Отечественные калькуляторы и их зарубежные аналоги. История в картинках. Калькулятор в ссср Калькулятор ссср 2890 г

Отечественные калькуляторы и их зарубежные аналоги. История в картинках. Калькулятор в ссср Калькулятор ссср 2890 г

Эта статья посвящается истории разработки советских калькуляторов - от счетов до программируемых аппаратов. От начала века до наших дней.

Счеты - первое автоматическое устройство, использованное в России для вычислительных целей. Это устройство стало "национальным калькулятором" и использовалось вплоть до середины 90-х годов. Интересно, что руководство по "Торговым калькуляторам" опубликованное в 1986, посвящает целую главу методам вычисления с использованием счетов.

Наиболее популярный механический калькулятор в СССР назывался "Железный Феликс". Арифмометр, базировавшийся на системе Однера.

Арифмометр мог делать четыре арифметических операции - сложение, вычитание, умножение и деление. "Продвинутые" модели, например, модель "Фелиск-М", имели возможность работы с дробями. Для того, чтобы выполнять вычисления, рычагами набирались необходимые числа, а поворотом ручки производилось действие. Один поворот - для сложения или вычитания, и несколько - для деления и умножения. В 50-х годах появились аппараты, имеющие электрический привод, которые дожили и до наших дней. Вспомните механический кассовый аппарат, который сегодня встречается в каждом третьем гастрономе.

После второй мировой войны советские ученые вплотную занялись разработкой электронных вычислительных аппаратов. В 1961 году Ленинградский университет разработал первый Советский электронный калькулятор ЭКВМ-1. Это был один из первых электронных калькуляторов в мире. С 1964 года началось серийное производство таких аппаратов, а в 1967 году появился калькулятор с тригонометрическими функциями. Эти аппараты изначально базировались на электронных лампах и ферритовых запоминающих ячейках. Впоследствии элементная база несколько изменилась. Стали использоваться полупроводники. Кстати, один из типичных калькуляторов того времени и по сей день работает в Минске в БГПА в лаборатории на кафедре органической химии.

Однако вернемся к калькуляторам. В 1971 году в Советском Союзе был разработан и внедрен в производство первый калькулятор, собранный на микросхемах. Была разработана серия однокристальных АЛУ, которая использовалась затем на протяжении почти 15 лет в различных моделях калькуляторов со светодиодными дисплеями. Настал критический момент в развитии калькулятора. Из массивной коробки с питанием от осветительной сети он должен был сделать шаг в небольшой корпус карманного размера и питанием от батарей. Группа из 27 инженеров занималась его разработкой. Это был огромный проект, который включал в себя разработку микросхемы, состоящей из 3400 транзисторов на кристалле размером 5х5 мм.

После того, как через пять месяцев работы первые опытные образцы калькулятора были готовы и переданы государственной комиссии, калькулятор "Электроника B3-04" поступил в продажу. Калькулятор имел ЖКИ-экран, работающий на просвет, и, что самое интересное, запитывался от одной батарейки на 1.5 вольта типа АА.

Следующей значительной ступенью развития советской электронной промышленности был инженерный калькулятор ВЗ-18, разработанный в 1975 году.

Он умел извлекать квадратные корни, возводить числа в степени, вычислять логарифмы и многое другое. В нем находился микропроцессор, состоящий более чем из 45000 транзисторов. Аппарат был достаточно дорогим - он стоил около 200 рублей, и это при средней зарплате инженера в 120 рублей. Однако он имел бешеную популярность.

Первый программируемый калькулятор ВЗ-21 был разработан в 1977 году.

Аппарат мог исполнять некоторую последовательность заранее запрограммированных действий. В управлении использовал "обратную польскую нотацию " и стоил целых 350 рублей. Программа могла состоять из 60 шагов и использовать условные переходы и подпрограммы. Существовала модификация этого калькулятора для проведения экспериментов. Эта модель имела выведенный наружу регистр памяти, который мог подключаться к внешнему устройству.

Однако поистине народным аппаратом стал ВЗ-34.

Он появился в 1980 году. Имел зеленый дисплей и стоил 85 рублей. Это был прорыв. Фактически это был первый домашний компьютер. Для него существовала масса программного обеспечения - от инженерного до игрового. В середине 80-х годов в СССР был настоящий бум программ для этой модели. Кстати, с того же времени он стал называться МК-52 и получил черный корпус. Популярность и надежность этого аппарата была такова, что он использовался на орбитальной станции СОЮЗ ТМ-7 в качестве аварийной ЭВМ.

И наконец, шедевр калькуляторной индустрии - МК-90. Ничего подобного в мире на тот момент не выпускалось. Калькулятор с графическим дисплеем, энергонезависимым ОЗУ и интерпретатором бейсика!

В нем использовался процессор с системой команд PDP-11.

Скажу по опыту - очень полезный аппарат. В свое время, будучи студентом, я использовал его не только для вычислений, но и как универсальную шпаргалку на экзаменах. 32 килобайта энергонезависимой памяти давали возможность записать в него в кратком виде практически весь курс предмета. К сожалению, эпоха СССР подходила к своему краху, и дальнейшего развития этот аппарат не получил. А жаль. Ведь и этот, и все другие аппараты, о которых я рассказал в статье, были первыми в мире в свое время. Как это ни показалось бы странным, СССР лидировал до начала 90-х годов в мировом "калькуляторостроении". Кто знает? Может быть, если бы не развал СССР, то легендарный Palm Pilot назывался бы MK-хххх?

Это пост о нетбуках советских школьников, офисных работников и инженеров.
Почему я так говорю? В те времена, когда я учился в школе, я понятия не имел о компьютерах - зачем они и что это такое.
У нас их просто не было. Зато у нас были калькуляторы.
Практически каждый мой одноклассник носил в школу ту или иную модель - алгебра, геометрия, физика... на этих уроках без калькулятора было никуда.
Эти машинки назывались микрокалькуляторы - они были на солнечных батареях или от сети. А некоторые модели даже шли с чехлом - прямо как сегодня мобильные телефоны...
Уже в начале 90-х в тех или иных местах стали появляться игровые компьютерные клубы, где можно было заплатив рубль-другой играть в Монтесуму, Марио или авиа-симуляторы, а у некоторых "крутых" одноклассников даже домашние Атари или Робики... Нам. детям хотелось играть в начинавшие набирать моду компьютерные игры... Некоторые играли... на калькуляторах.
Да-да... были программируемые микрокалькуляторы, на которых можно было "играть". Под катом, под всеми фото калькуляторов я расскажу и об этом...

1. Электроника МК-51. Удобный и функциональный. С 7 по 11 класс отходил со мною в школу от звонка до звонка

2. Конторский монстр Электроника Б3-05 М. Он еще не имел ЖК-экрана, и цифры горели тонкими зелеными ниточками.

3. Электроника Б3-09 М. Агрегат на фото был выпущен в далеком 1976 году...

4. Электроника Б3-18 А - первый отечественный инженерный микрокалькулятор. Выпускался с 1976 года

5. Электроника Б3-36. Зарядка почти как у некоторых мобилок Сони-Эрикссон

6. Электроника МК-37А

7. Электроника МК-41. Еще один конторский монстр

8. Электроника МК-44. И еще один. Как же бодро на таких бухгалтера отбивали трели, быстро вписывая полученные цифры в желтые бумажные простыни...

9. Электроника МК-52 - первый советский микрокалькулятор с энергонезависимой электрически стираемой памятью (ППЗУ объемом 4 Кбит, число циклов перезаписи 10000), обеспечивающей сохранность программ при выключении питания и выполняющий функции буфера при обмене данными с внешними устройствами

10. Электроника МК-56. Память 98 команд и 14 регистров, быстродействие около 5 простых операций в секунду. При выключении калькулятора содержимое памяти стирается

11. Электроника МК-59, изготавливаемый для народного хозяйства и экспорта))

12. Электроника МК-41. Всегда умиляла его форма. Как будто конь встал на дыбы

13. Электроника МК-60. Первый советский калькулятор с питанием на солнечных элементах

14. Электроника МК-61. Вот он - программируемый микрокалькулятор, на котором я "играл". Если это можно так назвать

15. Он же, родной

16. Электроника МК-71 - советский инженерный калькулятор с питанием от солнечных элементов. Выпускался с 1986 года на заводе Ангстрем, продавался по цене 75 рублей. Полный отечественный аналог Casio fx-950

17. Электроника МК-85 — программируемый калькулятор (микрокомпьютер) со встроенным интерпретатором языка Бейсик. Выпускался заводом «Ангстрем», г. Зеленоград с 1986 года по 2000 год, продавался в сети магазинов «Электроника» по цене 145 рублей, что на тот момент было значительно дешевле любой другой ЭВМ, оснащённой интерпретатором Бейсика, затем по свободной розничной цене

И немного об играх на программируемых микрокалькуляторах.
Игр для ПМК было великое множество. Многие из этих игр сейчас утеряны и их невозможно найти даже среди бескрайних просторов интернета.
Что же представляла из себя типичная ПМК-шная игра. Чтобы полностью осветить все характерные особенности таких игр, мы выберем какую-нибудь динамическую игру, например "Звездный боец-4".
Сначала нужно было ввести программный кода. Он имел такой вид

Весь этот код целиком аккуратно вводится в память ПМК (как мы видим по количеству шагов — 104 — данная программа подходит только для МК-61 и МК-52). Не дай Боже ошибиться — на поиск ошибки уйдет немалое время, если вы конечно не счастливый обладатель МК-52 и не загружаете эту программу из ППЗУ.
После того, как программный код введен, необходимо заполнить регистры (это переменные в ПМК). Вводим в регистры необходимую информацию. Она обычно печатается сразу же после программного кода.
По традиции данные для занесения в регистр записываются в формате нажимаемых клавиш. В случае с нашей игрой это: "6 хП0; число от 0 до 1 хП3; 3 хП7; 50 хП8; 69 хП9; 88858893 В? 336542 KV ВП 7 хПА; 87 хПB; 59 хПС; 7 F10x хПД". Запись "6 хП0" в данном примере означает, что в регистр 0 заносится число 6.
Для сравнения, представьте, что вы купили лист (не диск, а лист) с игрой Oblivion , и вводите ее по пунктам в компьютер, вместо того, чтобы автоматически инсталлировать с диска… Теперь вы понимаете.
После того, как в регистры введены все необходимые данные, нажимаются клавиши "В/О" и "С/П", запускающие программу с шага номер 00.
"Звездный боец" — динамическая игра, а значит теперь нам нужно будет внимательно вглядываться в тускло мерцающий экран. Если мы находимся в комнате с излишком солнечного света (или, не дай Бог, на открытом воздухе), то для калькулятора лучше всего сделать козырек из плотного картона, чтобы затенять мерцающий индикатор.
Итак, напряженно вглядываемся в мерцание. Сначала это кавардак непонятных цифр и символов, а потом с завидным постоянством начинает мерцать одно и то же видеосообщение:


Это уже игра)))) да-да

Как мы знаем из инструкции (а ее обязательно нужно прочесть перед игрой, чтобы знать что означают те или иные буковки-циферки, ведь интуитивно понятной графики тут нет):

  • "8" слева — ничего не значащая цифра, появление которой на экране неизбежно (таковы условия создания видеосообщений для ПМК);
  • "-" означает вражеские беспилотные зонды;
  • мигающая "8" в центре — наш прицел;
  • еще бывают: "L" — лёгкие истребители, "C" — средние истребители, "Г" — тяжёлые истребители, "Е" — корабли-телохранители (на иллюстрации не представлены).
Цель игры: уничтожить все корабли противника, Империи Зла. На уничтожение каждого звена дается 9 ходов. Если мы за это время не уничтожим звено кораблей противника, другое звено заходит нам с тыла и уничтожает — появится надпись "ЕГГОГ", которая для большинства ПМК-игр является аналогом "game over". Если же мы их успеем уничтожить, то перейдем к следующему звену. После уничтожения последнего звена (корабли-телохранители "Е") появится свидетельство нашей победы "BLESC-93".
Как же делать ход, спросите вы, ведь после нажатия на любую клавишу калькулятор прерывает вычисления (а значит и игру)? Ответ прост — для перемещения в пространстве используется рычажок "Р-ГРД-Г". Р — влево, Г — вправо, ГРД — выстрел.
Пока мигает сообщение мы передвигаем рычаг в нужное положение и ждем. Калькулятор производит нужные вычисление и вот мигает уже новая диспозиция. Можно делать новый ход....

Вот такая суходрочка микрокалькуляторная игра

Предыдущие 5 выпусков из серии

Каждому приходилось пользоваться калькулятором. Он уже стал обыденным предметом, не вызывающим удивления. Но какова история его развития? Кто изобрел калькулятор первым? Как выглядело и функционировало средневековое устройство?

Древние вычислительные средства

С началом возникновения торговли и обмена люди стали испытывать потребность в счете. С этой целью использовали пальцы на руках и ногах, зерна, камни. Примерно в 500 году до н. э. появились первые счеты. Абаки выглядели как ровная доска, на которой в бороздках раскладывались мелкие предметы. Распространение получил такой вид исчисления в Греции и Риме.

Китайцы основой счета использовали 5, а не 10. Суан-пан - прямоугольная рама для вычислений, на которой вертикально натянуты нити. Конструкция условно делилась на 2 части - нижняя "Земля" и верхняя "Небо". Нижние шарики представляли собой единицы, а верхние - десятки.

Славяне пошли по стопам восточных соседей, только несколько изменили прибор. Появилось дощатое счетное устройство в XV веке. Отличие от китайского суан-пан в том, что веревки располагались горизонтально, а система исчисления применялась десятичная.

Первый механический прибор

Немецкий математик и астроном, в 1623 году смог воплотить свою мечту и стал автором устройства, в основе которого лежал часовой механизм. Считающие часы могли производить простейшие математические операции. Но так как прибор был сложным и большим, то широкого применения не получил. Иоганн Кепплер стал первым пользователем механизма, хоть и считал, что вычисления проще выполнять в уме. С этого момента начинается история калькулятора, а преобразования в конструкции и функциях устройства постепенно приведут его к современной форме.

Французский физик и философ Паскаль через 20 лет предложил прибор, осуществляющий счет посредством шестеренок. Чтобы произвести сложение или вычитание, требовалось повернуть колесико необходимое количество раз.

В 1673 году усовершенствованное немецким математиком Готфридом Лейбницем устройство стало первым калькулятором - позже название закрепилось в истории. При помощи него стало возможным выполнять умножение и деление. Однако себестоимость механизма была высокой, поэтому сделать прибор доступным для использования было невозможно.

Серийное производство

О том, кто изобрел калькулятор, было известно давно - механизм Лейбница даже приобрел Петр 1. Его идеи использовали Вагнер и Левин. После смерти изобретателя аналогичный прибор соорудил Буркхардт, дальнейшим усовершенствованием занимались Мюллер и Кнутцен.

В коммерческих целях устройство стал использовать француз Шарль Ксавье Тома де Кольмар. Серийный выпуск предприниматель организовал в 1820 году, его машина почти не отличалась от первого калькулятора. Кто изобрел его из этих двух ученых, ходили споры, француза даже обвиняли в присвоении чужого достижения, однако конструкция счетной машины у Кольмара все же отличалась.

В царской России первый арифмометр - это результат работы ученого Чернышова. Он создал аппарат в 50-х годах XIX века, а вот название запатентовал в 1873 году Фрэнк Болдуин. Принцип работы механической счетной машины основан на цилиндрах и зубчатых колесах.

На рубеже XIX-XX столетия в России началось серийное производство калькуляторов. В Советском Союзе прибор с названием "Феликс" получил распространение в 30-х годах прошлого века и использовался до конца 70-х.

Электронные калькуляторы

Первый электронный калькулятор изобрели братья Кассио. В 1957 началась эпоха бурного развития в отрасли ЭВМ. Весило устройство Casio 14-A целых 140 кг, имело электрическое реле и 10 кнопок. На дисплей выводились цифры и отображался результат. К 1965 году вес уменьшился до 17 кг.

Отечественный электронный калькулятор - это заслуга ученых ленинградского университета, которые разработали его в 1961 году. В промышленный выпуск модель ЭКВМ-1 поступила уже в 1964. Через три года аппарат усовершенствовали, он мог работать с тригонометрическими функциями. Инженерный калькулятор первой изобрела компания Hewlett Packard в 1972 году.

Следующая ступень развития - микросхемы. Кто изобрел калькуляторы этого поколения в СССР? Разработкой занималось 27 инженеров. Ими было потрачено около 15 лет, пока в продажу в 1975 году не поступил инженерный калькулятор "Электроника В3-18". Квадратные корни, степени, логарифмы и транзисторный микропроцессор завоевали народное признание, однако стоимость устройства составляла 200 рублей и позволить его могли не все желающие.

Прорывом в советских технологиях стал микрокалькулятор ВЗ-34. При стоимости в 85 рублей он стал первым отечественным домашним компьютером. Программное обеспечение позволяло устанавливать не только инженерные, но и игровые программы.

Шедевром прошлого века стал МК-90. Аналогов на тот момент прибор не имел: графический дисплей, энергонезависимое ОЗУ и программирование на языке бейсик.

Эти машинки назывались микрокалькуляторы - они были на солнечных батареях или от сети. А некоторые модели даже шли с чехлом - прямо как сегодня мобильные телефоны…

1. Электроника МК-51. Удобный и функциональный. С 7 по 11 класс отходил со мною в школу от звонка до звонка


2. Конторский монстр Электроника Б3-05 М. Он еще не имел ЖК-экрана, и цифры горели тонкими зелеными ниточками.


3. Электроника Б3-09 М. Агрегат на фото был выпущен в далеком 1976 году…


4. Электроника Б3-18 А - первый отечественный инженерный микрокалькулятор. Выпускался с 1976 года


5. Электроника Б3-36. Зарядка почти как у некоторых мобилок Сони-Эрикссон


6. Электроника МК-37А


7. Электроника МК-41. Еще один конторский монстр

8. Электроника МК-44. И еще один. Как же бодро на таких бухгалтера отбивали трели, быстро вписывая полученные цифры в желтые бумажные простыни…


9. Электроника МК-52 - первый советский микрокалькулятор с энергонезависимой электрически стираемой памятью (ППЗУ объемом 4 Кбит, число циклов перезаписи 10000), обеспечивающей сохранность программ при выключении питания и выполняющий функции буфера при обмене данными с внешними устройствами

10. Электроника МК-56. Память 98 команд и 14 регистров, быстродействие около 5 простых операций в секунду. При выключении калькулятора содержимое памяти стирается


11. Электроника МК-59, изготавливаемый для народного хозяйства и экспорта))


12. Электроника МК-41. Всегда умиляла его форма. Как будто конь встал на дыбы


13. Электроника МК-60. Первый советский калькулятор с питанием на солнечных элементах

14. Электроника МК-61. Вот он - программируемый микрокалькулятор, на котором я «играл». Если это можно так назвать


15. Он же, родной


16. Электроника МК-71 - советский инженерный калькулятор с питанием от солнечных элементов. Выпускался с 1986 года на заводе Ангстрем, продавался по цене 75 рублей. Полный отечественный аналог Casio fx-950

17. Электроника МК-85 - программируемый калькулятор (микрокомпьютер) со встроенным интерпретатором языка Бейсик. Выпускался заводом «Ангстрем», г. Зеленоград с 1986 года по 2000 год, продавался в сети магазинов «Электроника» по цене 145 рублей, что на тот момент было значительно дешевле любой другой ЭВМ, оснащённой интерпретатором Бейсика, затем по свободной розничной цене


И немного об играх на программируемых микрокалькуляторах.
Игр для ПМК было великое множество. Многие из этих игр сейчас утеряны и их невозможно найти даже среди бескрайних просторов интернета.
Что же представляла из себя типичная ПМК-шная игра. Чтобы полностью осветить все характерные особенности таких игр, мы выберем какую-нибудь динамическую игру, например «Звездный боец-4».
Сначала нужно было ввести программный кода. Он имел такой вид


Весь этот код целиком аккуратно вводится в память ПМК (как мы видим по количеству шагов - 104 - данная программа подходит только для МК-61 и МК-52). Не дай Боже ошибиться - на поиск ошибки уйдет немалое время, если вы конечно не счастливый обладатель МК-52 и не загружаете эту программу из ППЗУ.
После того, как программный код введен, необходимо заполнить регистры (это переменные в ПМК). Вводим в регистры необходимую информацию. Она обычно печатается сразу же после программного кода.
По традиции данные для занесения в регистр записываются в формате нажимаемых клавиш. В случае с нашей игрой это: «6 хП0; число от 0 до 1 хП3; 3 хП7; 50 хП8; 69 хП9; 88858893 В? 336542 KV ВП 7 хПА; 87 хПB; 59 хПС; 7 F10x хПД». Запись «6 хП0» в данном примере означает, что в регистр 0 заносится число 6.
Для сравнения, представьте, что вы купили лист (не диск, а лист) с игрой Oblivion, и вводите ее по пунктам в компьютер, вместо того, чтобы автоматически инсталлировать с диска… Теперь вы понимаете.
После того, как в регистры введены все необходимые данные, нажимаются клавиши «В/О» и «С/П», запускающие программу с шага номер 00.
«Звездный боец» - динамическая игра, а значит теперь нам нужно будет внимательно вглядываться в тускло мерцающий экран. Если мы находимся в комнате с излишком солнечного света (или, не дай Бог, на открытом воздухе), то для калькулятора лучше всего сделать козырек из плотного картона, чтобы затенять мерцающий индикатор.
Итак, напряженно вглядываемся в мерцание. Сначала это кавардак непонятных цифр и символов, а потом с завидным постоянством начинает мерцать одно и то же видеосообщение:

Это уже игра)))) да-да
Как мы знаем из инструкции (а ее обязательно нужно прочесть перед игрой, чтобы знать что означают те или иные буковки-циферки, ведь интуитивно понятной графики тут нет):«8» слева - ничего не значащая цифра, появление которой на экране неизбежно (таковы условия создания видеосообщений для ПМК);"-" означает вражеские беспилотные зонды; мигающая «8» в центре - наш прицел; еще бывают: «L» - лёгкие истребители, «C» - средние истребители, «Г» - тяжёлые истребители, «Е» - корабли-телохранители (на иллюстрации не представлены). Цель игры: уничтожить все корабли противника, Империи Зла. На уничтожение каждого звена дается 9 ходов. Если мы за это время не уничтожим звено кораблей противника, другое звено заходит нам с тыла и уничтожает - появится надпись «ЕГГОГ», которая для большинства ПМК-игр является аналогом «game over». Если же мы их успеем уничтожить, то перейдем к следующему звену. После уничтожения последнего звена (корабли-телохранители «Е») появится свидетельство нашей победы «BLESC-93».
Как же делать ход, спросите вы, ведь после нажатия на любую клавишу калькулятор прерывает вычисления (а значит и игру)? Ответ прост - для перемещения в пространстве используется рычажок «Р-ГРД-Г». Р - влево, Г - вправо, ГРД - выстрел.
Пока мигает сообщение мы передвигаем рычаг в нужное положение и ждем. Калькулятор производит нужные вычисление и вот мигает уже новая диспозиция. Можно делать новый ход…
Вот такая суходрочка микрокалькуляторная игра

22/09/98)

Эта статья посвящена незаменимым помощникам в нашей жизни - микрокалькуляторам. Описывается история возникновения советских микрокалькуляторов, их особенности и интересные возможности отдельных моделей.

ПЕРВЫЕ ВЫЧИСЛИТЕЛИ

Первым механическим приспособлением в России для автоматизации расчетов были счеты. Этот "народный калькулятор" продержался на рабочих местах кассирш в магазинах вплоть до середины девяностых годов. Интересно отметить, что в учебнике "Торговые вычисления" 1986 года методам вычисления на счетах посвящена целая глава.

Одновременно со счетами, в научных кругах, еще с дореволюционных времен, с успехом использовались логарифмические линейки, которые с XVII века практически без изменений прослужили "верой и правдой" вплоть до появления калькуляторов.

Пытаясь как-то автоматизировать процесс вычислений, человечество начинает изобретать механические считающие устройства. Даже известный математик Чебышев в конце XIX века предложил свою модель вычислителя. К сожалению, изображения не сохранилось.

Самым популярным механическим вычислителем в советские времена являлся арифмометр системы Однера "Феликс". Слева - изображение арифмометра, взятое из "Малой советской энциклопедии" 1932 года издания.
На этом арифмометре можно было производить четыре арифметических действия - сложение, вычитание, умножение и деление. В более поздних моделях, например, "Феликс-М", можно видеть ползуночки для указания положения запятой и рычажок для сдвига каретки. Для производства вычислений было необходимо крутить ручку - один раз для сложения или вычитания, и несколько раз для умножения и деления.

Один раз, конечно, покрутить ручку можно, и даже интересно, но что делать, если вы работаете бухгалтером, и за день необходимо произвести сотни простых операций? Да и шум от крутящихся шестеренок-счетчиков стоит приличный, особенно, если одновременно в помещении с арифмометрами работает несколько человек.
Однако, со временем крутить ручку начинало надоедать, и человеческий ум изоблел электрические счетные машины, которые арифметические действия производили автоматически или полуавтоматически. Справа - изображение полулярной в 50-е годы многоклавишной вычислительной машины ВММ-2 (Товарный словарь, VIII том, 1960). Эта модель имела девять разрядов и работала до 17-го порядка. У нее были габариты 440x330x240 мм и масса в 23 килограмма.

Все же наука взяла свое. В послевоенные годы начала бурно развиваться электроника и появились первые компьютеры - электронные-вычислительные машины (ЭВМ). К началу 60-х годов между компьютерами и самыми мощными счетно-клавишными вычислительными машинами образовался по многим параметрам огромный разрыв, несмотря на появление советских релейных вычислительных машин "Вильнюс" и "Вятка" (1961).
Но к тому времени в ленинградском университете уже была спроектирована одна из первых в мире настольных клавишных вычислительных машин, в которой использовались малогабаритные полупроводниковые элементы и ферритовые сердечники. Был изготовлен и действующий макет этой ЭКВМ - электронной клавишной вычислительной машины.
А вообще, считается, что первый массовый электронный калькулятор появился в Англии в 1963 году. Его схема была выполнена на печатных платах и содержала несколько тысяч одних только транзисторов. Размеры такого калькулятора были как у пишущей машинки, а выполнял он лишь арифметические операции с многоразрядными числами. Слева показан калькулятор "Электроника" - типичный представитель калькуляторов этого поколения.

Распространение настольных ЭКВМ началось в 1964 г., когда в нашей стране был освоен серийный выпуск ЭКВМ "Вега" и начат выпуск настольных ЭКВМ в ряде других стран. В 1967 г. появилась ЭДВМ-11 (электронная десятиклавишная вычислительная машина) - первая в нашей стране ЭКВМ, автоматически вычислявшая тригонометрические функции.

Дальнейшее развитие вычислительной техники неразрывно связано с достижениями микроэлектроники. В конце 50-х годов была разработана технология производства интегральных схем, содержавших группы связанных между собой электронных элементов, а уже в 1961 г. появилась первая модель ЭВМ на интегральных схемах, которая была в 48 раз меньше по массе и в 150 раз меньше по объему, чем полупроводниковые ЭВМ, выполнявшие те же функции. В 1965 г. появляются и первые ЭКВМ на интегральных схемах. Примерно в это же время появились и первые переносные ЭКВМ на БИСах (только что внедренных в производство) с автономным питанием от встроенных аккумуляторов. В 1971 г. габариты ЭКВМ стали "карманными", в 1972 г. появились ЭМК научно-технического типа с подпрограммами вычисления элементарных функций, дополнительными регистрами памяти и с представлением чисел как в естественной форме, так и в форме с плавающей запятой в самом широком диапазоне чисел.
Развитие производства ЭКВМ в нашей стране шло параллельно с его развитием в других наиболее промышленно развитых странах мира. В 1970 г. появились первые образцы ЭКВМ на ИС, с 1971 г. на этих элементах начинается выпуск машин серии "Искра". В 1972 г. стали производиться и первые отечественные микро-ЭВМ на БИСах.

ПЕРВЫЙ СОВЕТСКИЙ КАРМАННЫЙ КАЛЬКУЛЯТОР

Первые советские настольные калькуляторы, которые появились в 1971 году, быстро завоевали популярность. ЭКВМ на основе БИС работали тихо, потребляли мало энергии, вычисляли быстро и безошибочно. Себестоимость микросхем быстро снижалась, и можно было думать о создании МК карманного размера, цена которого была бы доступна широкому потребителю.
В августе 1973 года электронная промышленность нашей страны поставила задачу за один год создать электронный карманный вычислитель на микропроцессорной БИС и с жидкокристаллическим индикатором. Над этой сложнейшей задачей работала группа из 27 человек. Предстояла огромная работа: изготовить чертежи, схемы и. шаблоны, состоящие из 144 тыс. точек, разместить микропроцессор с 3400 элементами в кристалле размером 5х5 мм.
Через пять месяцев работы были готовы первые образцы МК, а через девять месяцев, за три месяца до установленного срока, электронный карманный вычислитель под названием "Электроника Б3-04" был сдан государственной комиссии. Уже в начале 1974 года электронный гном поступил в продажу. Это была большая трудовая победа, показавшая возможности нашей электронной промышленности.

В этом микрокалькуляторе впервые был применен индикатор на жидких кристаллах, причем цифры изображались белыми знаками на черном фоне (см. рис.).
Включение калькулятора производилось нажатием на шторку, после чего открывалась крышка, и калькулятор начинал работу.
Микрокалькулятор имел очень интересный алгоритм работы. Для того, чтобы вычислить (20-8+7) необходимо было нажать клавиши | C | 20 | += | 8 | -= | 7 | += |. Результат: 5. Если результат надо умножить, скажем, на три, то вычисления можно продолжить нажатием клавиш: | X | 3 | += |.
Клавиша | K | использовалась для вычисления с константой.

В этом калькуляторе были использованы прозрачные платы с объемным монтажом. На рисунке показана часть платы микрокалькулятора.

Микрокалькулятор содержит четыре микросхемы - 23-х разрядный сдвиговый регистр К145АП1, устройство управления индикатором К145ПП1, операционный регистр К145ИП2 и микропроцессор К145ИП1. В блоке преобразования напряжения использована микросхема преобразования уровней.
Интересно отметить, что этот калькулятор работал от одной батарейки типа АА (А316 "Квант", "Уран").

ПЕРВЫЕ СОВЕТСКИЕ МИКРОКАЛЬКУЛЯТОРЫ

В начале 70-х годов привычный сегодня язык работы с микрокалькуляторами только зарождался. Первые модели микрокалькуляторов вообще могли иметь свой язык работы, и на калькуляторе приходилось учиться считать. Возьмем, к примеру, первый калькулятор ленинградского завода "Светлана" серии "С". Это - калькулятор С3-07. Кстати, стоит отметить, что калькуляторы завода "Светлана" вообще стоят особняком.

Небольшое отступление. Все микрокалькуляторы в те времена получили общее обозначение "Б3" (цифра три на конце, а не буква "З", как многие считали). Настольные электронные часы получили буквы Б2, наручные электронные - Б5 (например, Б5-207), настольные электронные с вакуумным индикатором - Б6, большие настенные - Б7 и так далее. Буква "Б" - "бытовая техника". Только микрокалькуляторы Светлановского завода получили букву "С" - Светлана (СВЕТ ЛАмпочки НАкаливания - для тех, кто не знает).

Так вот, возьмем, к примеру, калькулятор С3-07. Очень удивительный калькулятор, особенно - его клавиатура и дисплей. Как видно из картинки, на калькуляторе совмещены не только клавиши | += | и | -= |, но и умножить/разделить | X -:- |. Попробуйте сами догадаться, как на этом калькуляторе умножать и делить. Подсказка: калькулятор не воспринимает два нажатия на одну клавишу, возможно только одно.
Ответ не менее удивителен: чтобы произвести, скажем, умножение 2 на 3, надо нажать на клавиши | 2 | X-:- | 3 | += |, а чтобы разделить 2 на 3, надо нажать клавиши: | 2 | X-:- | 3 | -= |. Сложение и вычитание происходит аналогично калькулятору Б3-04, то есть, получение разности 2 - 3 будет вычисляться так: | 2 | += | 3 | -= |. В некоторых моделях этого калькулятора можно встретить и удивительный восьмисегментный индикатор.

Начиная с этой модели калькуляторов, все простые калькуляторы Светлановского завода оперируют с числами с порядками до 10e16-1, даже если на дисплей помещается восемь или двенадцать разрядов. Если результат превышает 8 или 12 разрядов (в зависимости от модели), то запятая исчезает и на дисплее появляются первые 8 или 12 разрядов числа.

Говоря о языке работы с микрокалькуляторами первых выпусков, следует упомянуть и о калькуляторах Б3-02, Б3-05 и Б3-05М. Это - вехи старых калькуляторов типа "Искра". В этих калькуляторах при вычислениях постоянно горят все разряды индикатора. В основном, конечно, нули. Очень неудобно отыскивать на таких калькуляторах первый (да и последний) значимый разряд. Кстати, в модели C3-07, о которой говорилось ранее, уже была попытка решить эту проблему, хотя и несколько необычным способом - на этом калькуляторе ноль имеет половину высоты. Так вот, эти три калькулятора имели очень неудобную, но вполне объяснимую для ранних калькуляторов особенность: требуемая точность вычислений задается при вводе первого числа. То есть, если необходимо, скажем, вычислить частное от деления 23 на 32 с точностью до трех знаков после запятой, то число 23 необходимо ввести с тремя знаками после запятой: | 23,000 | -:- | 32 | = | (0.718). До тех пор, пока оператор не нажмет кнопку сброса, все последующие вычисления будут производиться с тремя знаками после запятой, а запятая вообще больше никуда не движется. Это, кстати, и называется "фиксированной запятой", а более поздние калькуляторы, в которых запятая уже перемещается по дипслею, тогда назывались "с плавающей запятой". Сейчас, в терминологии произошли изменения, в результате которых с "плавающей запятой" сейчас называются отображения числа с мантиссой слева и порядком справа.

Через год после разработки первого карманного микрокалькулятора Б3-04 появились новые, более совершенные модели карманных МК. Это - модели Б3-09М, Б3-14 и Б3-14М. Эти калькуляторы были сделаны на одной микросхеме процессора К145ИК2 и одной микросхеме генератора фаз. Слева показан калькулятор Б3-09М, в таком же корпусе сделан и Б3-14М, справа - Б3-14. На этих моделях был уже "стандартный" язык работы на калькуляторах, включая вычисления с константой.
Эти калькуляторы уже могли работать как от блока питания, так и от четырех (Б3-09М, Б3-14М) или трех (Б3-14) элементов типа АА.
Хотя эти калькуляторы сделаны на одном и том же чипе, они имеют разные функциональные возможности. И вообще, "убирание" разных функций было присуще многим моделям советских микрокалькуляторов. Например, у микрокалькулятора Б3-09М не было знака вычисления квадратного корня, Б3-14М не умел вычислять проценты.
Особенностью этих простых калькуляторов являлось то, что запятая занимала отдельный разряд. Это очень удобно для беглого считывания информации, но при этом пропадает последний знаковый разряд. У этих же калькуляторов перед началом работы необходимо нажимать клавишу "C" для очистки регистров.

ПЕРВЫЙ СОВЕТСКИЙ ИНЖЕНЕРНЫЙ МИКРОКАЛЬКУЛЯТОР

Следующим огромным шагом в истории развития микрокалькуляторов стало появление первого советского инженерного микрокалькулятора. В конце 1975 года в Советском Союзе был создан первый инженерный микрокалькулятор Б3-18. Как писал по этому поводу журнал "Наука и Жизнь" 10, 1976 в статье "Фантастическая электроника": "...этот калькулятор перешел Рубикон арифметики, его математическое образование шагнуло в тригонометрию и алгебру. "Электроника Б3-18" умеет мгновенно возводить в квадрат и извлекать квадратный корень, в два приема возводить в любую степень в пределах восьми разрядов, вычислять обратные величины, вычислять логарифмы и антилогарифмы, тригонометрические функции...", "...когда видишь, как машина, которая только что мгновенно складывала огромные числа, тратит несколько секунд, чтобы выполнить какую-либо алгебраическую или тригонометрическую операцию, невольно задумываешься о той большой работе, которая идет внутри маленькой коробочки, прежде чем на ее индикаторе засветится результат".
И действительно, была проделана огромная работа. В единый кристалл размером 5 х 5,2 мм удалось вместить 45000 транзисторов, резисторов, конденсаторов и проводников, то есть полсотни телевизоров того времени запихали в одну клеточку арифметической тетради! Однако, и цена такого калькулятора была немалой - 220 рублей в 1978 году. Для примера, инженер после окончания института в те времена получал 120 рублей в месяц. Но, покупка стоила того. Теперь не надо думать, как не сбить ползунок логарифмической линейки, не надо заботиться о погрешности, можно забросить на полку таблицы логарифмов.
Кстати, в этом калькуляторе впервые была применена клавиша префиксной функции "F".
Все же в микросхему К145ИП7 калькулятора Б3-18 не удалось полностью вместить все, что хотелось. Например, при вычислении функций, в которых использовалось разложение в ряд Тэйлора, очищался рабочий регистр, в результате чего стирался предыдущий результат операции. В связи с этим нельзя было производить цепочные вычисления, такие как 5 + sin 2. Для этого сначала нужно было получить синус от двух, а потом только прибавить к результату 5.

Итак, работа проделана большая, потрачены большие усилия, и в результате появился хороший, но очень дорогой калькулятор. Чтобы калькулятор был доступен массовым слоям населения, было принято решение на базе калькулятора Б3-18А сделать более дешевую модель. Чтобы не изобретать велосипед, наши инженеры пошли по самому легкому пути. Они взяли и убрали клавишу префиксной функции "F" с калькулятора. Калькулятор превратился в обычный, получил название "Б3-25А" и стал доступным широким слоям населения. И только разработчики и ремонтники калькуляторов знали тайну переделки Б3-25А.

ДАЛЬНЕЙШЕЕ РАЗВИТИЕ МИКРОКАЛЬКУЛЯТОРОВ

Сразу вслед за калькулятором Б3-18 совместно с инженерами из ГДР был выпущен микрокалькулятор Б3-19М. В этом калькуляторе была использована, так называемая, "обратная польская запись". Сначала набирается первое число, затем нажимается клавиша ввода числа в стек , затем второе число, и только после этого - требуемая операция. Стек в калькуляторе состоит из трех регистров - X, Y и Z. В этом же калькуляторе впервые был применен ввод порядка числа и показ числа в формате с плавающей запятой (с мантиссой и порядком). В калькуляторе был использован 12-разрядный индикатор на красных светоизлучающих диодах.

В 1977 году появился другой очень мощный инженерный калькулятор - С3-15. Этот калькулятор имел повышенную точность вычислений (до 12 разрядов), работал с порядками до 9,(9) в 99 степени, имел три регистра памяти, но самое замечательное - работал с алгебраической логикой. То есть, для того, чтобы вычислить по формуле 2 + 3 * 5, не нужно было сначала вычислять 3 * 5, а затем к результату прибавлять 2. Эту формулу можно было записывать в "естественном" виде: | 2 | + | 3 | * | 5 | = |. Кроме того, в калькуляторе использовались скобки до восьми уровней. Еще этот калькулятор - единственный калькулятор, который вместе со своим настольным братом МК-41, имеет клавишу /p/. Эта клавиша использовалась для вычислений по формуле sqrt (x^2 + y^2).

В 1977 году была разработана микросхема К145ИП11, которая породила целую серию калькуляторов. Самым первым из них был очень известный калькулятор Б3-26 (на рисунке справа). Как и с калькуляторами Б3-09М, Б3-14 и Б3-14М, а также с Б3-18А и Б3-25А, с ним поступили также - удалили некоторые функции.

На основе калькулятора Б3-26 были сделаны калькуляторы Б3-23 с процентами, Б3-23А с квадратным корнем, Б3-24Г с памятью. Кстати, калькулятор Б3-23А впоследствии стал самым дешевым советским калькулятором с ценой всего в 18 рублей. Б3-26 вскоре стал называться МК-26 и появился его сводный брат МК-57 и МК-57А с аналогичными функциями.

Светлановский завод также порадовал своей моделью С3-27, которая, правда, не прижилась, и ее вскоре заменила очень популярная и дешевая модель С3-33 (МК-33).

Еще одним направлением в развитии микрокалькуляторов стали инженерные Б3-35 (МК-35) и Б3-36 (МК-36). Б3-35 отличался от Б3-36 более простым дизайном и стоил на пять рублей дешевле. Эти микрокалькуляторы умели переводить градусы в радианы и наоборот, умножать и делить числа в памяти.
Очень интересно эти калькуляторы вычисляли факториал - простым перебором. На вычисление максимального значения факториала в 69 на микрокалькуляторе Б3-35 уходило более пяти секунд.
Эти калькуляторы были очень популярны у нас, хотя и обладали, на мой взгляд, некоторым недостатком: они показывали на индикаторе ровно столько значащих разрядов, сколько об этом сказано в инструкции. Обычно их пять-шесть для трансцендентных функций.

На основе этих калькуляторов был сделан настольный вариант МК-45.

Кстати, многие карманные инженерные калькуляторы имеют своих настольных братьев. Это - калькуляторы МК-41 (С3-15), МКШ-2 (Б3-30), МК-45 (Б3-35, Б3-36).

Калькулятор МКШ-2 - единственный "школьный" калькулятор выпускавшийся нашей промышленностью за исключением больших демонстрационных, о которых будет сказано ниже. Этот калькулятор, как и калькулятор Б3-32 (на рисунке слева), умел вычислять корни квадратного уравнения и находить корни системы уравнений с двумя неизвестными. По дизайну этот калькулятор полностью идентичен калькулятору Б3-14.
Особенность калькулятора, кроме описанных выше, - все надписи на клавишах выполнены по иностранным стандартам. Например, клавиша записи числа в память обозначалась не "П" и не "x->П", а "STO". Вызов числа из памяти - "RCL".
Несмотря на возможность работы с числами с большими порядками, на этом калькуляторе использовался восьмиразрядный дисплей, такой же как и в Б3-14. Получалось, что если отображать число с мантиссой и порядком, то на индикаторе умещается только пять значащих цифр. Чтобы решить эту проблему в микрокалькуляторе использовалась клавиша "CN". Если, к примеру, результатом вычислений являлось число 1.2345678e-12, то на индикаторе оно отображалось как 1.2345-12. Нажав | F | CN |, видим на индикаторе 12345678. Запятая при этом гаснет.





© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows