - скорость, с которой передается или принимается информация в двоичной форме. Обычно скорость передачи данных измеряется количеством бит, переданных в одну секунду.

Биты в секунду - единица скорости передачи информации, равная количеству двоичных разрядов, пропускаемых каналом связи в 1 секунду с учетом и полезной и служебной информации.

Пропускная способность канала связи - максимальная скорость передачи данных от источника к получателю.

Символы в секунду - единица измерения скорости передачи (только) полезной информации.

Переход к более крупным единицам измерения

Ограничения на максимальную мощность алфавита не существует, но есть алфавит, который можно считать достаточным (на современном этапе) для работы с информацией, как для человека, так и для технических устройств. Он включает в себя: латинский алфавит, алфавит языка страны, числа, спецсимволы - всего около 200 знаков. По приведенной выше таблице можно сделать вывод, что 7 битов информации недостаточно, требуется 8 битов, чтобы закодировать любой символ такого алфавита, 256 = 28. 8 бит образуют 1 байт. То есть для кодирования символа компьютерного алфавита используется 1 байт. Укрупнение единиц измерения информации аналогично применяемому в физике - используют приставки «кило», «мега», «гига». При этом следует помнить, что основание не 10, а 2.

1 Кб (килобайт) = 210 байт = 1024 байт,

1 Мб(мегабайт) = 210 Кб = 220 байт и т. д.

Умение оценивать количество информации в сообщении поможет определить скорость информационного потока по каналам связи. Максимальную скорость передачи информации по каналу связи называют пропускной способностью канала связи. Самым совершенным средством связи на сегодня являются оптические световоды. Информация передается в виде световых импульсов, посылаемых лазерным излучателем. У этих средств связи высокая помехоустойчивость и пропускная способность более 100Мбит/с.

Количество информации, передаваемой по каналу в единицу времени, называют скоростью передачи информации .

Скорость передачи информации по каналам связи оценивается числом бит информации, передаваемых к ее получателю в течение одной секунды (бит/ с ).

Заметим, что на первых этапах развития электросвязи каждое изменение информационного параметра несущего сигнала давало получателю один бит информации и скорость передачи оценивалась в бодах (например, она использовалась для оценки скорости передачи телеграфных данных, в которых каждый «элементарный» сигнал переносил один бит информации). Сегодня же скорость передачи оценивают в бит/сек , так как каждое изменение информационного параметра сигнала современных средств передачи данных может переносить информацию в несколько бит.

Если от источника В по каналу связи передается s символов в единицу времени, а среднее количество информации на один символ равно H(B) , то скорость передачи информации: С = s H(B).

В случае цифровых сигналов (при условии их равновероятности и независимости) максимум энтропии для источника В с числом символов алфавита m определяется формулой H(B) max = log 2 m .

Максимально возможную скорость передачи информации называют пропускнойспособностью канала связи. Она определяться величиной

G= C max = s log 2 m .

Переменные формулы пропускной способности зависят от ряда физических характеристик линии связи, мощности источника сообщений и шумов в канале связи.

Пропускная способность определяется не только физическими характеристики проводящей среды (симметричные, коаксиальные или волоконно-оптические кабели, витая пара и др.), но и спектром передаваемых сигналов. К числу наиболее важных физических характеристик линий связи относят затухание и полосу пропускания .

Параметры линий связи обычно оценивают применительно к сигналам синусоидальной формы. Если подать на один конец линии связи (не имеющей усилителей) синусоидальный сигнал фиксированной частоты и амплитуды, то на другом конце мы получим ослабленный сигнал, т.е. имеющий меньшую амплитуду.

Затухание характеризует уменьшение амплитуды или мощности сигнала при прохождении по линии связи сигнала определенной частоты или диапазона частот. Для проводных кабелей измеряется в децибелах на метр и вычисляется по формуле:

А=10 lg 10 P вых /Р вх,

где P вых и Р вх - соответственно мощность сигнала на входе и выходе линии в 1 м.

Затухание зависит от частоты сигнала. На рис. 1.13 показана типичная форма амплитудно-частотной характеристики, характеризующей затухание сигналов разной частоты. Чем ниже модуль затухания, тем более качественная линия связи (логарифм числа меньше 1 всегда отрицательное число).

Затухание -важнейший параметр для линий связи в вычислительных сетях, причем стандарты устанавливают стандартные значения величины затухания для различных типов кабелей, применяемых при прокладке вычислительных сетей. Так, кабель в виде витой пары 5 категории для внутренней проводки должен иметь затухание не ниже -23,6 дБ, а 6 категории – не ниже 20,6 на частоте 100 мГц при длине линии 100 м. Типичные значения величины затухания кабелей на основе оптоволокна: от 0,15 до 3 дБ на 1000 м.

Полоса пропускания – непрерывный диапазон частот, для каждой из которых отношение амплитуды выходного сигнала к амплитуде входного не меньше некоторой величины. Часто это отношение берут равным 0,5 (см. рис. 1.13). Измеряется в герцах (Гц). Разность значений крайних частот диапазона называют шириной полосы пропускания .

Фактически, полоса пропускания – это интервал частот, используемый данным каналом связи для передачи сигналов. Для различных расчетов важно знать максимальное значение частоты из данной полосы (n m), поскольку именно ей определяется возможная скорость передачи информации по каналу.

Передатчики сигналов, посылающие сигналы в линию связи (например, адаптер или модем) характеризуются мощностью . Уровень мощности сигнала определяется в децибелах на 1 мВт по формуле (такую единицу мощности обозначают- дБм):

p=10 lgP (дБм), где Р- мощность в мВт.

Важной характеристикой проводных линий связи (например, для коаксиального кабеля) является волновое сопротивление . Это полное (комплексное) сопротивление, которое встречает распространяющаяся по кабелю электромагнитная волна определенной частоты. Измеряется в омах. Для снижения затухания надо чтобы выходное волновое сопротивление передатчика было примерно равно волновому сопротивлению линии связи.


Рис.1.13. Амплитудно- частотная характеристика канала связи

Известно, что сигнал любой формы можно получить, просуммировав несколько сигналов синусоидальной формы с разной частотой и амплитудой. Набор частот, которые надо просуммировать, чтобы получить данный сигнал, называют спектром сигнала. Если какие-то частоты из спектра сильно затухают, то это отражается на форме сигнала. Очевидно, качество передачи сигналов существенно зависит от полосы пропускания. Так, согласно стандартам для качественной передачи телефонных разговоров линия связи должна иметь полосу пропускания не менее 3400 Гц.

Существует связь между полосой пропускания и максимальной пропускной способностью, которую установил К. Шеннон:

G =F log 2 (1 + P c /P ш) бит/сек, где

G – максимальная пропускная способность, F – ширина полосы пропускания в Гц, P с – мощность сигнала, Р ш – мощность шума.

Определение мощности сигнала и шума достаточно сложная задача. Однако существует другая формула, полученная Найквистом для случая дискретных сигналов, которую можно применить, когда известно число состояний информационного параметра:

G =2 F log 2 М (бит/сек),

где F – ширина полосы пропускания в Гц, М – число возможных состояний информационного параметра. Из этой формулы следует, что при М=2 (т.е. когда каждое изменение параметра сигнала несет один бит информации) пропускная способность равна удвоенному значению полосы пропускания.

При влиянии помех (шумов) на передаваемые символы некоторые из них могут искажаться. Тогда, с учетом ранее приведенных формул для энтропии, количество получаемой информации и, соответственно, пропускная способность канала связи уменьшатся.

Для случая передачи равновероятных цифровых символов и одинаковых вероятностях замены при передаче значений 1(0) на ложные 0(1) максимальная пропускная способность C макс = s×=s×, где P ош –вероятность ошибки.

График, иллюстрирующий форму зависимости отношения C макс /s (т.е. количества передаваемой информации на символ) от Р ош, представлен на рис.1.14.


Рис.1.14. Зависимость пропускной способности от ошибок в канале связи



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows