Теория пределов. Конечные пределы функции в бесконечно удаленных точках

Теория пределов. Конечные пределы функции в бесконечно удаленных точках

Энциклопедичный YouTube

  • 1 / 5

    Интуитивное понятие о предельном переходе использовалось еще учеными Древней Греции при вычислении площадей и объемов раз­личных геометрических фигур. Методы решения таких задач в основном были развиты Архимедом .

    При создании дифференциального и инте­грального исчислений математики XVII века (и, прежде всего, Нью­тон) также явно или неявно использовали понятие предельного перехода. Впервые определение понятия предела было введено в работе Валлиса «Арифметика бесконечных величин» (XVII век), однако истори­чески это понятие не лежало в основе дифференциального и интеграль­ного исчислений.

    С помощью теории пределов во второй половине XIX века было, в частности, обосновано использование в анализе бесконеч­ных рядов, которые явились удобным аппаратом для построения новых функций.

    Предел последовательности

    Основная статья: Предел последовательности

    Число a {\displaystyle a} называется пределом последовательности a n = { x 1 , x 2 , . . . , x n } {\displaystyle a_{n}=\{x_{1},x_{2},...,x_{n}\}} , если ϵ > 0 {\displaystyle \epsilon >0} , ∃ {\displaystyle \exists } N (ϵ) {\displaystyle N(\epsilon)} , ∀ {\displaystyle \forall } n > N (ϵ) {\displaystyle n>N(\epsilon)} : | a n − a | < ϵ {\displaystyle |a_{n}-a|<\epsilon } . Предел последовательности обозначается lim n → + ∞ a n {\displaystyle \lim _{n\to +\infty }a_{n}} . Куда именно стремится n {\displaystyle n} , можно не указывать, поскольку n {\displaystyle n} ∈ N {\displaystyle \in \mathbb {N} } , оно может стремиться только к + ∞ {\displaystyle +\infty } .

    Свойства:

    • Если предел последовательности существует, то он единственный.
    • lim c = c {\displaystyle \lim c=c} , c − c o n s t {\displaystyle ,c-const}
    • lim (x n + y n) = lim x n + lim y n {\displaystyle \lim(x_{n}+y_{n})=\lim x_{n}+\lim y_{n}}
    • lim (q x n) = q lim x n {\displaystyle \lim(qx_{n})=q\lim x_{n}} , q − c o n s t {\displaystyle ,q-const}
    • lim (x n y n) = lim x n lim y n {\displaystyle \lim(x_{n}y_{n})=\lim x_{n}\lim y_{n}} (если оба предела существуют)
    • lim (x n / y n) = lim x n / lim y n {\displaystyle \lim(x_{n}/y_{n})=\lim x_{n}/\lim y_{n}} (если оба предела существуют и знаменатель правой части не ноль)
    • Если a n > x n > b n ∀ n {\displaystyle a_{n}>x_{n}>b_{n}\forall n} и lim a n = lim b n {\displaystyle \lim a_{n}=\lim b_{n}} , то lim x n = lim a n = lim b n {\displaystyle \lim x_{n}=\lim a_{n}=\lim b_{n}} (теорема «о зажатой последовательности», также известная, как «теорема о двух милиционерах»)

    Предел функции

    Основная статья: Предел функции

    Число b называется пределом функции f(x) в точке a, если ∀ ϵ > 0 {\displaystyle \forall \epsilon >0} существует δ > 0 {\displaystyle \delta >0} , такое что ∀ x , 0 < | x − a | < δ {\displaystyle \forall x,0<|x-a|<\delta } выполняется | f (x) − b | < ϵ {\displaystyle |f(x)-b|<\epsilon } .

    Для пределов функций справедливы аналогичные свойства, как и для пределов последовательностей, например, lim x → x 0 (f (x) + g (x)) = lim x → x 0 f (x) + lim x → x 0 g (x) {\displaystyle \lim _{x\to x_{0}}(f(x)+g(x))=\lim _{x\to x_{0}}f(x)+\lim _{x\to x_{0}}g(x)} , если все члены существуют.

    Обобщенное понятие предела последовательности

    Пусть X {\displaystyle X} - некоторое множество, в котором определено понятие окрестности U {\displaystyle U} (например, метрическое пространство). Пусть x i ∈ X {\displaystyle x_{i}\in X} - последовательность точек (элементов) этого пространства. Говорят, что x ∈ X {\displaystyle x\in X} есть предел этой последовательности, если в любой окрестности точки x {\displaystyle x} лежат почти все члены последовательности то есть ∀ U (x) ∃ n ∀ i > n x i ∈ U (x) {\displaystyle \forall U(x)\exists n\forall i>nx_{i}\in U(x)}

    Пределы доставляют всем студентам, изучающим математику, немало хлопот. Чтобы решить предел, порой приходится применять массу хитростей и выбирать из множества способов решения именно тот, который подойдет для конкретного примера.

    В этой статье мы не поможем вам понять пределы своих возможностей или постичь пределы контроля, но постараемся ответить на вопрос: как понять пределы в высшей математике? Понимание приходит с опытом, поэтому заодно приведем несколько подробных примеров решения пределов с пояснениями.

    Понятие предела в математике

    Первый вопрос: что это вообще за предел и предел чего? Можно говорить о пределах числовых последовательностей и функций. Нас интересует понятие предела функции, так как именно с ними чаще всего сталкиваются студенты. Но сначала - самое общее определение предела:

    Допустим, есть некоторая переменная величина. Если эта величина в процессе изменения неограниченно приближается к определенному числу a , то a – предел этой величины.

    Для определенной в некотором интервале функции f(x)=y пределом называется такое число A , к которому стремится функция при х , стремящемся к определенной точке а . Точка а принадлежит интервалу, на котором определена функция.

    Звучит громоздко, но записывается очень просто:

    Lim - от английского limit - предел.

    Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что х стремится к какому-то значению, это значит, что переменная не принимает значение числа, но бесконечно близко к нему приближается.

    Приведем конкретный пример. Задача - найти предел.

    Чтобы решить такой пример, подставим значение x=3 в функцию. Получим:

    Кстати, если Вас интересуют , читайте отдельную статью на эту тему.

    В примерах х может стремиться к любому значению. Это может быть любое число или бесконечность. Вот пример, когда х стремится к бесконечности:

    Интуитивно понятно, что чем больше число в знаменателе, тем меньшее значение будет принимать функция. Так, при неограниченном росте х значение 1/х будет уменьшаться и приближаться к нулю.

    Как видим, чтобы решить предел, нужно просто подставить в функцию значение, к которому стремиться х . Однако это самый простой случай. Часто нахождение предела не так очевидно. В пределах встречаются неопределенности типа 0/0 или бесконечность/бесконечность . Что делать в таких случаях? Прибегать к хитростям!


    Неопределенности в пределах

    Неопределенность вида бесконечность/бесконечность

    Пусть есть предел:

    Если мы попробуем в функцию подставить бесконечность, то получим бесконечность как в числителе, так и в знаменателе. Вообще стоит сказать, что в разрешении таких неопределенностей есть определенный элемент искусства: нужно заметить, как можно преобразовать функцию таким образом, чтобы неопределенность ушла. В нашем случае разделим числитель и знаменатель на х в старшей степени. Что получится?

    Из уже рассмотренного выше примера мы знаем, что члены, содержащие в знаменателе х, будут стремиться к нулю. Тогда решение предела:

    Для раскрытия неопределенностей типа бесконечность/бесконечность делим числитель и знаменатель на х в высшей степени.


    Кстати! Для наших читателей сейчас действует скидка 10% на

    Еще один вид неопределенностей: 0/0

    Как всегда, подстановка в функцию значения х=-1 дает 0 в числителе и знаменателе. Посмотрите чуть внимательнее и Вы заметите, что в числителе у нас квадратное уравнение. Найдем корни и запишем:

    Сократим и получим:

    Итак, если Вы сталкиваетесь с неопределенностью типа 0/0 – раскладывайте числитель и знаменатель на множители.

    Чтобы Вам было проще решать примеры, приведем таблицу с пределами некоторых функций:

    Правило Лопиталя в пределах

    Еще один мощный способ, позволяющий устранить неопределенности обоих типов. В чем суть метода?

    Если в пределе есть неопределенность, берем производную от числителя и знаменателя до тех пор, пока неопределенность не исчезнет.

    Наглядно правило Лопиталя выглядит так:

    Важный момент : предел, в котором вместо числителя и знаменателя стоят производные от числителя и знаменателя, должен существовать.

    А теперь – реальный пример:

    Налицо типичная неопределенность 0/0 . Возьмем производные от числителя и знаменателя:

    Вуаля, неопределенность устранена быстро и элегантно.


    Надеемся, что Вы сможете с пользой применить эту информацию на практике и найти ответ на вопрос "как решать пределы в высшей математике". Если Вам нужно вычислить предел последовательности или предел функции в точке, а времени на эту работу нет от слова «совсем», обратитесь к за быстрым и подробным решением.

    Теория пределов – это один из разделов математического анализа. Вопрос решения пределов является достаточно обширным, поскольку существуют десятки приемов решений пределов различных видов. Существуют десятки нюансов и хитростей, позволяющих решить тот или иной предел. Тем не менее, мы все-таки попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике.

    Начнем с самого понятия предела. Но сначала краткая историческая справка. Жил-был в 19 веке француз Огюстен Луи Коши, который дал строгие определения многим понятиям матана и заложил его основы. Надо сказать, этот уважаемый математик снился, снится и будет сниться в кошмарных снах всем студентам физико-математических факультетов, так как доказал огромное количество теорем математического анализа, причём одна теорема убойнее другой. В этой связи мы пока не будем рассматривать определение предела по Коши , а попытаемся сделать две вещи:

    1. Понять, что такое предел.
    2. Научиться решать основные типы пределов.

    Прошу прощения за некоторую ненаучность объяснений, важно чтобы материал был понятен даже чайнику, что, собственно, и является задачей проекта.

    Итак, что же такое предел?

    А сразу пример, чего бабушку лохматить….

    Любой предел состоит из трех частей :

    1) Всем известного значка предела .
    2) Записи под значком предела, в данном случае . Запись читается «икс стремится к единице». Чаще всего – именно , хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().
    3) Функции под знаком предела, в данном случае .

    Сама запись читается так: «предел функции при икс стремящемся к единице».

    Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?
    Понятие предела – это понятие, если так можно сказать, динамическое . Построим последовательность: сначала , затем , , …, , ….
    То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают .

    Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

    Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию .

    Мы рассмотрели простейший предел, но и такие встречаются на практике, причем, не так уж редко!

    Пример с бесконечностью:

    Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает, то есть: сначала , потом , потом , затем и так далее до бесконечности.

    А что в это время происходит с функцией ?
    , , , …

    Итак: если , то функция стремится к минус бесконечности :

    Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ .

    Еще один пример с бесконечностью:

    Опять начинаем увеличивать до бесконечности и смотрим на поведение функции:

    Вывод: при функция неограниченно возрастает :

    И еще серия примеров:

    Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:

    , , , , , , , , ,
    Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.
    В том случае, если , попробуйте построить последовательность , , . Если , то , , .

    ! Примечание : строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.

    Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: , то все равно , так как рано или поздно «икс» начнёт принимать такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом .

    Что нужно запомнить и понять из вышесказанного?

    1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

    2) Вы должны понимать и сразу решать простейшие пределы, такие как , , и т.д.

    Более того, у предела есть очень хороший геометрический смысл. Для лучшего понимания темы рекомендую ознакомиться с методическим материалом Графики и свойства элементарных функций . После прочтения этой статьи вы не только окончательно поймете, что такое предел, но и познакомитесь с интересными случаями, когда предела функции вообще не существует !

    На практике, к сожалению, подарков немного. А поэтому переходим к рассмотрению более сложных пределов. Кстати, по этой теме есть интенсивный курс в pdf-формате, который особенно полезен, если у Вас ОЧЕНЬ мало времени на подготовку. Но материалы сайта, разумеется, не хуже:


    Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены

    Пример:

    Вычислить предел

    Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что , и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

    Как решать пределы данного типа?

    Сначала мы смотрим на числитель и находим в старшей степени:

    Старшая степень в числителе равна двум.

    Теперь смотрим на знаменатель и тоже находим в старшей степени:

    Старшая степень знаменателя равна двум.

    Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

    Итак, метод решения следующий: для того, чтобы раскрыть неопределенность необходимо разделить числитель и знаменатель на в старшей степени .



    Вот оно как, ответ , а вовсе не бесконечность.

    Что принципиально важно в оформлении решения?

    Во-первых, указываем неопределенность, если она есть.

    Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.

    В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:

    Для пометок лучше использовать простой карандаш.

    Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?

    Пример 2

    Найти предел
    Снова в числителе и знаменателе находим в старшей степени:

    Максимальная степень в числителе: 3
    Максимальная степень в знаменателе: 4
    Выбираем наибольшее значение, в данном случае четверку.
    Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .
    Полное оформление задания может выглядеть так:

    Разделим числитель и знаменатель на

    Пример 3

    Найти предел
    Максимальная степень «икса» в числителе: 2
    Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
    Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

    Разделим числитель и знаменатель на

    Под записью подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.

    Таким образом, при раскрытии неопределенности вида у нас может получиться конечное число , ноль или бесконечность.


    Пределы с неопределенностью вида и метод их решения

    Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу .

    Пример 4

    Решить предел
    Сначала попробуем подставить -1 в дробь:

    В данном случае получена так называемая неопределенность .

    Общее правило : если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители .

    Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Если данные вещи позабылись, тогда посетите страницу Математические формулы и таблицы и ознакомьтесь с методическим материалом Горячие формулы школьного курса математики . Кстати его лучше всего распечатать, требуется очень часто, да и информация с бумаги усваивается лучше.

    Итак, решаем наш предел

    Разложим числитель и знаменатель на множители

    Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение:

    Сначала находим дискриминант:

    И квадратный корень из него: .

    В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе.

    ! Если корень не извлекается нацело (получается дробное число с запятой), очень вероятно, что дискриминант вычислен неверно либо в задании опечатка.

    Далее находим корни:

    Таким образом:

    Всё. Числитель на множители разложен.

    Знаменатель. Знаменатель уже является простейшим множителем, и упростить его никак нельзя.

    Очевидно, что можно сократить на :

    Теперь и подставляем -1 в выражение, которое осталось под знаком предела:

    Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так:

    Разложим числитель на множители.





    Пример 5

    Вычислить предел

    Сначала «чистовой» вариант решения

    Разложим числитель и знаменатель на множители.

    Числитель:
    Знаменатель:



    ,

    Что важного в данном примере?
    Во-первых, Вы должны хорошо понимать, как раскрыт числитель, сначала мы вынесли за скобку 2, а затем использовали формулу разности квадратов. Уж эту-то формулу нужно знать и видеть.

    Рекомендация: Если в пределе (практически любого типа) можно вынести число за скобку, то всегда это делаем.
    Более того, такие числа целесообразно выносить за значок предела . Зачем? Да просто чтобы они не мешались под ногами. Главное, потом эти числа не потерять по ходу решения.

    Обратите внимание, что на заключительном этапе решения я вынес за значок предела двойку, а затем – минус.

    ! Важно
    В ходе решения фрагмент типа встречается очень часто. Сокращать такую дробь нельзя . Сначала нужно поменять знак у числителя или у знаменателя (вынести -1 за скобки).
    , то есть появляется знак «минус», который при вычислении предела учитывается и терять его совсем не нужно.

    Вообще, я заметил, что чаще всего в нахождении пределов данного типа приходится решать два квадратных уравнения, то есть и в числителе и в знаменателе находятся квадратные трехчлены.


    Метод умножения числителя и знаменателя на сопряженное выражение

    Продолжаем рассматривать неопределенность вида

    Следующий тип пределов похож на предыдущий тип. Единственное, помимо многочленов, у нас добавятся корни.

    Пример 6

    Найти предел

    Начинаем решать.

    Сначала пробуем подставить 3 в выражение под знаком предела
    Еще раз повторяю – это первое, что нужно выполнять для ЛЮБОГО предела . Данное действие обычно проводится мысленно или на черновике.

    Получена неопределенность вида , которую нужно устранять.

    Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по возможности, избавляться. Зачем? А без них жизнь проще.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Подобные документы

      Определение и этапы доказательства теоремы Штольца, ее теоретическое и практическое значение в прикладной математике, применение. Понятие предела последовательности, характерные примеры вычисления пределов последовательности с подробным разбором решения.

      курсовая работа , добавлен 28.02.2010

      Члены последовательности и их изображение на числовой оси. Виды последовательностей (ограниченная, возрастающая, убывающая, сходящаяся, расходящаяся), их практические примеры. Определение и геометрический смысл предела числовой последовательности.

      презентация , добавлен 21.09.2013

      Вычисление математических последовательностей и определение числа, которое называется пределом последовательности. Методы расчетов предела функции. Произведение бесконечно малой функции и ограниченной функции. Определение предела последовательности.

      контрольная работа , добавлен 17.12.2010

      Определение предела функции в точке. Понятие односторонних пределов. Геометрический смысл предела функции при х, стремящемся в бесконечности. Основные теоремы о пределах. Вычисление пределов и раскрытие неопределенностей. Первый замечательный предел.

      презентация , добавлен 14.11.2014

      Понятие и история формирования категории "последовательность", ее значение в современной математике. Свойства и аналитическое задание последовательности, роль в развитии других областей знания. Решение задач на вычисление пределов последовательностей.

      презентация , добавлен 17.03.2017

      Общее понятие числовой последовательности. Предел функции в точке. Бесконечно большая и малая функция. Связь между функцией, ее пределом и бесконечно малой функцией. Признаки существования пределов. Основные теоремы о пределах: краткая характеристика.

      презентация , добавлен 25.01.2013

      Предел числовой последовательности. Сравнение бесконечно малых величин. Второй замечательный предел. Теорема Коши о сходимости числовой последовательности. Использование бинома Ньютона. Замена сомножителей на эквивалентные им более простые величины.

      контрольная работа , добавлен 11.08.2009

      Понятие возрастающей числовой последовательности. Формула бинома Ньютона. Число положительных слагаемых. Определение ограниченности последовательности чисел. Предел монотонной и ограниченной последовательностей. Показательный рост или убывание.

      Астрономы могут похвастаться очередной значительной находкой. На этот раз они напали на след двух звёздных скоплений, в каждом из которых есть массивные звёзды. Открытие в мгновение перечеркнуло ранее принятый теоретический предел массы космических гигантов. Масса одной из найденных звёзд при рождении превышала массу Солнца в 150 масс и составляла около 300 масс.

      Астрономы могут похвастаться очередной существенной находкой. На этот раз они напали на след 2-х звёздных скоплений, в каждом из которых есть массивные звезды. Открытие в мгновение перечеркнуло раньше принятый гипотетический предел многих космических гигантов. Масса одной из найденных кинозвезд при рождении превышала массу Солнца в 150 масс и составляла около 300 масс. Благодаря открытию скопления космических монстров, исследователи смогут вычислить предел многих кинозвезд.
      Кинозвезды-великаны были обнаружены в молодых скоплениях NGC 3603 и RMC 136. Исследованиями занимались исследователи из Университета Шеффилда. Группа под руководством проф. астрофизики Пола Кроутера (Paul Crowther) наблюдала за объектами с помощью инфракрасного аппарата 8-метрового телескопа VLT ESO. За исключением этого в наблюдениях были использованы архивные данные телескопа Хаббл.
      В звёздном скоплении NGC 3603 случается непрерывный процесс рождения новых кинозвезд. Они образовываются в протяженных газово-пылевых облаках. В отличие от RMC 136 скопление NGC 3603 располагается в системе Млечный путь, на расстоянии от Солнца всего в 22 000 световых лет. II-е звёздное скопление, тоже небезызвестное как R136 располагается на ещё более значительном расстоянии от Солнца-165 000 световых лет (туманность Тарантул, галактика Большое Магелланово Облако). И, соответственно, выходит за пределы нашей Галактики. Объекты там отличаются возрастом, гигантской массой и весьма высокой температурой.
      Проводимые раньше исследования указывали, что в скоплениях весьма вероятно присутствие кинозвезд-гигантов. Однако лишь теперь астрономам удалось отыскать объекты в десятки раз ярче и массивнее Солнца. Температура поверхности кинозвезд превышает температуру поверхности Солнца в 7раз (около 40 000 градусов). Модельные расчёты указывают на то, что гипергиганты сформировались и имели первоначальную массу более 150 солнечных масс. Самой огромной оказалась R136a1. Теперь масса светила может достигать 265 солнечных масс. Если её сравнить со Звездой Эта Киля (90-100 масс Солнца), то превосходство R136a1 понятно. Это по праву наиболее большая кинозвезда из всех раньше открытых.
      Тоже в звёздном скоплении R136 были обнаружены ещё 3 гигантских светила. Их многих составляют 135 и 194 масс Солнца. Есть вероятность, что 1 из них в скором времени увеличится в два раза. Наподобие того, как в скоплении NGC 3603 увеличились многих 2-х кинозвезд. Великаны входили в двойную систему, при формировании их масса составляла примерно 150 солнечных.
      От многих светила зависит сила звёздного ветра. Чем массивнее она, тем сильнее порывы ветра с её поверхности. Это к тому же оказывает влияние на продолжительность существования кинозвезды: из-за постоянного ветра, кинозвезда теряет собственную массу. Так около млн. лет тому назад, при собственном рождении, кинозвезда R136a1 обладала массой около 320 солнечных. Каждые 20 тыс. лет она теряла около 1 массу Солнца. Вот и получается, что с того момента она утратила 1/5 собственной первоначальной многих. Суперзвезда R136a1 уже близка к тому моменту, когда она станет сверхновой. До взрыва гиганту остался примерно 1 миллион лет, а это ещё 1/2 отмеренного срока.
      Если сопоставить яркость Солнца и кинозвезды R136a1, то получится следующее. В первую очередь, соотношение яркости возможно сравнить с полной Луной. Во столько раз R136a1 будет ярче Солнца. Если кинозвезды поменять местами, то перемены в Солнечной системе произойдут незамедлительно. Масса гиганта повлияет на продолжительность г. на Земле: он сократится до 3-х недель. Сильное ультрафиолетовое облучение испепелит поверхность Земли и, соответственно, жизнь на нашей планете окажется невозможной.
      Сверхмассивные кинозвезды- редкое явление. Они рождаются только в плотных звёздных скоплениях, что замедляет процесс исследований. Вся сложность заключается в том, что обнаружить их посреди крупного числа кинозвезд может лишь инфракрасная камера. Её разрешающая способность обязана быть весьма высокой.
      Группа ученых из Университета Шеффилда постаралась оценить максимальную массу кинозвезд в скоплениях NGC 3603 и RMC 136. Тоже они старались подсчитать наиболее крупные кинозвезды. Дело в том, что массу одиночной кинозвезды вычислить почти нереально. Требуется, хотя бы, выяснить её температуру и скорость утраты многих. Нижний предел кинозвезд составляет не менее 80 масс Юпитера. Всё, что менее этого размера- бурые лилипуты. Но еще и верхняя планка звездных масс также есть. В виду последних открытий, учёным пришлось серьезно увеличить массовый предел. Сейчас цифра достигает 300 солнечных масс, а это почти вдвое более прошлого массового значения.
      Стало известно, что в звёздном скоплении R136 массу более 150 масс Солнца (на миг рождения) имеют лишь 4 кинозвезды. 1 из них, а именно R136a1, создаёт ветер мощностью в 50 раз более, который, к примеру, исходит от туманности Орион. Это максимально близкая к нашей планете область образования кинозвезд. 4 гиганта серьезно влияют на общую картину скопления. Их излучения- уже 1/2 вклада в сильный звёздный ветер скопления R136. II-ая 1/2 принадлежит остальным 100 000 кинозвезд.
      Процесс образования гигантских кинозвезд пока не понятен. Узнать это довольно непросто, ведь исследованиям мешают 2 фактора: недолгий срок существования крупных кинозвезд и мощный ветер, который беспрерывно привносит большое число изменений в массу кинозвезд. Потому учёным трудно до окончания разобраться с такими непростыми объектами как R136a1. Непонятен даже путь их образования. Версия о слиянии кинозвезд в одну к тому же остаётся возможной.
      Кинозвезды, имеющие от 8 до 150 масс Солнца, живут недолго и взрываются как сверхновые. После себя они оставляют не только лишь нейронные кинозвезды, но еще и вороные дырки. Находка исследователей из Университета Шеффилда лишь увеличивает шанс на существовании теории о экстремально ярких сверхновых. Кинозвезды массой от 150 до 300 солнечных масс появляются из-за неустойчивости, которую вызывают пары частица-античастица. Кинозвезды-великаны взрываются ещё до коллапса в их ядрах. Особенным считается то, что после взрыва подобных мощных кинозвезд не остаётся ничего. При этом они выбрасывают в космос вещество в виде железа с массой до 10 солнечных масс. Существование кинозвезд-гигантов разрешает проблему максимального значения многих светил. За последнее время взрывоопасные объекты уже были обнаружены. Использованы материалы сайта Гомел-сат.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows