Запоминающие устройства на магнитных дисках. Носители на магнитных дисках

Запоминающие устройства на магнитных дисках. Носители на магнитных дисках

30.04.2021

Используют два основных метода записи: метод частотной модуляции (ЧМ) и метод модифицированной ЧМ. В контроллере (адаптере) НГМД данные обрабатываются в двоичном коде и передаются в НГМД в последовательном коде.

Способ частотной модуляции является двухчастотным. При записи в начале тактового интервала производится переключение тока в МГ и направление намагниченности поверхности изменяется. Переключение тока записи отмечает начало тактов записи и используется при считывании для формирования сигналов синхронизации.

Способ обладает свойством самосинхонизации . При записи "1" в середине тактового интервала производится инвертирование тока, а при записи "0" - нет. При считывании в моменты середины тактового интервала определяют наличие сигнала произвольной полярности.

Наличие сигнала в этот момент соответствует "1", а отсутствие - "0".

Формат записи информации на гибком магнитном диске

Каждая дорожка на дискете разделена на секторы. Размер сектора является основной характеристикой формата и определяет наименьший объем данных, который может быть записан одной операцией ввода-вывода. Применяемые в НГМД форматы различаются числом секторов на дорожке и объемом одного сектора. Максимальное количество секторов на дорожке определяется операционной системой. Секторы отделяются друг от друга интервалами, в которых информация не записывается. Произведение числа дорожек на количество секторов и количество сторон дискеты определяет ее информационную емкость.

Каждый сектор включает поле служебной информации и поле данных. Адресный маркер - это специальный код, отличающийся от данных и указывающий на начало сектора или поля данных. Номер головки указывает одну из двух МГ, расположенных на соответствующих сторонах дискеты. Номер сектора - это логический код сектора, который может не совпасть с его физическим номером. Длина сектора указывает размер поля данных. Контрольные байты предназначены

Среднее время доступа к диску в миллисекундах оценивается по следующему выражению: где - число дорожек на рабочей поверхности ГМД; - время перемещения МГ с дорожки на дорожку; - время успокоения системы позиционирования.

Конструкция дискет

Накопитель на жестких магнитных дисках (НЖМД)


Жесткий магнитный диск -это круглая металлическая пластина толщиной 1,5..2мм, покрытая ферромагнитным слоем и специальным защитным слоем. Для записи и чтения используется обе поверхности диска.

Принцип работы

В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с поверхности вращающихся магнитных дисков, разбитых на дорожки и секторы (512 байт каждый).

В большинстве накопителей есть два или три диска (что позволяет выполнять запись на четырех или шести сторонах), но существуют также устройства, содержащие до 11 и более дисков. Однотипные (одинаково расположенные) дорожки на всех сторонах дисков объединяются в цилиндр. Для каждой стороны диска предусмотрена своя дорожка чтения/записи, но при этом все головки смонтированы на общем стержне, или стойке. Поэтому головки не могут перемещаться независимо друг от друга и двигаются только синхронно.


Частота вращения НЖМД в первых моделей составляла 3 600 об/мин (т.е. в 10раз больше, чем в накопителе на гибких дисках), в настоящее время частота вращения жестких дисков возросла до 5 400, 5 600, 6 400, 7 200, 10 000 и даже 15 000 об/мин.

При нормальной работе жесткого диска головки чтения/записи не касаются (и не должны касаться!) дисков. Но при выключении питания и остановке дисков они опускаются на поверхность. Во время работы устройства между головкой и поверхностью вращающегося диска образуется очень малый воздушный зазор (воздушная подушка). Если в этот зазор попадет пылинка или произойдет сотрясение, головка "столкнется" с диском. Последствия этого могут быть разными - от потери нескольких байтов данных до выхода из строя всего накопителя. Поэтому в большинстве накопителей поверхности магнитных дисков легируют и покрывают специальными смазками, что позволяет устройствам выдерживать ежедневные "взлеты" и "приземления" головок, а также более серьезные потрясения.

В некоторых наиболее современных накопителях вместо конструкции CSS (Contact Start Stop) используется механизм загрузки/разгрузки, который не позволяет головкам входить в контакт с жесткими дисками даже при отключении питания накопителя. В механизме загрузки/разгрузки используется наклонная панель, расположенная прямо над внешней поверхностью жесткого диска. Когда накопитель выключен или находится в режиме экономии потребляемой мощности, головки съезжают на эту панель. При подаче электроэнергии разблокировка головок происходит только тогда, когда скорость вращения жестких дисков достигнет нужной величины. Поток воздуха, создаваемый при вращении дисков (аэростатический подшипник), позволяет избежать возможного контакта между головкой и поверхностью жесткого диска.

Поскольку пакеты магнитных дисков содержатся в плотно закрытых корпусах и их ремонт не предусмотрен, плотность дорожек на них очень высока - до 96 000 и более на дюйм (Hitachi Travelstar 80GH). Блоки HDA (Head Disk Assembly - блок головок и дисков) собирают в специальных цехах, в условиях практически полной стерильности. Обслуживанием HDA занимаются считанные фирмы, поэтому ремонт или замена каких-либо деталей внутри герметичного блока HDA обходится очень дорого.

Метод записи данных на жесткий магнитный диск

Для записи на ЖМД используются методы ЧМ, модифицированной частотной модуляции (МЧМ) и RLL -метод, при котором каждый байт данных преобразуется в 16-битовый код.

При методе МЧМ плотность записи данных возрастает вдвое по сравнению с методом ЧМ. Если записываемый бит данных является единицей, то стоящий перед ним бит тактового импульса не записывается. Если записывается "0", а предыдущий бит был "1", то синхросигнал также не записывается, как и бит данных. Если перед "0" стоит бит "0", то синхросигнал записывается.

Дорожки и секторы

Дорожка - это одно "кольцо" данных на одной стороне диска. Дорожки на диске разбивают на нумерованные отрезки, называемые секторами.

Количество секторов может быть разным в зависимости от плотности дорожек и типа накопителя. Например, дорожка гибких дисков может содержать от 8 до 36 секторов, а дорожка жесткого диска - от 380 до 700. Секторы, создаваемые с помощью стандартных программ форматирования, имеют емкость 512 байт.

Нумерация секторов на дорожке начинается с единицы, в отличие от головок и цилиндров, отсчет которых ведется с нуля.

При форматировании диска в начале и конце каждого сектора создаются дополнительные области для записи их номеров, а также прочая служебная информация, благодаря которой контроллер идентифицирует начало и конец сектора. Это позволяет отличать неформатированную и форматированную емкости диска. После форматирования емкость диска уменьшается.

В начале каждого сектора записывается его заголовок (или префикс - prefix portion ), по которому определяется начало и номер сектора, а в конце - заключение (или суффикс - suffix portion ), в котором находится контрольная сумма ( checksum ), необходимая для проверки целостности данных.

Форматирование низкого уровня современных жестких дисков выполняется на заводе, изготовитель указывает только форматную емкость диска. В каждом секторе можно записать 512 байт данных, но область данных - это только часть сектора. Каждый сектор на диске обычно занимает 571 байт, из которых под данные отводится только 512 байт.

Чтобы очистить секторы, в них зачастую записываются специальные последовательности байтов. Префиксы, суффиксы и промежутки - пространство, которое представляет собой разницу между неформатированной и форматированной емкостями диска и "теряется" после его форматирования.

Процесс форматирования низкого уровня приводит к смещению нумерации секторов, в результате чего секторы на соседних дорожках, имеющие одинаковые номера, смещаются друг относительно друга. Например, сектор 9 одной дорожки находится рядом с сектором 8 следующей дорожки, который, в свою очередь, располагается бок о бок с сектором 7 следующей дорожки и т.д. Оптимальная величина смещения определяется соотношением частоты вращения диска и радиальной скорости головки.

Идентификатор (ID) сектора состоит из полей записи номеров цилиндра, головки и сектора, а также контрольного поля CRC для проверки точности считывания информации ID. В большинстве контроллеров седьмой бит поля номера головки используется для маркировки дефектных секторов в процессе форматирования низкого уровня или анализа поверхности.

Интервал включения записи следует сразу за байтами CRC ; он гарантирует, что информация в следующей области данных будет записана правильно. Кроме того, он служит для завершения анализа CRC (контрольной суммы) идентификатора сектора.

В поле данных можно записать 512 байт информации. За ним располагается еще одно поле CRC для проверки правильности записи данных. В большинстве накопителей размер этого поля составляет два байта, но некоторые контроллеры могут работать и с более длинными полями кодов коррекции ошибок ( Error Correction Code - ЕСС ). Записанные в этом поле байты кодов коррекции ошибок позволяют при считывании обнаруживать и исправлять некоторые ошибки. Эффективность этой операции зависит от выбранного метода коррекции и особенностей контроллера. Наличие интервала отключения записи позволяет полностью завершить анализ байтов ECC (CRC) .

Интервал между записями необходим для того, чтобы застраховать данные из следующего сектора от случайного стирания при записи в предыдущий сектор. Это может произойти, если при форматировании диск вращался с частотой, несколько меньшей, чем при последующих операциях записи.

Формат записи информации на жестком магнитном диске

В НЖМД обычно используются форматы данных с фиксированным числом секторов на дорожке (17, 34 или 52) и с объемом данных в одном секторе 512 или 1024 байта. Секторы маркируются магнитным маркером.

Начало каждого сектора обозначается адресным маркером. В начале идентификатора и поля данных записываются байты синхронизации, служащие для синхронизации схемы выделения данных адаптера НЖМД. Идентификатор сектора содержит адрес диска в пакете, представленный кодами номеров цилиндра, головки и сектора. В идентификатор дополнительно вводят байты сравнения и флага. Байт сравнения представляет одинаковое для каждого сектора число (осуществляется правильность считывания идентификатора). Байт флага содержит флаг - указатель состояния дорожки.

Контрольные байты записываются в поле идентификатора один раз при записи идентификатора сектора, а в поле данных - каждый раз при каждой новой записи данных. Контрольные байты предназначены для определения и коррекции ошибок считывания. Наиболее часто используются полиномные корректирующие коды (зависит от схемной реализации адаптера).

Среднее время доступа к информации на НЖМД составляет

где tn - среднее время позиционирования;

F - скорость вращения диска;

tобм - время обмена.

Время обмена зависит от технических средств контроллера и типа его интерфейса, наличия встроенное буферной кэш-памяти, алгоритма кодирования дисковых данных и коэффициента чередования.

Форматирование дисков

Различают два вида форматирования диска :

  • физическое, или форматирование низкого уровня;
  • логическое, или форматирование высокого уровня.

При форматировании гибких дисков с помощью программы Проводник (Windows Explorer ) или команды DOS FORMAT выполняются обе операции.

Однако для жестких дисков эти операции следует выполнять отдельно. Более того, для жесткого диска существует и третий этап, выполняемый между двумя указанными операциями форматирования, - разбивка диска на разделы. Создание разделов абсолютно необходимо в том случае, если вы предполагаете использовать на одном компьютере несколько операционных систем. Физическое форматирование всегда выполняется одинаково, независимо от свойств операционной системы и параметров форматирования высокого уровня Тому, или логическому диску, система присваивает буквенное обозначение.

Таким образом, форматирование жесткого диска выполняется в три этапа .

  • Форматирование низкого уровня.
  • Организация разделов на диске.
  • Форматирование высокого уровня.
Форматирование низкого уровня

В процессе форматирования низкого уровня дорожки диска разбиваются на секторы. При этом записываются заголовки и заключения секторов (префиксы и суффиксы), а также формируются интервалы между секторами и дорожками. Область данных каждого сектора заполняется фиктивными значениями или специальными тестовыми наборами данных.

В первых контроллерах ST-506 /412 при записи по методу MFM дорожки разбивались на 17 секторов, а в контроллерах этого же типа, но с RLL -кодированием количество секторов увеличилось до 26. В накопителях ESDI на дорожке содержится 32 и более секторов. В накопителях IDE контроллеры встроенные, и, в зависимости от их типа, количество секторов колеблется в пределах 17-700 и более. Накопители SCSI - это накопители IDE со встроенным адаптером шины SCSI (контроллер тоже встроенный), поэтому количество секторов на дорожке может быть совершенно произвольным и зависит только от типа установленного контроллера.

Практически во всех накопителях IDE и SCSI используется так называемая зонная запись с переменным количеством секторов на дорожке. Дорожки, более удаленные от центра, а значит, и более длинные содержат большее число секторов, чем близкие к центру. Один из способов повышения емкости жесткого диска - разделение внешних цилиндров на большее количество секторов по сравнению с внутренними цилиндрами. Теоретически внешние цилиндры могут содержать больше данных, так как имеют большую длину окружности.


В накопителях, не использующих метод зонной записи, в каждом цилиндре содержится одинаковое количество данных, несмотря на то что длина дорожки внешних цилиндров может быть вдвое больше, чем внутренних. Это приводит к нерациональному использованию емкости запоминающего устройства, так как носитель должен обеспечивать надежное хранение данных, записанных с той же плотностью, что и во внутренних цилиндрах. В том случае, если количество секторов, приходящихся на каждую дорожку, фиксировано, как это бывает при использовании контроллеров ранних версий, емкость накопителя определяется плотностью записи внутренней (наиболее короткой) дорожки.

При зонной записи цилиндры разбиваются на группы, которые называются зонами, причем по мере продвижения к внешнему краю диска дорожки разбиваются на все большее число секторов. Во всех цилиндрах, относящихся к одной зоне, количество секторов на дорожках одинаковое. Возможное количество зон зависит от типа накопителя; в большинстве устройств их бывает 10 и более. Скорость обмена данными с накопителем может изменяться и зависит от зоны, в которой в конкретный момент располагаются головки. Происходит это потому, что секторов во внешних зонах больше, а угловая скорость вращения диска постоянна (т.е. линейная скорость перемещения секторов относительно головки при считывании и записи данных на внешних дорожках оказывается выше, чем на внутренних).

При использовании метода зонной записи каждая поверхность диска уже содержит 545,63 сектора на дорожку. Если не использовать метод зонной записи, то каждая дорожка будет ограничена 360 секторами. Выигрыш при использовании метода зонной записи составляет около 52%.

Обратите внимание на различия в скорости передачи данных для каждой зоны. Поскольку частота вращения шпинделя 7 200 об/мин, один оборот совершается за 1/120 секунды или же 8,33 миллисекунды. Дорожки во внешней зоне (нулевой) имеют скорость передачи данных 44,24 Мбайт/с, а во внутренней зоне (15) - всего 22,12 Мбайт/с. Средняя скорость передачи данных составляет 33,52 Мбайт/с.

Организация разделов на диске

Разделы, создаваемые на жестком диске, обеспечивают поддержку различных файловых систем, каждая из которых располагается на определенном разделе диска.

В каждой файловой системе используется определенный метод, позволяющий распределить пространство, занимаемое файлом, по логическим элементам, которые называются кластерами или единичными блоками памяти. На жестком диске может быть от одного до четырех разделов, каждый из которых поддерживает файловую систему какого-нибудь одного или нескольких типов. В настоящее время PC-совместимые операционные системы используют файловые системы трех типов.

FAT (File Allocation Table - таблица размещения файлов). Это стандартная файловая система для DOS, Windows 9х и Windows NT. В разделах FAT под DOS допустимая длина имен файлов - 11 символов (8 символов собственно имени и 3 символа расширения), а объем тома (логического диска) - до 2 Гбайт. Под Windows 9х/Windows NT 4.0 и выше допустимая длина имен файлов - 255 символов.

С помощью программы FDISK можно создать только два физических раздела FAT на жестком диске - основной и дополнительный, а в дополнительном разделе можно создать до 25 логических томов. Программа Partition Magic может создавать четыре основных раздела или три основных и один дополнительный.

FAT32 (File Allocation Table, 32-bit - 32-разрядная таблица размещения файлов) . Используется с Windows 95 OSR2 (OEM Service Release 2), Windows 98 и Windows 2000. В таблицах FAT 32 ячейкам размещения соответствуют 32-разрядные числа. При такой файловой структуре объем тома (логического диска) может достигать 2 Тбайт (2 048 Гбайт).

NTFS (Windows NT File System - файловая система Windows NT) . Доступна тольков Windows NT/2000/XP/2003. Длина имен файлов может достигать 256 символов, размер раздела (теоретически) - 16 Эбайт (16^1018 байт). NTFS обеспечивает дополнительные возможности, не предоставляемые другими файловыми системами, например средства безопасности.

После создания разделов необходимо выполнить форматирование высокого уровня с помощью средств операционной системы.

Форматирование высокого уровня

При форматировании высокого уровня операционная система создает структуры для работы с файлами и данными. В каждый раздел (логический диск) заносится загрузочный сектор тома (Volume Boot Sector - VBS ), две копии таблицы размещения файлов (FAT ) и корневой каталог ( Root Directory ). С помощью этих структур данных операционная система распределяет дисковое пространство, отслеживает расположение файлов и даже "обходит", во избежание проблем, дефектные участки на диске. В сущности, форматирование высокого уровня - это не столько форматирование, сколько создание оглавления диска и таблицы размещения файлов.

Накопитель на жестком магнитном диске (НЖМД) \ HDD (Hard Disk Drive) \ винчестер (носитель) – материальный объект, способный хранить информацию.

Накопители информации могут быть классифицированы по следующим признакам:

  • способу хранения информации: магнитоэлектрические, оптические, магнитооптические;
  • виду носителя информации: накопители на гибких и жестких магнитных дисках, оптических и магнитооптических дисках, магнитной ленте, твердотельные элементы памяти;
  • способу организации доступа к информации - накопители прямого, последовательного и блочного доступа;
  • типу устройства хранения информации - встраиваемые (внутренние), внешние, автономные, мобильные (носимые) и др.


Значительная часть накопителей информации, используемых в настоящее время, создана на базе магнитных носителей.

Устройство жесткого диска

Винчестер содержит набор пластин, представляющих чаще всего металлические диски, покрытые магнитным материалом – платтером (гамма-феррит-оксид, феррит бария, окись хрома…) и соединенные между собой при помощи шпинделя (вала, оси).
Сами диски (толщина примерно 2мм.) изготавливаются из алюминия, латуни, керамики или стекла. (см. Рис)

Для записи используются обе поверхности дисков. Используется 4-9 пластин . Вал вращается с высокой постоянной скоростью (3600-7200 оборотов/мин.)
Вращение дисков и радикальное перемещение головок осуществляется с помощью 2-х электродвигателей .
Данные записываются или считываются с помощью головок записи/чтения по одной на каждую поверхность диска. Количество головок равно количеству рабочих поверхностей всех дисков.

Запись информации на диск ведется по строго определенным местам — концентрическим дорожкам (трекам) . Дорожки делятся на сектора . В одном секторе 512 байт информации.

Обмен данными между ОЗУ и НМД осуществляется последовательно целым числом (кластером). Кластер — цепочки последовательных секторов (1,2,3,4,…)

Специальный двигатель с помощью кронштейна позиционирует головку чтения/записи над заданной дорожкой (перемещает ее в радиальном направлении).
При повороте диска головка располагается над нужным сектором. Очевидно, что все головки перемещаются одновременно и считывают инфоголовки перемещаются одновременно и считывают информацию с одинаковых дорожек разныхрмацию с одинаковых дорожек разных дисков.

Дорожки винчестера с одинаковым порядковым номером на разных дисках винчестера называется цилиндром .
Головки чтения записи перемещаются в вдоль поверхности платтера. Чем ближе к поверхности диска находится головка при этом не касаясь ее, тем выше допустимая плотность записи.

Устройство винчестера


Магнитный принцип чтения и записи информации

магнитный принцап записи информации

Физические основы процессов записи и воспроизведения информации на магнитных носителях заложены в работах физиков М.Фарадея (1791 - 1867) и Д. К. Максвелла (1831 - 1879).

В магнитных носителях информации цифровая запись производится на магнито чувствительный материал. К таким материалам относятся некоторые разновидности оксидов железа, никель, кобальт и его соединения, сплавы, а также магнитопласты и магнитоэласты со вязкой из пластмасс и резины, микропорошковые магнитные материалы.

Магнитное покрытие имеет толщину в несколько микрометров. Покрытие наносится на немагнитную основу, в качестве которой для магнитных лент и гибких дисков используются различие пластмассы, а для жестких дисков - алюминиевые сплавы и композиционные материалы подложки. Магнитное покрытие диска имеет доменную структуру, т.е. состоит из множества намагниченных мельчайших частиц.

Магнитный домен (от лат. dominium - владение) - это микроскопическая, однородно намагниченная область в ферромагнитных образцах, отделенная от соседних областей тонкими переходными слоями (доменными границами).

Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с направлением магнитных силовых линий. После прекращения воздействия внешнего поля на поверхности домена образуются зоны остаточной намагниченности. Благодаря этому свойству на магнитном носителе сохраняется информация, действовавшем магнитном поле.

При записи информации внешнее магнитное поле создается с помощью магнитной головки. В процессе считывания информации зоны остаточной намагниченности, оказавшись напротив магнитной головки, наводят в ней при считывании электродвижущую силу (ЭДС).

Схема записи и чтения с магнитного диска дана на рис.3.1 Изменение направления ЭДС в течение некоторого промежутка времени отождествляется с двоичной единицей, а отсутствие этого изменения - с нулем. Указанный промежуток времени называется битовым элементом .

Поверхность магнитного носителя рассматривается как последовательность точечных позиций, каждая из которых ассоциируется с битом информации. Поскольку расположение этих позиций определяется неточно, для записи требуются заранее нанесенные метки, которые помогают находить необходимые позиции записи. Для нанесения таких синхронизирующих меток должно быть произведено разбиение диска на дорожки
и секторы - форматирование .

Организация быстрого доступа к информации на диске является важным этапом хранения данных. Оперативный доступ к любой части поверхности диска обеспечивается, во-первых, за счет придания ему быстрого вращения и, во-вторых, путем перемещения магнитной головки чтения/записи по радиусу диска.
Гибкий диск вращается со скоростью 300-360 об/мин, а жесткий диск - 3600- 7200 об/мин.


Логическое устройство винчестера

Магнитный диск первоначально к работе не готов. Для приведения его в рабочее состояние он должен быть отформатирован , т.е. должна быть создана структура диска.

Структура (разметка) диска создается в процессе форматирования.

Форматирование магнитных дисков включает 2 этапа:

  1. физическое форматирование (низкого уровня)
  2. логическое (высокого уровня).

При физическом форматировании рабочая поверхность диска разбивается на отдельные области, называемые секторами , которые расположены вдоль концентрических окружностей – дорожек.

Кроме того, определяются сектора, непригодные для записи данных, они помечаются как плохие для того, чтобы избежать их использования. Каждый сектор является минимальной единицей данных на диске, имеет собственный адрес для обеспечения прямого доступа к нему. Адрес сектора включает номер стороны диска, номер дорожки и номер сектора на дорожке. Задаются физические параметры диска.

Как правило, пользователю не нужно заниматься физическим форматированием, так как в большинстве случаев жесткие диски поступают в отформатированном виде. Вообще говоря, этим должен заниматься специализированный сервисный центр.

Форматирование низкого уровня нужно производить в следующих случаях:

  • если появился сбой в нулевой дорожке, вызывающий проблемы при загрузке с жесткого диска, но сам диск при загрузке с дискеты доступен;
  • если вы возвращаете в рабочее состояние старый диск, например, пе¬реставленный со сломавшегося компьютера.
  • если диск оказался отформатированным для работы с другой операционной системой;
  • если диск перестал нормально работать и все методы восстановления не дали положительных результатов.

Нужно иметь в виду, что физическое форматирование является очень сильнодействующей операцией — при его выполнении данные, хранившиеся на диске будут полностью стерты и восстановить их будет совершенно невозможно! Поэтому не приступайте к форматированию низкого уровня, если вы не уверены в том, что сохранили все важные данные вне жесткого диска!

После того, как вы выполните форматирование низкого уровня, следует очередной этап — создание разбивки жесткого диска на один или несколько логических дисков — наилучший способ справиться с путаницей каталогов и файлов, разбросанных по диску.

Не добавляя никаких аппаратных элементов в вашу систему, Вы получаете возможность работать с несколькими частями одного жесткого диска, как с несколькими накопителями.
При этом емкость диска не увеличивается, однако можно значительно улучшить его организацию. Кроме того, различные логические диски можно использовать для различных операционных систем.

При логическом форматировании происходит окончательная подготовка носителя к хранению данных путем логической организации дискового пространства.
Диск подготавливается для записи файлов в сектора, созданные при низкоуровневом форматировании.
После создания таблицы разбивки диска следует очередной этап — логическое форматирование отдельных частей разбивки, именуемых в дальнейшем логическими дисками.

Логический диск — это некоторая область жесткого диска, работающая так же, как отдельный накопитель.

Логическое форматирование представляет собой значительно более простой процесс, чем форматирование низкого уровня.
Для того, чтобы выполнить его, загрузитесь с дискеты, содержащей утилиту FORMAT.
Если у вас несколько логических дисков, последовательно отформатируйте все.

В процессе логического форматирования на диске выделяется системная область , которая состоит из 3-х частей:

  • загрузочного сектора и таблица разделов (Boot reсord)
  • таблицы размещения файлов (FAT) , в которых записываются номера дорожек и секторов, хранящих файлы
  • корневой каталог (Root Direсtory).

Запись информации осуществляется частями через кластер. В одном и том же кластере не может быть 2-х разных файлов.
Кроме того, на данном этапе диску может быть присвоено имя.

Жесткий диск может быть разбит на несколько логических дисков и наоборот 2 жестких диска может быть объединены в один логический.

Рекомендуется на жеском диске создавать как минимум два раздела(два логических диска): один из них отводится под операционную систему и программное обеспечение, второй диск исключительно выделяется под данные пользователя. Таким образом данные и системные файлы хранятся отдельно друг от друга и в случае сбоя операционной системы гораздо больше вереятность сохранения данных пользователя.


Характеристики винчестеров

Жесткие диски (винчестеры) отличаются между собой следующими характеристиками:

  1. емкостью
  2. быстродействием – временем доступа к данным, скоростью чтения и записи информации.
  3. интерфейсом (способ подключения) — типом контролера, к которому должен присоединяться винчестер (чаще всего IDE/EIDE и различные варианты SСSI).
  4. другие особенности

1. Емкость — количество информации, помещающееся на диске (определяется уровнем технологии изготовления).
На сегодня емкость составляет 500 -2000 и более Гб. Места на жестком диске никогда не бывает много.


2. Скорость работы (быстродействие)
диска характеризуется двумя показателями: временем доступа к данным на диске и скоростью чтения/записи на диске .

Время доступа – время необходимое для перемещения (позиционирования) головок чтения/записи на нужную дорожку и нужный сектор.
Среднее характерное время доступа между двумя случайно выбранными дорожками примерно 8-12мс(миллисекунд), более быстрые диски имеют время 5-7мс.
Время перехода на соседнюю дорожку (соседний цилиндр) меньше 0.5 — 1.5мс. Для поворота в нужный сектор тоже нужно время.
Полное время оборота диска для сегодняшних винчестеров 8 – 16мс, среднее время ожидания сектора составляет 3-8мс.
Чем меньше время доступа, тем быстрее будет работать диск.

Скорость чтения/записи (пропускная способность ввода/вывода) или cкорость передачи данных (трансферт) – время передачи последовательно расположенных данных, зависит не только от диска, но и от его контроллера, типы шины, быстродействие процессора. Скорость медленных дисков 1.5-3 Мб/с, у быстрых 4-5Мб/с, у самых последних 20Мб/с.
Винчестеры со SСSI–интерфейсом поддерживают частоту вращение 10000 об./мин. и среднее время поиска 5мс, скорость передачи данных 40-80 Мб/с.


3. Стандарт интерфейса подключения винчестера
— т.е. тип контроллера, к которому должен подключаться жесткий диск. Он находится на материнской плате.
Различают три основных интерфейса подключения

  1. IDE и его различные варианты


IDE(Integrated Disk Eleсtroniс) или (ATA) Advanсed Teсhnology Attaсhment

Достоинства — простота и невысокая стоимость

Скорость передачи:8.3, 16.7, 33.3, 66.6, 100 Мб/с. По мере развития данных интерфейс поддерживает расширение списка устройств: жесткий диск, супер-флоппи, магнитооптика,
НМЛ, СD-ROM, СD-R, DVD-ROM, LS-120, ZIP.

Вводятся некоторые элементы распараллеливания (gneuing и disсonneсt/reсonneсt), контроля за целостностью данных при передаче. Главный недостаток IDE — небольшое количество подключаемых устройств (не больше 4), что для ПК высокого класса явно мало.
Сегодня IDE-интерфейсы перешли на новые протоколы обмена Ultra ATA. Значительно увеличив свою пропускную способность
Mode 4 и DMA (Direсt Memory Aссess) Mode 2 позволяет передавать данные со скоростью 16,6Мб/с, однако реальная скорость передачи данных была бы намного меньше.
Стандарты Ultra DMA/33 и Ultra DMA/66, разработанные в феврале 98г. компанией Quantum имеют 3 режима работы 0,1,2 и 4,соответствено во втором режиме носитель поддерживает
скорость передачи 33Мб/с. (Ultra DMA/33 Mode 2) Для обеспечения такой высокой скорости можно достичь только при обмене с буфером накопителя. Для того, чтобы воспользоваться
стандартами Ultra DMA необходимо выполнить 2 условия:

1. аппаратная поддержка на материнской плате (чипсета) и со стороны самого накопителя.

2. для поддержания режима Ultra DMA, как и другой DMA (direсt memory Aссess-прямой доступ к памяти).

Требуется специальный драйвер для разных наборов микросхем различных. Как правило, они входят в комплект системной платы, в случаи необходимости ее можно «скачать»
из Internet со страницы фирмы-изготовителя материнской платы.

Стандарт Ultra DMA обладает обратной совместимостью с предыдущими контроллерами, работающих в более медленном варианте.
Сегодняшний вариант: Ultra DMA/100 (конец 2000г.) и Ultra DMA/133 (2001г.).

SATA
Замена IDE (ATA) не другую высокоскоростную последовательную шину Fireware (IEEE-1394). Применение новой технологии позволит довести скорость передачи равной 100Мб/с,
повышается надежность системы, это позволит устанавливать устройства не включая ПК, что категорически нельзя в ATA-интерфейсе.


SСSI (Small Сomputer System Interfaсe)
— устройства дороже обычных в 2 раза, требуют специального контроллера на материнской плате.
Используются для серверов, издательских системах, САПР. Обеспечивают более высокое быстродействие (скорость до 160Мб/с), широкий диапазон подключаемых устройств хранения данных.
SСSI- контроллер необходимо покупать вместе с соответствующим диском.

SСSI преимущество перед IDE- гибкость и производительность.
Гибкость заключается большим количеством подключаемых устройств (7-15), а у IDE (4 максимально), большей длиной кабеля.
Производительность — высокая скорость передачи и возможность одновременной обработки нескольких транзакций.

1. Ultra Sсsi 2/3(Fast-20) до 40Мб/с 16-разрядный вариант Ultra2- стандарт SСSI до 80Мб/с

2. Другая технология SСSI-интерфейса названа Fibre Сhannel Arbitrated Loop (FС-AL) позволяет подключать до 100Мбс, длина кабеля при этом до 30 метров. Технология FС-AL позволяет выполнить «горячие» подключение, т.е. на «ходу», имеет дополнительные линии для контроля и коррекции ошибок (технология дороже обычного SСSI).

4. Другие особенности современных винчестеров

Огромное разнообразие моделей винчестера затрудняет выбор подходящего.
Кроме нужной емкости, очень важно и производительность, которая определяется в основном его физическими характеристиками.
Такими характеристиками и является среднее время поиска, скорость вращения, внутренняя и внешняя скорость передачи, объем Кэш-памяти.

4.1 Среднее время поиска.

Жесткий диск затрачивает какое-то время для того, чтобы переместить магнитную головку текущего положения в новое, требуемое для считывания очередной порции информации.
В каждой конкретной ситуации это время разное, в зависимости от расстояния, на которое должна переместиться головка. Обычно в спецификациях приводится только усредненные значения, причем применяемые разными фирмами алгоритмы усреднения, в общем случае различаются, так что прямое сравнение затруднено.

Так, фирмы Fujitsu, Western Digital проводят по всем возможным парам дорожек, фирмы Maxtor и Quantum применяют метод случайного доступа. Получаемый результат может дополнительно корректироваться.

Значение времени поиска для записи часто несколько выше, чем для чтения. Некоторые производители в своих спецификациях приводят только меньшее значение (для чтения). В любом случае кроме средних значений полезно учитывать и максимальное (через весь диск),
и минимальное (то есть с дорожки на дорожку) время поиска.

4.2 Скорость вращения

С точки зрения быстроты доступа к нужному фрагменту записи скорость вращения оказывает влияние на величину так называемого скрытого времени, которого для того, чтобы диск повернулся к магнитной головке нужным сектором.

Среднее значение этого времени соответствует половине оборота диска и составляет 8.33 мс при 3600 об/мин, 6.67 мс при 4500 об/мин, 5,56 мс при 5400 об/мин, 4,17 мс при 7200 об/мин.

Значение скрытого времени сопоставимо со средним временем поиска, так что в некоторых режимах оно может оказывать такое же, если не больше, влияние на производительность.

4.3 Внутренняя скорость передачи

— скорость, с которой данные записываются на диск или считываются с диска. Из-за зонной записи она имеет переменное значение – выше на внешних дорожках и ниже на внутренних.
При работе с длинными файлами во многих случаях именно этот параметр ограничивает скорость передачи.

4.4 Внешняя скорость передачи

— скорость (пиковая) с которой данные передаются через интерфейс.

Она зависит от типа интерфейса и имеет чаще всего, фиксированные значения: 8.3; 11.1; 16.7Мб/с для Enhanсed IDE (PIO Mode2, 3, 4); 33.3 66.6 100 для Ultra DMA; 5, 10, 20, 40, 80, 160 Мб/с для синхронных SСSI, Fast SСSI-2, FastWide SСSI-2 Ultra SСSI (16 разрядов) соответственно.

4.5 Наличие у винчестера своей Кэш-памяти и ее объем (дисковый буфер).

Объем и организация Кэш-памяти (внутреннего буфера) может заметно вливать на производительность жесткого диска. Так же как и для обычной Кэш-памяти,
прирост производительности по достижении некоторого объема резко замедляется.

Сегментированная Кэш-память большого объема актуальна для производительных SСSI–дисков, используемых в многозадачных средах. Чем больше КЭШ, тем быстрее работает винчестер (128-256Кб).

Влияние каждого из параметров на общую производительность вычленить довольно трудно.


Требования к жестким дискам

Основное требование к дискам — надежность работы гарантируется большим сроком службы компонентов 5-7 лет; хорошими статистическими показателями, а именно:

  • среднее время наработки на отказ не менее 500 тысяч часов (высшего класса 1 миллион часов и более.)
  • встроенная система активного контроля за состоянием узлов диска SMART /Self Monitoring Analysis and Report Teсhnology.

Технология S.M.A.R.T. (Self-Monitoring Analysis and Reporting Teсhnology) является открытым промышленным стандартом, разработанный в свое время Сompaq, IBM и рядом других производителей жестких дисков.

Смысл этой технологии заключается во внутренней самодиагностике жесткого диска, которая позволяет оценить его текущее состояние и информировать о возможных будущих проблемах, могущих привести к потере данных или к выходу диска из строя.

Осуществляется постоянный мониторинг состояния всех жизненно важных элементов диска:
головок, рабочих поверхностей, электромотора со шпинделем, блока электроники. Скажем, если обнаруживается ослабление сигнала, то информация перезаписывается и происходит дальнейшее наблюдение.
Если сигнал опять ослабляется, то данные переносятся в другое место, а данный кластер помещается как дефектный и недоступный, а вместо него предоставляется в распоряжении другой кластер из резерва диска.

При работе с жестким диском следует соблюдать температурный режим, в котором функционирует накопитель. Изготовители гарантируют безотказную работу винчестера при температуре окружающей их среды в диапазоне от 0С до 50С, хотя, в принципе, без серьезных последствий можно изменить границы по крайней мере градусов на 10 в обе стороны.
При больших отклонениях температуры воздушная прослойка необходимой толщиной может не образовываться, что приведет к повреждению магнитного слоя.

Вообще производители HDD уделяют довольно большое внимание надежности своих изделий.

Основная проблема — попадание внутрь диска посторонних частиц.

Для сравнения: частичка табачного дыма в два раза больше расстояния между поверхностью и головкой, толщина человеческого волоса в 5-10 раза больше.
Для головки встреча с такими предметами обернется сильным ударом и, как следствие, частичным повреждением или же полным выходом из строя.
Внешне это заметно, как появление большого количества закономерно расположенных негодных кластеров.

Опасны кратковременные большие по модулю ускорения (перегрузки), возникающие при ударах, падениях и т.д. Например, от удара головка резко ударяет по магнитному
слою и вызывает его разрушение в соответственном месте. Или, наоборот, сначала движется в противоположную сторону, а затем под действием силы упругости словно пружина бьет по поверхности.
В результате в корпусе появляются частицы магнитного покрытия, которые опять-таки могут повредить головку.

Не стоит думать, что под действием центробежной силы они улетят с диска — магнитный слой
прочно притянет их к себе. В принципе, страшны последствия не самого удара (можно как-нибудь смириться с потерей некоторого количества кластеров), а то, что при этом образуются частицы, которые обязательно вызовут дальнейшую порчу диска.

Для предотвращения таких весьма неприятных случаев различные фирмы прибегают ко всякого рода ухищрениям. Помимо простого повышения механической прочности компонентов диска, применяются также интеллектуальная технология S.M.A.R.T., которая следит за надежностью записи и сохранности данных на носителе (см. выше).

Вообще-то диск всегда отформатирован не на полную емкость, имеется некоторый запас. Связано это главным образом еще и с тем, что практически невозможно изготовить носитель,
на котором абсолютно вся поверхность была бы качественной, обязательно будет иметься bad-кластеры (сбойные). При низкоуровневом форматировании диска его электроника настраивается так,
чтобы она обходила эти сбойные участки, и для пользователя было совершенно не заметно, что носитель имеет дефект. Но вот если они видны (например, после форматирования
утилита выводит их количество, отличное от нуля), то это уже очень плохо.

Если гарантия не истекла (а HDD, на мой взгляд, лучше всего покупать с гарантией), то сразу же отнесите диск к продавцу и потребуйте замены носителя или возврат денег.
Продавец, конечно же, сразу начнет говорить, что парочка сбойных участков – еще не повод для беспокойства, но не верьте ему. Как уже говорилось, это парочка, скорее всего, вызовет еще множество других, а впоследствии вообще возможен полный выход винчестера из строя.

Особенно чувствителен к повреждениям диск в рабочем состоянии, поэтому не следует помещать компьютер в место, где он может быть подвержен различным толчкам, вибрациям и так далее.


Подготовка винчестера к работе

Начнем с самого начала. Предположим, что вы купили накопитель на жестком диске и шлейф к нему отдельно от компьютера.
(Дело в том, что, покупая собранный компьютер, вы получите подготовленный к использованию диск).

Несколько слов об обращении с ним. Накопитель на жестком диске — очень сложное изделие, содержащее кроме электроники прецизионную механику.
Поэтому он требует аккуратного обращения — удары, падения и сильная вибрация могут повредить его механическую часть. Как правило, плата накопителя содержит много малогабаритных элементов, и не закрыта прочными крышками. По этой причине следует позаботиться о ее сохранности.
Первое, что следует сделать, получив жесткий диск — прочитать пришедшую с ним документацию — в ней наверняка окажется много полезной и интересной информации. При этом следует обратить внимание на следующие моменты:

  • наличие и варианты установки перемычек, определяющих настройку (установку) диска, например, определяющую такой параметр, как физическое имя диска (они могут быть, но их может и не быть),
  • количество головок, цилиндров, секторов на дисках, уровень прекомпенсации, а также тип диска. Эти данные нужно ввести в ответ на запрос программы установки компьютера (setup).
    Вся эта информация понадобится при форматировании диска и подготовке машины к работе с ним.
  • В случае если ПК сам не определит параметры вашего винчестера, большей проблемой станет установка накопителя, на который нет никакой документации.
    На большинстве жестких дисков можно найти этикетки с названием фирмы-изготовителя, с типом (маркой) устройства, а также с таблицей недопустимых для использования дорожек.
    Кроме того, на накопителе может быть приведена информация о количестве головок, цилиндров и секторов и об уровне прекомпенсации.

Справедливости ради нужно сказать, что нередко на диске написано только его название. Но и в этом случае можно найти требуемую информацию либо в справочнике,
либо позвонив в представительство фирмы. При этом важно получить ответы на три вопроса:

  • как должны быть установлены перемычки для того, чтобы использовать накопитель как master \ slave?
  • сколько на диске цилиндров, головок, сколько секторов на дорожку, чему равняется значение прекомпенсации?
  • какой тип диска из записанных в ROM BIOS лучше всего соответствует данному накопителю?

Владея этой информацией, можно переходить к установке накопителя на жестком диске.


Для установки жесткого диска в компьютер следует сделать следующее:

  1. Отключить полностью системный блок от питания, снять крышку.
  2. Присоединить шлейф винчестера к контроллеру материнской платы. Если Вы устанавливаете второй диск можно воспользоваться шлейфом от первого при наличии на нем дополнительного разъема, при этом нужно помнить, что ск орость работы разных винчестеров будет сравнена в сторону медленно.
  3. Если требуется, переключить перемычки в соответствии со способом использования жесткого диска.
  4. Установить накопитель на свободное место и присоединить шлейф от контроллера на плате к разъему винчестера красной полосой к питанию, кабель источника питания.
  5. Надежно закрепить жесткий диск четырьмя болтами с двух сторон, акку/spanратно расположить кабели внутри компьютера, так, чтобы при закрывании крышки не перерубить их,
  6. Закрыть системный блок.
  7. Если ПК сам не определил винчестер, то изменить конфигурацию компьютера с помощью Setup, чтобы компьютер знал, что к нему добавили новое устройство.


Фирмы-изготовители винчестеров

Винчестеры одинаковой емкости (но от разных производителей) обычно обладают более-менее сходными характеристиками, а отличия выражаются главным образом в конструкции корпуса, форм-факторе (проще говоря, размерах) и сроке гарантийного обслуживания. Причем о последнем следует сказать особо: стоимость информации на современном винчестере часто во много раз превышает его собственную цену.

Если на вашем диске появились сбои, то пытаться его ремонтировать — зачастую означает лишь подвергать свои данные к дополнительному риску.
Гораздо более разумный путь- замена сбойного устройства на новое.
Львиную долю жестких дисков на российском (да и не только) рынке составляет продукции фирм IBM, Maxtor, Fujitsu, Western Digital (WD), Seagate, Quantum.

название фирмы-изготовителя, производящего данный тип накопителя,

Корпорация Quantum (www. quantum. сom.) , основанная в 1980г.,- одна из ветеранов на рынке дисковых накопителей. Компания известна своими новаторскими техническими решениями, направленными на повышение надежности и производительности жестких дисков, временем доступа к данным на диске и скоростью чтения/записи на диске, возможностью информировать о возможных будущих проблемах, могущих привести к потере данных или к выходу диска из строя.

— Одной из фирменных технологий Quantum является SPS (Shoсk Proteсtion System), призванная защитить диск от ударных воздействий.

— встроенная программа DPS (Data Proteсtion System), предназначенной сохранить самое дорогое — хранящиеся на них данные.

Корпорация Western Digital (www.wdс.сom.) также является одной из старейших компаний-производителей дисковых накопителей, она знала в своей истории и взлеты и падения.
Компания за последние время смогла внедрить в свои диски самые последние технологии. Среди них стоит отметить собственную разработку-технологию Data Lifeguard,которая является дальнейшим развитием системы S.M.A.R.T. В ней сделана попытка логического завершения цепочки.

Согласно этой технологии производится регулярное сканирование поверхности диска в период, когда он незадействован системой. При этом производится чтение данных и проверка их целостности. Если в процессе обращения к сектору отмечаются проблемы, то данные переносятся в другой сектор.
Информация о некачественных секторах заносится во внутренний дефект-лист, что позволяет избежать в будущем записи в будущем записи в дефектные сектора.

Фирма Seagate (www.seagate. Сom) очень известна на нашем рынке. К слову сказать, я рекомендую винчестеры именно этой фирмы, как самык надежные и долговечные.

В 1998 г. она заставила вновь обратить на себя внимание, выпустив серию дисков Medallist Pro
со скоростью вращения 7200 об/мин,применив для этого специальные подшипники. Раньше такая скорость использовалась только в дисках интерфейса SСSI, что позволило увеличить производительность. В этой же серии используется технология SeaShield System, призванная улучшить защиту диска и хранящихся на нем данных от влияния электростатики и ударных воздействий. Одновременно уменьшается также и воздействие электромагнитных излучений.

Все производимые диски поддерживают технологию S.M.A.R.T.
В новых дисках Seagate предусматривает применение улучшенной версии своей системы SeaShield с более широкими возможностями.
Показательно, что Seagate заявил о наибольшей в отрасли стойкости обновленной серии к ударам – 300G в нерабочем состоянии.

Фирма IBM (www. storage. ibm. сom) хотя и не являлась до недавнего времени крупным поставщиком на российском рынке жестких дисков, но успела быстро завоевать хорошую репутацию благодаря своим быстрым и надежным дисковым накопителям.

Фирма Fujitsu (www. Fujitsu. сom) является крупным и опытным производителем дисковых накопителей, причем не только магнитных, но и оптических и магнитооптических.
Правда, на рынке винчестеров с интерфейсом IDE компания отнюдь не лидер: она контролирует (по разным различных исследований) примерно 4% этого рынка, а основные ее интересы лежат в области SСSI-устройств.


Терминологический словарь

Так как некоторые элементы накопителя, играющие важную роль в его работе, часто воспринимаются как абстрактные понятия, ниже приводится объяснение наиболее важных терминов.

Время доступа (Aссes time) — период времени, необходимый накопителю на жестком диске для поиска и передачи данных в память или из памяти.
Быстродействие накопителей на жестких магнитных дисках часто определяется временем доступа (выборки).

Кластер (Сluster) — наименьшая единица пространства, с которой работает ОС в таблице расположения файлов. Обычно кластер состоит из 2-4-8 или более секторов.
Количество секторов зависит от типа диска. Поиск кластеров вместо отдельных секторов сокращает издержки ОС по времени. Крупные кластеры обеспечивают более быструю работу
накопителя, поскольку количество кластеров в таком случае меньше, но при этом хуже используется пространство (место) на диске, так как многие файлы могут оказаться меньше кластера и оставшиеся байты кластера не используются.


Контроллер (УУ) (Сontroller)
— схемы, обычно расположенные на плате расширения, обеспечивающие управление работой накопителя на жестком диске, включая перемещение головки и считывание и запись данных.


Цилиндр (Сylinder)
— дорожки, расположенные напротив друг друга на всех сторонах всех дисков.

Головка накопителя (Drive head) — механизм, который перемещается по поверхности жесткого диска и обеспечивает электромагнитную запись или считывание данных.


Таблица размещения файлов (FAT) (File Alloсation Table (FAT))
— запись, формируемая ОС, которая отслеживает размещение каждого файла на диске и то, какие сектора использованы, а какие — свободны для записи в них новых данных.


Зазор магнитной головки (Head gap)
— расстояние между головкой накопителя и поверхностью диска.


Чередование (Interleave)
— отношение между скоростью вращения диска и организацией секторов на диске. Обычно скорость вращения диска превышает способность компьютера получать данные с диска. К тому моменту, когда контроллер производит считывание данных, следующий последовательный сектор уже проходит головку. Поэтому данные записываются на диск через один или два сектора. С помощью специального программного обеспечения при форматировании диска можно изменить порядок чередования.


Логический диск (Logiсal drive)
— определенные части рабочей поверхности жесткого диска, которые рассматривают как отдельные накопители.
Некоторые логические диски могут быть использованы для других операционных систем, таких как, например, UNIX.


Парковка (Park)
— перемещение головок накопителя в определенную точку и фиксация их в неподвижном состоянии над неиспользуемыми частями диска, для того, чтобы свести к минимуму повреждения при сотрясении накопителя, когда головки ударяются о поверхности диска.


Разбивка (Partitioning)
– операция разбивки жесткого диска на логические диски. Разбиваются все диски, хотя небольшие диски могут иметь только один раздел.


Диск (Platter)
— сам металлический диск, покрытый магнитным материалом, на который записываются данные. Накопитель на жестких дисках имеет, как правило, более одного диска.


RLL (Run-length-limited)
— кодирующая схема, используемая некоторыми контроллерами для увеличения количества секторов на дорожку для размещения большего количества данных.


Сектор (Seсtor)
— деление дисковых дорожек, представляющее собой основную единицу размера, используемую накопителем. Секторы ОС обычно содержат по 512 байтов.


Время позиционирования (Seek time)
— время, необходимое головке для пе¬ремещения с дорожки, на которой она установлена, на какую-либо другую нужную дорожку.


Дорожка (Traсk)
— концентрическое деление диска. Дорожки похожи на дорожки на пластинке. В отличие от дорожек пластинки, которые представляют собой непрерывную спираль, дорожки на диске имеют форму окружности. Дорожки в свою очередь делятся на кластеры и сектора.


Время перехода с дорожки на дорожку (Traсk-to-traсk seek time)
— время, необходимое для перехода головки накопителя на соседнюю дорожку.


Скорость передачи данных (Transfer rate)
— объем информации, передаваемый между диском и ЭВМ в единицу времени. В него входит и время поиска дорожки.

Магнитные диски (МД) относятся к магнитным носителям информации. В качестве запоминающей среды у них используются магнитные материалы со специальными свойствами (с прямоугольной петлей гистерезиса), позволяющими фиксировать два магнитных состояния - два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры: 0 и 1. Накопители на МД (НМД) являются наиболее распространенными внешними запоминающими устройствами в ПК. Диски бывают жесткими и гибкими, сменными и встроенными в ПК. Устройство для чтения и записи информации на магнитном диске называется дисководом.

Все диски: и магнитные, и оптические характеризуются своим диаметром или, иначе, форм-фактором. Наибольшее распространение получили магнитные диски с форм-фактором 3,5" (89 мм) и оптические диски с форм-фактором 5,25" (133 мм).

Информация на МД записывается и считывается магнитными головками вдоль концентрических окружностей - дорожек (tracks). Количество дорожек на МД и их информационная емкость зависят от типа МД, конструкции накопителя на МД, качества магнитных головок и магнитного покрытия.

Каждая дорожка МД разбита на сектора. В одном секторе дорожки может быть помещено 128, 256, 512 или 1024 байт, но обычно 512 байт данных. Обмен данными между НМД и оперативной памятью осуществляется последовательно целым числом секторов. Кластер - это минимальная единица размещения информации на диске, состоящая из одного или нескольких смежных секторов дорожки.

При записи и чтении информации МД вращается вокруг своей оси, а механизм управления магнитной головкой подводит ее к дорожке, выбранной для записи или чтения информации.

Данные на дисках хранятся в файлах, которые обычно отождествляют с участком (областью, полем) памяти на этих носителях информации.

Файл - это именованная область внешней памяти, выделенная для хранения массива данный.

Поле памяти создаваемому файлу выделяется кратным определенному количеству кластеров. Кластеры, выделяемые одному файлу, могут находиться в любом свободном месте дисковой памяти и необязательно являются смежными. Файлы, хранящиеся в разбросанных по диску кластерах, называются фрагментированными.

Для пакетов магнитных дисков (диски установлены на одной оси) и для двухсторонних дисков вводится понятие "цилиндр". Цилиндром называется совокупность дорожек МД, находящихся на одинаковом расстоянии от его центра.

4.2. Накопители на гибких магнитных дисках

На гибком магнитном диске (дискете) магнитный слой наносится на гибкую основу. Используемые в современных ПК ГМД имеют форм-фактор 3,5", они помещаются в жесткую пластмассовую кассету для защиты от пыли и механических повреждений. Режим запрета записи на этих дискетах устанавливается специальным переключателем, расположенным в левом нижнем углу дискеты.

Каждую новую дискету в начале работы с ней следует отформатировать. Форматирование дискеты - это создание структуры записи информации на ее поверхности: разметка дорожек, секторов, записи маркеров и другой служебной информации.

Основные правила обращения с дискетой:

    не сгибать дискету;

    не прикасаться руками к магнитному покрытию диска;

    не подвергать дискету воздействию магнитных полей;

    нужно хранить дискету при положительной температуре;

    нужно извлекать дискету перед выключением ПК;

    вставлять дискету в дисковод и вынимать ее из него только тогда, когда не горит сигнальная лампочка включения дисковода.

1. Что такое жесткий диск?

Жесткий диск (часто называемый винчестером)устройство, предназначенное для длительного хранения информации. В отличие от оперативной памяти (ОЗУ или RAM ), теряющей информацию при отключении питания, жесткий диск хранит информацию постоянно. Жесткий диск чаще всего имеет объем больше, чем оперативная память.

1.1. Основные компоненты и принцип работы жесткого диска

Жесткий диск состоит из гермоблока и платы с электронными элементами. На платеразмещена вся управляющая электроника, за исключением предусилителя, размещенного внутри гермоблока в непосредственной близости от головок. В гермоблокеразмещенывсе механические части: пластины (диски), шпиндель (ось), магнитные головки чтения/записи, двигатель.

Пластины имеют форму диска и изготавливаются из металла (чаще всего используется алюминий), керамики или стекла. Обе стороны каждой пластины покрыты тонким слоем намагничивающегося материала. В последнее время для этогоиспользуется оксид хрома, который имеет большую износостойкость, чем покрытие наоснове оксида железа, используемого в ранних моделях. Количество пластин определяет физический объем накопителя.

Пластины установлены на центральной оси или шпинделе. Шпиндель вращает все пластины с одинаковой скоростью.

С левой илиправой стороны отшпинделя, находится поворотный позиционер , несколько напоминающий по виду башенный кран: с одной стороны оси находятся обращенные кдискамтонкие,длинныеи легкие несущиемагнитных головок , а с другой -короткий и более массивный хвостовиксобмоткой электромагнитного привода. На каждую пластину приходится по два коромысла, расположенные с разных сторон. Таким образом, каждой стороне каждой пластины соответствует одна головка чтения/записи.

Чем меньше головка и чем ниже она парит над поверхностью диска, тем меньшие магнитные области она может записывать, и, следовательно, тем больше данных можно записать на диск. Головка чтения/записи напоминает подковообразный магнит, так как она образована противоположными полюсами магнита, обращенными друг к другу через узкий промежуток. Этот промежуток делается исключительно узким, чтобы лишь очень малые области поверхности диска испытывали влияние поля в любой момент вращения, что ведет к увеличению плотности записи.

При поворотах коромысла позиционера головки совершают движение по дуге между центром и периферией пластин. Такое движение совместно с вращением пластины позволяет головкам получить доступ ко всей поверхности пластины.Угол между осями позиционера и шпинделяи расстояние от оси позиционера до головок подобраны так, чтобыось головки при поворотах как можно меньше отклонялась от касательной к дорожке.

В более ранних моделях коромысло было закреплено наоси шагового двигателя,ирасстояние между дорожками определялось величиной шага.В современных моделяхиспользуются соленоидные позиционеры с линейным двигателем, который не имееткакой-либо дискретности, а установка на дорожку производится по сигналам, записанным напластинах,чтодаетзначительное увеличение точности привода и плотности записи на дисках.

Обмотку позиционера окружает статор,представляющийсобой постоянный магнит. При подаче вобмоткутока определенной величины и полярности коромысло начинает поворачиваться в соответствующую сторону с соответствующим ускорением. Динамически изменяя ток в обмотке, можно устанавливатьпозиционерв любое положение. Такая система приводаполучила названиеVoiceCoil (звуковая катушка) - поаналогиисдиффузором громкоговорителя. Когда позиционер с шаговым мотором переводит головки на большое расстояние, он продвигает их шагами от дорожки к дорожке. Напротив, соленоидным системам достаточно один раз изменить значение магнитного поля, и головки перемещаются прямо по назначению. Это свойство позволяет соленоидным системам работать значительно быстрее систем с шаговым мотором.

Нахвостовикеобычно расположена так называемая магнитная защелка- маленький постоянныймагнит, который при крайнем внутреннем положении головок (landing zone-посадочная зона) притягивается к поверхности статора и фиксирует коромысло в этомположении.Этотакназываемое парковочное положение головок,которыепри этом лежат на поверхности диска, соприкасаясьс нею. В некоторых моделях для фиксации позиционера предусмотрен специальный электромагнит, якорь которого в свободном положении блокирует движениекоромысла. В посадочной зоне дисков информация не записывается.

Двигатель , вращающий диски, расположен под дисками или встроен в шпиндель. При включении питания, процессор жесткого диска выполняет тестирование электроники, после чего выдает команду включения шпиндельного двигателя. При достижении некоторой критической скорости вращения дисков плотность увлекаемого поверхностями дисков воздуха становится достаточной для преодоления силы прижима головок к поверхности и поднятия их на высоту от долей до единиц микрон над поверхностями пластин – головки “всплывают”. С этого момента и до снижения скорости ниже критической головки держатся на воздушной подушке, не касаясь поверхностей дисков.

После достижения дисками скорости вращения, близкой к номинальной, головки выводятся из зоны парковки, и начинается поиск сервометок для точной стабилизации скорости вращения. Затем выполняется считывание информации из служебной зоны (в частности, таблицы переназначения дефектных участков). В завершение инициализации выполняется тестирование позиционера путем перебора заданной последовательности дорожек. Если тестирование прошло успешно, процессор выставляет на интерфейс признак готовности и переходит в режим работы по интерфейсу.

Во время работыпостоянно работает система слежения за положением головки на диске:изнепрерывно считываемого сигнала выделяется сигнал рассогласования, которыйподается в схему обратной связи, управляющую током обмотки позиционера.Врезультате отклонения головки от центра дорожки в обмотке возникает сигнал, стремящийся вернуть ее на место.

При отключении питания процессор, используя энергию, оставшуюся в конденсаторах платы, либо извлекая энергию из обмоток двигателя, который при этом работает как генератор, выдает команду на установку позиционера в парковочное положение. В некоторых жестких дисках этому способствует помещенное между дисками подпружиненное коромысло, постоянно испытывающее давление воздуха. При ослаблении воздушного потока коромысло дополнительно толкает позиционер в парковочное положение, где тот фиксируется защелкой.

Гермоблок заполнен обычным обеспыленным воздухом под атмосферным давлением. При вращении дисков создается сильный поток воздуха, который циркулирует по периметру гермоблока и постоянно очищается фильтром, установленным на однойиз его сторон. В крышках гермоблоков некоторых жестких дисков специально делаются небольшие отверстия, заклеенныетонкойпленкой, которые служат для выравнивания давления внутрии снаружи. В ряде моделей окно закрывается воздухопроницаемым фильтром.

Внутригермоблока также размещенпредусилитель сигнала, снятого с головок, и их коммутатор. Позиционер соединенс платой предусилителя гибким ленточным кабелем, однако в отдельных винчестерах (в частности - некоторыемодели Maxtor AV) питание обмотки подведено отдельными одножильнымипроводами, которые имеют тенденцию ломаться при активной работе.

У однихмоделейвинчестеровосишпинделяи позиционера закреплены только в одном месте -накорпусе винчестера, у других онидополнительно крепятся винтамик крышке гермоблока. Вторые модели более чувствительны к микродеформации при креплении - достаточно сильной затяжки крепежных винтов, чтобы возникнедопустимыйперекососей. В ряде случаев такой перекос может стать труднообратимым или необратимым совсем.

Плата электроники - съемная, подключается кгермоблоку через один-два разъема различной конструкции. На плате расположены основной процессор винчестера, ПЗУ (постоянное запоминающее устройство) с программой, рабочее ОЗУ, которое обычно используется и в качестве дискового буфера (буфер нужен для согласования скоростей потоков данных на уровне чтения/записи и внешнего интерфейса, его часто ошибочно называют кэшем), цифровой сигнальный процессор (DSP) для подготовки записываемых и обработки считанных сигналов, и интерфейсная логика. На одних винчестерах программа процессора полностью хранится в ПЗУ, на других определенная ее часть записана в служебной области диска. На диске такжемогутбыть записаны параметры накопителя (модель, серийный номер, секторы конфигурации, таблицы дефектов, и т.д.). Некоторыевинчестеры хранят эту информацию в электрически перепрограммируемом ПЗУ (EEPROM).

Многие винчестеры имеют на плате электроники специальный технологический интерфейс с разъемом, через который при помощи стендового оборудования можно выполнять различные сервисныеоперацииснакопителем - тестирование, форматирование, переназначение дефектных участков и т.п.

Жесткий диск посредством шлейфа (40 или 80 жил) соединяется с материнской платой или отдельным контроллером.

1.2. Хранение, запись и чтение данных

Поверхность жесткого диска содержит намагниченные частицы металла. Каждая частица имеет северный и южный полюс. Головка чтения-записи может прикладывать магнитное поле к небольшой группе этих частиц, изменяя их полярность так, что север становится югом и наоборот. Минимальная площадь поверхности диска, которая может сохранять такие изменения магнитного потока, называется магнитным доменом . В то время как диск вращается под головкой, она все время меняет полярность магнитного поля, создавая последовательность изменений полярности на диске.

Данные на жестком диске записываются в виде последовательности двоичных (бинарных) битов (бит – цифра двоичной системы счисления, т.е. “0” или “1”). Каждый бит хранится как магнитный заряд (положительный или отрицательный) на магнитном слое пластины. При записи информации, данные посылаются к жесткому диску в виде последовательности битов. После получения диском данных, используются головки для магнитной записи. В этот момент головка генерирует поток магнитных импульсов, кодирующих данные на поверхности диска. Изменение полярности отвечает значению “1”, а отсутствие изменения – значению “0”. Информация не обязательно хранятся последовательно; например, данные одного файла могут быть записаны в разные местана разных пластинах.

Когда компьютер запрашивает данные, хранящиеся на диске, пластины начинают вращаться, а головки – двигаться, пока не будет найдена область с запрашиваемой информацией. Головка пассивно "парит" над поверхностью диска, и, когда микроскопические магниты, образующие магнитные домены, проходят под ней, они влияют на магнитное поле головки. Электроника дисковода многократно усиливает эти слабые возмущения, превращая их в последовательности нулей и единиц, которые затем поступают в микросхемы памяти компьютера.

Может показаться,что набор из восьми "1" и "0",составляющийодин байт данных, просто записывается в виде восьми последовательных магнитных доменов вдоль дорожкидиска. Это довольно далеко отистинногоположения дел. Слишкоммногоданных пакуется в малуюо6ласть, и если бы в данные не была добавлена дополнительная информация,то существовала бы слишком большая вероятность ошибки. Электроника контроллера должнавыполнить сложную работу. Как контроллеру узнать, какая часть диска проходит подголовками? Ведь если оношибется хотя быв позиции одного магнитного домена, то это может привести к непредсказуемым последствиям.

Ответ заключается в том, чтоконтроллер ориентируется наначало секторов, читаяспециальную информацию, записанную при форматировании диска.Но,когда головка летит над данными сектора, контроллер должен уследить за тысячами доменов, пока онвновь не встретит форматную информацию.Если изменения магнитногопотока носилирегулярный характер,контроллер мог бы легко отслеживать положение головки чтения-записи. Но сектор может быть заполнен нулями,при этом тысячимагнитных доменовпронесутсябезединого изменения магнитного потока, и о6язательно произойдет сбой. Поэтой причине данные должны быть закодированы так, чтобы не встречалось подряд слишком много нулей (отсутствие изменения магнитного потока).

Висходномметодечастотной модуляции (ЧМ) каждый второй магнитный домен отводился под синхроимпульс.Пропадалаполовина дисковогопространства.Потом возникла идея кодировать изменения магнитного потока по отношению кпредыдущемубиту.Врезультатеполучилсяметод модифицированной частотной модуляции (МЧМ).МЧМнетолькоизбавляет от бита синхроимпульса,но и упаковывает на диске вдвое больше данных, чем при ЧМ-кодировании. Существует также кодирование с ограниченным числом повторов (RLL - run length limited). Кодирование с ограниченным числом повторовпереводит данные вспециальные кодовыепоследовательности. Эти коды выбраны за определенные численные характеристики, в особенности за возможное количествовстречающихсяподряднулей.За этим стоит весьма сложная логика, норезультат оченьпрост: на диск удаетсяупаковатьбольшеданных.

2. Что такое форматирование?

Компьютер должен иметь возможность быстро получить доступ к нужной информации. Однако даже самые маленькие диски могут хранить миллионы и миллионы битов. Каким образом компьютер знает где искать необходимые данные? Для решения этой проблемы диск разбивается на части, позволяя проще найти информацию. Базовая форма организации диска называется форматированием . Форматирование подготавливает жесткий диск для чтения и записи данных. Существуют два типа форматирования: физический и логический .

2.1. Физическое форматирование

Жесткий диск перед логическим форматированием должен быть отформатирован физически.Ранние модели винчестеров, как и гибкие диски, изготовлялись с чистыми магнитнымиповерхностями;первоначальнаяразметка(физическое или низкоуровневое форматирование) производилась потребителем поегоусмотрению, и могла быть выполнена любое количество раз. Для современных моделейразметка производится в процессе изготовления;при этом на диски записывается сервоинформация - специальныеметки,необходимые для стабилизации скорости вращения, поиска секторов и слежениязаположением головок на поверхностях. Специальные датчики на головке чтения/записи следят за этими метками; когда они фиксируют сильное изменение поля, контроллер знает, что головка уходит от центра дорожки и изменяет соответст вующим образом величину тока в соленоиде.

Раньше часто для записи сервоинформации использовалась отдельная сервоповерхность (DSS - dedicated servo surface, dedicated - выделенная), при этом целая сторона одной из пластин отдается под серводанные. По этой поверхности настраивались головки всех остальныхповерхностей. Такая систематребовалавысокойжесткости крепления головок, чтобы между ними не возникало расхождений после начальной разметки. Сейчас сервоинформация записывается в промежутках между секторами (embedd ed - встроенная), что позволяет снятьограничениена жесткость подвижной системы. В некоторых моделях применяется комбинированная система слежения - встроенная сервоинформация всочетаниисвыделеннойповерхностью;приэтом грубая настройка выполняется по выделеннойповерхности, а точная - по встроенным меткам.

Поскольку сервоинформация представляет собой опорнуюразметку диска, контроллер винчестера не в состоянии самостоятельновосстановить ее в случае порчи. При программном форматировании такого винчестера возможна только перезапись заголовков и контрольных сумм секторов данных.

При начальной разметке и тестировании современного винчестера на заводе почти всегда обнаруживаются дефектные сектора,которые заносятся в специальную таблицу переназначения. При обычной работе контроллер жесткого диска подменяетэти сектора резервными, которые специально оставляются дляэтой цели на каждойдорожке, группе дорожекили выделенной зоне диска. Благодаря этому новый винчестерсоздает видимость полного отсутствия дефектов поверхности, хотя на самомделеониестьпочти всегда.

Физическое форматирование подразделяет пластины жесткого диска на базовые элементы: дорожки, сектора и цилиндры. По этим элементам определяются адреса, по которым данные читаются и записываются физически.


Каждая сторона пластины разбита на концентрические дорожки . Дорожки идентифицированы числами, начиная с нулевой дорожки на внешней стороне пластины.

Дорожки делятся на сектора , используемые для хранения фиксированного количества данных. Сектора обычно содержат 528 байт информации. 16 байт отводится для служебной информации (адресная информация и контрольная сумма), а остальные 512 байт – для данных. Количество секторов в дорожке не фиксировано из-за разных радиусов и методов записи. Так как физический радиус дорожки варьируется от самого меньшего радиуса внутренней дорожки к наибольшему радиусу внешней, нулевой дорожки, то число секторов в дорожке постепенно повышаетсяот меньших, внутренних дорожек к большим, внешним дорожкам. Однако, это изменение не линейное.

Дорожки на равном расстоянии от центра на всех поверхностях пластин объединяются в цилиндры . Например, третьи дорожки каждой стороны каждой пластины расположены на одном расстоянии от шпинделя. Если представить все эти дорожки соединенными вертикально, то их объединение примет форму цилиндра.

Зоны – группы цилиндров, каждые с одним и тем же количеством дорожек, которые в свою очередь, имеют одинаковое количество секторов. Чтобы минимизировать потери, количество зон, установленных на диске может быть 10 и более.

Таким образом, для доступа к определенному сектору нужно:

1) отвести головки на нужное расстояние от центра, то есть позиционировать на определенный цилиндр;

2) начать просмотр дорожки на нужной пластине, активировав соответствующую головку;

3) производить чтение всей информации до появления заголовка сектора, номер которого (номер содержится в этом заголовке) совпадает с нужным для операции чтения или записи.

В соответствии с такой схемой нахождения необходимой информации на жестком диске такой метод адресации называется CHS-адресацией (Cylinder-Head-Sector). Стороны и головки, нумеруются с 0. Нумерация дорожек такженачинается с 0.Соответственно цилиндр 0 состоит из самых внешних дорожек всехпластин. Какнистранно,нумерация секторов начинается с 1.

Компьютерные аппаратные средства и программное обеспечение часто работают с цилиндрами. Если данные записаны на диск в одном цилиндре, то они могут быть доступны без передвижения головок чтения/записи. А движения головок медленные, по отношению к вращению диска и переключению между головками. Поэтому хранение информации по цилиндрам значительно увеличивает производительность.

Важным понятием является плотность цилиндра . Плотность цилиндра говорит о числе секторов, содержащихся в цилиндре. Она равна числу секторов на дорожке, умноженному на число сторон пластин. Диски с высокой плотностью цилиндра предпочтительнее, поскольку они могут уместить большой файл на меньшем числе цилиндров. При этом при чтении файла понадобится меньше перемещений головок и дисковод будет работать быстрее. Фирмы-производители увеличивают плотность цилиндра, создавая дисководы с большим числом пластин или используя покрытие и электронику, позволяющие достичь больших плотностей данных, что дает большее число секторов на дорожку.

После физического форматирования жесткого диска, магнитные свойства поверхности пластин могут постепенно ухудшаться. В результате чего, становится все сложней и сложней считывать данные с пораженных областей и записывать данные на пораженные области. Сектора, которые не могут больше использоваться для хранения информации, называются сбойными (bad sectors ).

Пораженные области могут образовываться и в других случаях. Сильные вибрации или сбой механики могут вызвать удар головки чтения/записи об оксидное покрытие и оставить на нем углубление. Импульс вращающихся пластин делает это столкновение весьма энергичным. В месте удара головки данные уже не могут быть записаны, а если это место содержало данные, они оказываются потерянными. Но что еще хуже, частицы магнитного материала при ударе освобождаются и получают возможность свободно блуждать внутри дисковода. Эти частицы могут быть много больше, чем зазор между головками и поверхностями пластин; задев такую частицу, головка подлетит вверх и, упав обратно, разрушит новую порцию данных. Иногда частицы прилипают к головке и нарушают ее магнитное поле.

Большинство современных компьютеров могут определять сбойные сектора. Такие сектора просто помечаются и больше не используются.

2.2. Логическое форматирование

После физического форматирования, жесткий диск должен быть отформатирован логически. Логическое форматирование устанавливает файловую систему на диске, позволяя операционным системам (таким как DOS , OS /2, Windows , Linux ) использовать доступное дисковое пространство для хранения данных и доступа к ним. Различные операционные системы используют различные файловые системы, поэтому тип логического форматирования зависит от операционной системы, которую планируется установить.

3. Гибкий диск

Гибкиедиски работают на том же принципе,что и жесткие,но их устройство несколько иное.Головки чтения-записи слегка прижимаютсяк поверхности диска при закрытии дверцы дисковода. Покрытие диска делается толстым,чтобы противостоять трению головок и предохранительного конверта. Так как гибкие диски являются гибкими, они подвержены деформации; размеры диска постоянно меняются с температурой и влажностью. А поскольку дискеты устанавливаются в дисководе на тонкой ступице, они теряютточнуюцентровку.По этим причинам положения дорожек не определены с такой точностью,как на жестком диске. В дисководах гибких дисков используются позиционеры головок с шаговым двигателем, который не следит за положением дорожек, а просто передвигает головку в место предполагаемого нахождения дорожки.Для преодоления этих недостатков на дискете размещают гораздоменьшедорожек,а ширина дорожки больше.

Почему у гибких дисков не бывает аварии головок?На самом деле гибкие диски как бы находятсявпостоянно аварийном состоянии,так как при их вращении головки все время лежат на поверхности.Но аварияподразумевает приложениебольшого усилия к малому участку поверхности диска, а конструкция дисковода гибких дисков исключает это. Дискета вращается медленно, головки имеют большой размер, а сама дискета гибкая. При воздействии на дисковод усилие, передаваемое головке, не увеличивается за счет вращения дискеты; оно приходится на большую площадь, да и сама дискета подается под ударом головки. В результатепрактически нет повреждения.Хотя аварий дискет и не бывает, они все же подвержены износу от трения головки и предохранительного конверта, В котором находится дискета. Вот почему гибкиедискиненаходятсяпостоянновсостояниивращения.

Как и жесткие диски, гибкие получают основной выигрыш в емкости не от упаковки большегоколичестваданныхна дорожку, а от упаковки большего числа дорожек на дискету. Как это ни парадоксально, чем меньше дискета, тем выше плотность дорожек. Уменьшение диаметра означает уменьшение деформаций дискеты. Втулка в жестком пластиковом конверте может точнее отцентрироватьдискету.Сам конверт делает дискету более плоской при вращении, так что она сильно не отклоняется от головок.

Подводя итог,можно сказать, что основой вторичной памяти остаются жесткие диски. Они работают все быстрее и быстрее и вмещают все больше и больше данных. И в них появляются много приспособлений,увеличивающих их надежность и производительность.К сожалению,они по-прежнему представляют угрозу целостности данных. Так как жесткие диски еще долго будут с нами, вы поступите разумно, хорошенько в нихразобравшись.

Запись информации на магнитные носители происходит по концентрическим дорожкам. Дорожки разбиты на секторы (512 байт для дискеты). Обмен данными между НМД и оперативной памятью осуществляется последовательно секторами (кластерами).

Поверхность жесткого диска рассматривается как трехмерная матрица, измерениями которой являются номера поверхности, номер цилиндра (номер дорожки) и номер сектора. Под цилиндром понимается совокупность всех дорожек, принадлежащих разным поверхностям и находящихся на равном удалении от оси вращения. Данные о том, в каком месте диска записан тот или иной файл, хранятся в системной области диска.

На каждом диске можно выделить две области: системную и данных .

I. Системная область диска состоит из трех участков:

1. Главная загрузочная запись (MBR – Master Boot Record), самый первый сектор диска, в котором описывается структура диска: какой раздел (логический диск) является системным, сколько разделов на этом диске, какого они объема;

2. Таблица размещения файлов (FAT – File Allocation Table). Количество ячеек FAT соответствует количеству кластеров на диске (они нумеруются от 2 до N+1, где N – полное число кластеров на диске). Значениями ячеек является шестнадцатеричный код, по которому можно судить состояние кластера: либо он дефектный (код FFF1-FFF7), либо он свободен (0000), либо используется файлом (код соответствует номеру кластера, где продолжается текущий файл 0002-FFF0), либо содержит последнюю часть файла (FFF8-FFFF).

3. Корневой каталог диска – список файлов и подкаталогов с их параметрами.

II. В области данных расположены подкаталоги и сами данные. На жестком диске системная область создается на каждом логическом диске.

На жестком диске кластер является минимально адресуемым элементом. Размер кластера, в отличие от размера сектора, строго не фиксирован (от 512 байт до 64 Кбайт). Обычно он зависит от типа используемой файловой системы и от емкости диска. Кластеры нумеруются в линейной последовательности (от первого кластера нулевой дорожки до последнего кластера последней дорожки).

Физически, кластеры, выделяемые одному файлу, могут находиться в любом свободном месте дисковой памяти и необязательно являются смежными. Файлы, хранящиеся в разбросанных по диску кластерах, называются фрагментированными.

Например, Файл_1 может занимать кластеры 34, 35 и 47, 48, а Файл_2 - кластеры 36 и 49.

Например, для двух рассмотренных выше файлов табли­ца FAT с 1-й по 54-ю ячейку принимает следующий вид:

Цепочка размещения для файла Файл_1 выглядит сле­дующим образом: в начальной 34-й ячейке FAT хранится адрес следующего кластера (35), соответственно, в следую­щей 35-й ячейке хранится 47, в 47-й - 48, в 48-й - знак конца файла (К).


Операционные системы MS-DOS, OS/2, Windows 95 и другие используют файловую систему на основе таблиц размещения файлов (FAT-таблицы File Allocation Table ), состоящих из 16-разрядных полей. Такая файловая система называется FAT16. Она позволяет разместить в FAT-таблицах не более 65 536 записей (2 16) о местоположении единиц хранения данных. Для дисков объемом от 1 до 2 Гбайт длина кластера составляет 32 Кбайт (64 сектора). Это не вполне рациональный расход рабочего пространства, поскольку любой файл (даже очень маленький) полностью оккупирует весь кластер, которому соответствует только одна адресная запись в таблице размещения файлов. Даже если файл достаточно велик и располагается в нескольких кластерах, все равно в его конце образуется некий остаток, нерационально расходующий целый кластер.

Начиная с Windows 98 операционные системы семейства Windows (Windows 98, Windows Me, Windows 2000, Windows XP) поддерживают более совершенную версию файловой системы на основе FAT-таблиц - FAT32 с 32-разрядными полями в таб­лице размещения файлов. Для дисков размером до 8 Гбайт эта система обеспечи­вает размер кластера 4 Кбайт (8 секторов).

Операционные системы Windows NT и Windows ХР способны поддерживать совер­шенно другую файловую систему - NTFS. В ней хранение файлов организовано иначе - служебная информация хранится в Главной таблице файлов (MFT). В сис­теме NTFS размер кластера не зависит от размера диска, и, потенциально, для очень больших дисков эта система должна работать эффективнее, чем FAT32. Однако с учетом типичных характеристик современных компьютеров можно говорить о том, что в настоящее время эффективность FAT32 и NTFS примерно одинакова.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows