Arduino беспроводное управление. Машинка на arduino и Bluetooth — интерфейс управления на планшете android. Создание приложения для Android

Arduino беспроводное управление. Машинка на arduino и Bluetooth — интерфейс управления на планшете android. Создание приложения для Android

26.04.2019

Итак будем управлять двумя реверсивными (вращение в обе стороны) двигателями: основным и рулевым. Питать их будем от аккумулятора 3,7 В, но можно и до 12 В в принципе подавать, если согласовать питание контроллера или организовать его отдельным аккумулятором.

В силовой части используем простейший миниатюрный драйвер шагового двигателя l9110s или же можно использовать сборку на L293\8 или любой не менее мощный, который вы найдёте. В общем я всё нарисовал на картинке.

Приобрести комплектующие для проекта можно на алиэкспресс:

WiFi контроллер использован мой любимый NodeMCU 0.9 ESP8266 , но можно использовать и меньший размером WeMos D1 mini.

Аккумулятор можно зарядить через микро-USB, после чего он питает драйвер двигателей напрямую и WiFi-контроллер через повышающий преобразователь до 5 В .

Код программы:

#include
const char* ssid = "имя вашей сети вайфай";
const char* password = "пароль вашей сети";
int up = 2; //номера дискретных выходов
int down = 14;
int left = 4;
int right = 12;
// Create an instance of the server
// specify the port to listen on as an argument
WiFiServer server(80);
void setup() {
Serial.begin(9600);
delay(10);
//подготовка выходов
pinMode(up, OUTPUT);
digitalWrite(up, 0);
pinMode(down, OUTPUT);
digitalWrite(down, 0);
pinMode(left, OUTPUT);
digitalWrite(left, 0);
pinMode(right, OUTPUT);
digitalWrite(right, 0);

// Connect to WiFi network
Serial.println();
Serial.println();
Serial.print("Connecting to ");
Serial.println(ssid);

WiFi.begin(ssid, password);

While (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.println("WiFi connected");

//Запуск сервера
server.begin();
Serial.println("Server started");
//выводим IP адрес в монитор порта
Serial.println(WiFi.localIP());
}
void loop() {
//проверяем подключился ли клиент
WiFiClient client = server.available();
if (!client) {
return;
}

//Ожидаем пока клиент не пришлет какие-нибудь данные
Serial.println("new client");
while(!client.available()){
delay(1);
}

//Чтение первой строки запроса
String req = client.readStringUntil("\r");
Serial.println(req);
client.flush();

//обработка команды
if (req.indexOf("/gpio/up") != -1){
digitalWrite(up, 1);
digitalWrite(down, 0);
delay(1000);
digitalWrite(up, 0);
digitalWrite(down, 0);
}
else if (req.indexOf("/gpio/down") != -1){
digitalWrite(up, 0);
digitalWrite(down, 1);
delay(1000);
digitalWrite(up, 0);
digitalWrite(down, 0);
}
else if (req.indexOf("/gpio/left") != -1){
digitalWrite(up, 1);
digitalWrite(down, 0);
digitalWrite(left, 1);
digitalWrite(right, 0);
delay(1000);
digitalWrite(up, 0);
digitalWrite(down, 0);
digitalWrite(left, 0);
digitalWrite(right, 0);
}
else if (req.indexOf("/gpio/right") != -1){
digitalWrite(up, 1);
digitalWrite(down, 0);
digitalWrite(left, 0);
digitalWrite(right, 1);
delay(1000);
digitalWrite(up, 0);
digitalWrite(down, 0);
digitalWrite(left, 0);
digitalWrite(right, 0);
}
else {
Serial.println("invalid request");
}

Client.flush();
// подготовка к ответу
String s = "HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\n\r\n\r\n ";

S += "


UP
";
s += "
LEFT     ";
s += "RIGHT
";
s += "
DOWN";
s += "
\n";
// Send the response to the client
client.print(s);
delay(1);
Serial.println("Client disonnected");
} Программа написана в Arduino IDE. Как настроить Arduino IDE для работы с контроллером NodeMCU 0.9 ESP8266 посмотрите по ссылке. После загрузки программы в контроллер, монитором порта можно прочитать IP-адрес, который плата получит после соединения с вашим WiFi-роутером. В браузере компьютера необходимо в адресной строке прописать этот адрес и перейти на страницу, которую сгенерирует программа контроллера. Она будет выглядеть следующим образом:

DOWN

При нажатии на ссылку UP, машинка проедет вперед в течении 1сек и остановится. При нажатии на DOWN, машинка 1 секунду будет ехать назад. LEFT - двигатель поворота повернёт колёса влево и машинка проедет 1 сек влево. То же самое и вправо при нажатии на RIGHT.

Вся эта система будет работать только при настроенной WiFi-точке доступа (WiFi-роутере), но в будущем мне интересно поиграться с контроллером NodeMCU 0.9 ESP8266 , который сам будет организовывать точку доступа и выполнять функцию WEB-сервера, тоесть при заходе на его айпи из браузера, будем видеть web-страничку с элементами управления. Так же интересно организовать передачу данных с одного такого контроллера в другой посредством их автономной WiFi-сети.

В этой статье представлена пошаговая инструкция, которая поможет вам самостоятельно создать приложение для Android-смартфона, предназначенное для управления чем-либо через Bluetooth. Для демонстрации мы подробно разберем пример мигания светодиодом на Arduino по командам с телефона или планшета. В результате выполнения наших инструкций вы научитесь делать вот так:

Для управления домашним роботом достаточно добавить кнопок и обработать их команды на стороне Arduino.

Что для этого потребуется

  1. Любая Arduino-совместимая плата
  2. Bluetooth-модуль
  3. Устройство на котором установлена ОС Android

В качестве Bluetooth-модуля лучше всего использовать HC-05. Его легко купить в китайском интернет магазине или на eBay. Модуль питается от 3.3 В, но его линии I/O могут работать и с 5-вольтовой логикой, что позволяет подключать его UART к Arduino.

Bluetooth-модуль HC-05

Подключение Bluetooth-модуля к Arduino

Так теперь нам нужно подключить нашу Arduino с Bluetooth. Если на Arduino нет вывода с 3.3В, а только 5В то нужен будет поставить стабилизатор чтобы снизить питание. Назначение выводов HC-05 легко найти в интернете. Для использования рекомендуем вам сделать плату с выведенными линиями питания, Rx и Tx. Подключение к Arduino необходимо производить в следующем порядке:

  • вывод Arduino 3.3В или (5В через стабилизатор!) — к 12 пину модуля Bluetooth
  • вывод Arduino GND — к 13 пину модуля Bluetooth
  • вывод Arduino TX — к 2 пину модуля RX Bluetooth
  • вывод Arduino RX — к 1 пину модуля TX Bluetooth

После подключения необходимо проверить работоспособность Bluetooth модуля. Подключим Светодиод к 12 выводу Arduino и загрузим на плату следующий скетч:

Char incomingByte; // входящие данные int LED = 12; // LED подключен к 12 пину void setup() { Serial.begin(9600); // инициализация порта pinMode(LED, OUTPUT); //Устанавливаем 12 вывод как выход Serial.println("Press 1 to LED ON or 0 to LED OFF..."); } void loop() { if (Serial.available() > 0) { //если пришли данные incomingByte = Serial.read(); // считываем байт if(incomingByte == "0") { digitalWrite(LED, LOW); // если 1, то выключаем LED Serial.println("LED OFF. Press 1 to LED ON!"); // и выводим обратно сообщение } if(incomingByte == "1") { digitalWrite(LED, HIGH); // если 0, то включаем LED Serial.println("LED ON. Press 0 to LED OFF!"); } } }

Это небольшой рассказ о том, как построить робота в виде игрушечного автомобильчика с видео камерой, которым можно управлять с помощью компьютера или смартфона на ОС Android через WiFi. Устройство не имеет никакой автономности в смысле своего поведения (типа распознавания чего-либо), управление - только от человека, поэтому «робот» - это не совсем подходящее слово в названии.
Началось все с того, что идея управления игрушечными устройствами от первого лица (т.н. FPV) мне показалась чрезвычайно интересной с точки зрения собственно процесса. Ведь мы можем таким образом реализовать свое присутствие, не в виртуальном мире, а в реальном.
Проще и быстрее всего применить эту идею на игрушечных или модельных автомобилях. Текущие технологии должны давать такую возможность промышленности и предложить массу подобных вещей. Однако это предложение оказалось достаточно дорогим по сравнению тем что можно сделать самому.
Так как это мой первый проект, я ни программировать, ни даже паять нормально не умел, и я решил сначала поискать в интернете единомышленников и их варианты решения данной задачи.
Начав изучение вариантов, как можно осуществить эту идею, я нашел очень подробное описание подобного проекта . A его автор с радостью помог мне разобраться в проблемах, возникших при создании робота.
Так я впервые и узнал что такое …duino. Так как это был уже готовый вариант микроконтроллера, где не нужно было паять обвязку к нему, я выбрал именно его. Также очень понравилось присутствие бутлоадера, позволяющего прошивать микроконтроллер без программаторов.

Для реализации данного проекта понадобится:

  • Микроконтроллер Arduino (любой: nano, uno, mega)
  • Аккумулятор 9,6вольт
  • Китайская машинка на радиоуправлении
  • Роутер dir320 (или любой другой поддерживающий OPEN-WRT прошивку)
  • Вебкамера Logitech c310 или любая другая с UVC потоком






Программ пять: на PC, на Android, на роутере (сервер управления и видеопоток), и в микропроцессоре.
Схема работы: соединяем настольный компьютер (ноутбук, далее - PC) с роутером по WiFi. На роутере при его включении автоматически загружаются 2е программы:
1) сервер. Эта программа открывает сокет (соединение) на определенном порту и ждет, когда по этому порту с ней соединится клиент (любая программа, которая обратится в этот порт и также, особым образом скажет серверу, что она готова работать через открытый сокет). Далее, после установки соединения, все что придет от клиента, будет перенаправлено по определенному пути, для нас это COM-порт, на этом порту подключен микропроцессор. И наоборот, все что придет со стороны COM-порта, будет переслано клиенту.
2) программа обработки видео, захватывает его с usb камеры и шлет на определенный порт. Для его просмотра нужно всего лишь иметь соединение с роутером на этом порту.
После того, как между компьютером и роутером установлено WiFi-соединение, запускаем на PC программу для управления роботом (тот самый клиент), эта программа соединяется с программой-сервером на роутере. Эта же или другая программа транслирует видео с WiFi роутера.
Далее, пользователь может управлять автомобильчиком и нажимает, например, кнопку «вперед». Программа на PC, отсылает команду «вперед» прямо на роутер, на его IP, но на определенный порт. На роутере, эта команда поступает в программу-сервер, т.к. выслана она на его порт, и в рамках открытого для этого сокета. Программа-сервер, ничего не делая с этой командой, просто отправляет её в COM-порт. Таким образом, команда «вперед» оказывается в микропроцессоре, который в ответ на нее, дает сигнал «вперед» на один из своих выводов. К таким выводам процессора подсоединена схема управления двигателями, т.к. сам микропроцессор управлять ими не может в силу своей маломощности.
Управлять исполнительным устройством через роутер, без микропроцессора не получится, т.к. микропроцессор может формировать сигналы «1» (напряжение >2,5v) или «0» (меньше обозначенного) на любом из десятка-другого своих выводов. У роутера же выводов нет, есть только порты ввода/вывода, типа USB или COM (serial), в которых по 2-3 провода.
Теперь часть практическая. Заранее скажу, что несмотря на кажущиеся сложности, все на самом деле просто, если речь идет о простом копировании этого проекта – ведь все уже сделано и работает. Нужно просто выполнить в точности эту инструкцию.
Изначально микроконтроллером был freeduino maxserial у которого был com port, который был одним из немногих(как я тогда считал) для подключения к uart роутеру, для этого нужно было паять переходник с uarta на com чтобы соединить его с роутером. Его брать я не очень хотел, так как оригиналом есть все-таки Arduino, да и Freeduino в Украине нет.



Как я выяснил потом, все было это просто излишнее нагромождение схемы. Обойтись можно всего 1 проводком который будет идти от TX роутера(на рисунке) к RX (0 пин) микроконтроллера.
Непонятно почему но на фридуине оказалось для нормального подключения нужно tx на tx. Скорее всего просто неверно нанесено обозначение. (тут 0 пин tx) По этому лучше брать оригинальный .
Машинку я купил хорошую, хоть и китайскую



Машинка оказалась очень мощная, 5 кг на ровной поверхности тянула очень уверено. Также у нее в комплекте шел аккумулятор на 6 вольт. Что касается электроники, то в машинке уже есть готовый драйвер двигателей, на который можно подать управляющие слаботочные выходы с микроконтроллера (если бы с машинкой не повезло - драйвер моторов можно было взять тоже от arduino)
Роутер требует прошивку openwrt и список пакетов указанных на рисунке.



Роутер можно настроить как точку доступа, которой могут подключится любые устройства, имеющие WiFi. И, даже если не будет программного обеспечения для управлении машинкой – использовать ее как беспроводную камеру видеонаблюдения.
Камера с310 просто подключается к порту usb на роутер и не требует пайки, требует небольших настроек в роутере. Проект имеет 2 цепи питания, 1 цепь питается от 9,6 вольт - роутер и микроконтроллер, 2 цепь питается от 6 вольт - привод и рулевое машинки. Можно обойтись всего 1 источником питания в 9,6 вольт, но более емкостным. Роутер потребляет 2А, микроконтроллер потребляет почти незаметно, машинка 4А.
Программа микроконтроллера обрабатывает сообщения, которые приходят с последовательного порта роутера, обработка происходит побайтово через portb arduino, например если пришло в роутер 2, то, переведя в двоичную систему получаем 00000010 – что соответствует 2 пину на portb. Такое решение позволяет управлять одновременно несколькими пинами. Вот что получилось в итоге:




Приложение для андроид:



Приложение для пк:




Данный проект еще не закончен и продолжает совершенствоваться.
В планах использовать arduino mega, роутер mr3020, вебакамеру оставить как есть(возможно добавить сферическую линзу для большего обзора), задействовать шим для плавного и точного управления, использовать сервопривод для поворотов, добавить дальномер. Добавить видео на Android.



- полный каталог плат

Начнем сначала.

Чип ESP 8266

Чип ESP8266 разработан специально для «интернета вещей». Существует два варианта использования этого чипа. Первый - в качестве моста UART-WIFI для подключения к микроконтроллеру и управления АТ-командами. Второй вариант - чип сам исполняет роль управляющего контроллера. По моим оценкам в среде любителей электроники чип чаще используется как управляющий контроллер.

Возможности чипа:

  • Поддержка 802.11 b/g/n
  • Встроенный 32-bit MCU с низким энергопотреблением
  • Встроенный 10-bit ADC
  • Встроенный стек TCP/IP
  • Встроенный усилитель ВЧ сигнала
  • Поддержка разнесения антенн
  • WiFi 2.4 GHz, поддержка WPA/WPA2
  • Поддержка STA/AP/STA+AP режимов
  • SDIO 2.0, (H) SPI, UART, I2C, I2S, IR Remote Control, PWM, GPIO
  • STBC, 1x1 MIMO, 2x1 MIMO
  • A-MPDU & A-MSDU aggregation & 0.4s guard interval
  • Выходная мощность +20 dBm в 802.11b режиме

Чип является высокоинтегрированным решением для работы с WiFi. Внутри чипа удалось разместить все, что нужно. Типовая минимально необходимая для работы обвязка микросхемы состоит всего из семи элементов.

Фотографии для сравнения количества компонентов аналогичных решений.

По одним данным всей этой прелестью управляет 32-разрядное процессорное ядро Xtensa LX106, по другим данным - Tensilica’s L106 Diamond. Под микроскопом выглядит чип как целый город из связанных элементов.

Одной из самых важных характеристик является энергопотребление. У ESP8266 оно просто поражает:

  • 215mA в режиме непрерывной передачи.
  • 1mA в режиме поддержания связи с точкой доступа
  • 10uA в режиме глубокого сна с работающими часами реального времени
  • 0,5uA в режиме Power OFF

Время необходимое на пробуждение и начало передачи пакета менее 2ms. Например, при измерении температуры каждые 100 секунд и подключении к точке доступа и передаче накопленных данных каждые 300 секунд (все остальное время чип спит) средний ток составит около 1mA. Это более трех месяцев работы от трех пальчиковых аккумуляторов емкостью 2600мА/ч.

О модулях ESP

В настоящее время наиболее популярными модулями на чипах ESP8266 являются ESP-01, ESP-02, ESP-03, ESP-04, ESP-05, ESP-06, ESP-07, ESP-08, ESP-09, ESP-10, ESP-11, ESP-12, ESP-12E. Они отличаются количеством разведенных пинов, наличием разъема для подключения внешней антенны, размерами.

Сейчас уже можно найти в продаже старшего брата ESP8266 - это модуль ESP-32. На Aliexpress пока всего у двух продавцов есть эти модули. Цена около 250 рублей против 110 рублей за ESP-12E. В новом модуле будет еще больше плюшек.

Основные возможности ESP-32. (нажмите для просмотра)

Wi-Fi
- 802.11 b/g/n/e/i
- 802.11 n (2.4 GHz), up to 150 Mbps
- 802.11 i security features: pre-authentication and TSN
- 802.11 e: Multiple queue management to fully utilize QoS traffic prioritization
- Wi-Fi Protected Access (WPA)/WPA2
- Wi-Fi Protected Setup (WPS)
- UMA compliant and certified
- Antenna diversity nd seection
- A-MPDU and A-MSDU aggregation
- WMM power s ve U-APSD
- Fragmentation and defragmentation
- Wi-Fi Direct (P2P), P2P Discovery, P2P Group Owner mode and P2P Power Management
- Infrastructure BSS Station mode/ Soft AP mode
- Automatic beacon monitoring / scanning
- SSL stacks with hardware accelerators

Bluetooth
- CMOS single-chip fully-integrated radio and baseband
- Bluetooth Piconet and Scatternet
- Bluetooth 4.2 (BR/EDR/BLE)
- Adaptive Frequency Hopping(AFH)
- SMP
- Class-1, class-2 and class-3 transmitter without exter al power amplifier
- +10 dBm tra smitting power
- NZIF receiver with -90 dBm sensitivity
- Up-to 4 Mbps high speed UART HCI
- SDIO / SPI HCI
- CVSD and SBC
- Low power consumption
- Minimum external component

CPU and Memory
- Xtensa® Dual-Core 32-bit LX6 micr pr cess rs, up to 400MIPS
- 128 KB ROM
- QSPI Flash/SRAM, up to 4 x 16 MB
- Power supply: 2.5V to 3.6V
- 416 KB SRAM

Clocks and Timers
- 2 MHz to 40 MHz crystal oscillator
- Internal 8 MHz oscillator with calibration
- External 32 kHz oscillator for RTC with calibration
- Internal RC oscillator with calibration
- Two timer groups including 3 x 64-bit timers and 1 x watchdog in each group
- RTC timer with sub-second accuracy
- RTC watchdog

Advanced Peripheral Interfaces
- 12-bit SAR ADC up to 16 channels
- 2 x 10-bit D/A converters
- 10 x touch sensors
- Temperature sensor (-40 +125°C)
- 4 x SPI
- 2 x I2S
- 2 x I2C
- 2 x UART
- 1 host (SD/eMMC/SDIO)
- 1 slave (SDIO/SPI)
- Ethernet MAC interface with dedicated DMA and IEEE 1588 support
- CAN 2.0
- IR (TX/RX)
- Motor PWM
- LED PWM up to 16 channes

Security
- IEEE 802.11 standard security features all supported, including WFA, WPA/ WPA2 and WAPI
- Secure boot
- Flash encryption
- 1024-bit OTP, up to 768-bit for customers
- Cryptographc hardware acceleration:
- AES 128/192/256
- HASH (SHA-2) library
- RSA
- Radom Number Generator

Особенно интересна заявленная поддержка CAN-шины. Скоро управлять системами автомобиля и проводить диагностику можно будет по WiFi прямо с мобильного устройства.

Но вернемся к ESP-12E. На базе этого модуля построена платформа NodeMCU.

О платформе

Платформа использует возможности ESP-12 модуля, собственного микроконтроллера не имеет. Китайцы производят много клонов с разными конвертерами интерфейсов, и сами платформы имеют разные размеры.

По умолчанию в платформу загружена прошивка NodeMCU с поддержкой интерпретатора скриптового языка LUA. Скрипты задают поведение платы.

Я пишу и заливаю программы с помощью Arduino IDE. Для работы с платформой необходимо установить библиотеки. С библиотеками идет большое количество примеров программ.

Установка библиотек в среду Arduino IDE для работы с NodeMCU .

Для установки библиотек необходимо зайти в настройки Arduino IDE и в поле «Additional board» ввести адрес http://arduino.esp8266.com/package_esp8266com_index.json

Пролистываете список вниз и находите ESP8266 by ESP8266 Community, и устанавливаете библиотеки.

Закройте «Boards Manager». Идите в «Инструменты» и выберите плату NodeMCU в соответствии с вашей версией.

Чтобы понять какой модуль у вас установлен и какую версию выбрать, посмотрите на модуль. Если контакты на нем расположены с трех сторон - это ESP-12E, если только с двух - это ESP-12.

Назначение выводов платформы NodeMCU

Функции, поддерживаемые библиотеками для Arduino IDE .

Полное описание можно почитать здесь https://github.com/nodemcu/nodemcu-firmware/wiki/nodemcu_api_ru причем на русском языке. Я расскажу об основных функциях.

Управление GPIO осуществляется так же, как и у Arduino. pinMode, digitalRead, digitalWrite, analogWrite функционируют как обычно. analogRead(A0) читает значение АЦП с аналогового входа А0 соответственно. analogWrite включает программный ШИМ. Частота ШИМ порядка 1кГц. Диапазон ШИМ от 0 до 1023, у Arduino, как мы помним, до 255. Прерывания также поддерживаются на любом GPIO, кроме GPIO16. Функции millis() и micros() возвращают миллисекунды и микросекунды, прошедшие со старта модуля. Функция delay() у NodeMCU работает по-другому нежели у Arduino. Здесь применение delay приветствуется и в больших программах даже необходимо. Когда модуль поддерживает WiFi соединение, ему приходится выполнять множество фоновых задач, кроме вашего скетча. WiFi и TCP/IP функции библиотек SDK имеют возможность обработать все события в очереди после завершения каждого цикла вашей функции loop() или во время выполнения delay(...). Если в вашем коде есть фрагменты, которые выполняются более 50 миллисекунд, то необходимо использовать delay(...) для сохранения нормальной работоспособности стека WiFi. А вот delayMicroseconds() блокирует выполнение других задач и не рекомендуется для задержек более 20 миллисекунд. Serial использует аппаратный UART0, работающий на PIO1(TX) и GPIO3(RX).

Программа для управления четырьмя реле с мобильного приложения

После того, как библиотеки установлены, к платформе подключаем блок из 4 реле к пинам D1, D2, D3, D4, что соответствует GPIO 5, 4, 0, 2 соответственно. Затем подключаем питание к платформе и к блоку реле. У имеющегося у меня блока реле есть одна особенность. Для включения реле необходимо подтянуть пин к земле. То есть логический 0 включает реле, а 1 выключает.

Я рассмотрю три варианта программы управления блоком реле.

Первая программа использует популярную библиотеку aRest https://github.com/marcoschwartz/aREST

Это API handler библиотека, позволяет управлять GPIO через http-запросы вида http://192.168.0.10/digital/6/1 ее возможности: устанавливать GPIO в Digital или Analog (ШИМ), устанавливать 0 или 1 на пин в режиме Digital, возвращать переменные и читать состояние пинов.

Программу я откомпилировал и загрузил из примеров, идущих вместе с библиотекой. С точки зрения использования - проще некуда.

В Setup’е устанавливается соединение с точкой доступа, о чем сообщается через COM порт. А loop выглядит вот так:

void loop() {

WiFiClient client = server.available();

if (!client) {

return;

}

while(!client.available()){

delay(1);

}

rest.handle(client);

}

Все. Что там происходит не понятно. Работает, но фактически мы не программируем ничего. Просто запускаем программу, все остальное делает библиотека. Но интереснее научиться работать с GPIO «руками». Да, кстати, программа у меня зависала через неопределенное время. Иногда через 40 минут, иногда через 5-6 часов. Приходя домой после 8 часового рабочего дня, я всегда обнаруживал, что программа не работает. При этом роутер показывает, что клиент WiFi подключен и ему выдан IP адрес. Интерес у меня к библиотеке быстро пропал. На зависания aRest’а на русскоязычных форумах жалоб не встречал. Я уж грешил на NodeMCU или на нестабильное питание, но дальнейшие эксперименты доказали, что в моем случае виновата была программа. Скорее всего, у меня частный случай. Я не утверждаю, что библиотека не рабочая.

С aRest’ом разобрались.

Вторая программа написана самостоятельно, использует всего одну подключаемую библиотеку #include . Программа проста и наглядно показывает, как управлять пинами через веб-запросы. Данная программа умеет управлять только логическими состояниями на выводах D1-D4 и выводить информацию о времени работы программы в качестве тестового запроса. Если есть необходимость, можно дописать программу для остальных GPIO, «научить» ее выдавать ШИМ и т.д. К выводу D4 подключен синий светодиод, находящийся на модуле ESP-12E. После мучений с зависаниями aRest’а я временно отсоединил реле 4 от D4 и в своей программе дописал пару строк для мигания этим светодиодом. Пришел домой после работы смотрю - мигает, значит, работает. Проверил с мобильного - точно работает. Программа отработала 8 дней без зависаний, отработала бы и дольше, но NodeMCU у меня один, поэтому я продолжил его изучение и выполнение программы пришлось остановить.

После компиляции и загрузки программы в монитор последовательного порта программа сообщит о состоянии подключения и IP адрес, который платформа получит от точки доступа.

Для управления блоком реле для этих двух программ было создано приложение на мобильный с ОС Android. Приложение очень простое, создавалось в App Inventor 2. Процесс создания приложения я опишу позже. Сначала третий вариант решения управления реле.

Третий вариант комплексный. Прошивка платформы и программа для Android от одного разработчика. Я использовал сервис Blynk. Он представляет собой облачный сервис для создания графических пультов управления и подходит для широкого спектра микрокомпьютеров и микроконтроллеров.

Для создания собственного проекта с управлением через Blynk нужно совсем немного: установить приложение (доступны версии для iOS и Android) или воспользоваться веб-формой. Тут потребуется регистрация в один шаг — ввод e-mail и пароля. Дело в том, что Blynk — облачное решение, и без регистрации контроль над железкой может получить любой пользователь.

Желающие могут установить сервер локально . В таком случае доступ в интернет не нужен.

Опишу сам процесс. Он состоит из двух частей.

Первая часть. Скачиваете Blynk с Google Play. Устанавливаете и запускаете программу

  1. Нажимаете «Create New Project»
  2. Вписываете название проекта и выбираете NodeMCU в поле «Hardware model». Auth Token учите наизусть или записываете на бумажку, отсылаете себе на почту. Жмете «Create».
  3. Жмете «+» в углу.
  4. Выбираете «Button». Как вы уже обратили внимание, каждый элемент, добавляемый в проект, стоит энергию. По умолчанию вам ее дается 2000. По мере добавления виджетов энергия будет расходоваться. Если вам нужно будет разместить больше виджетов, то энергию придется покупать за деньги.

  1. Вот и появилась наша кнопка. Нажмите на нее. Откроются ее настройки.
  2. Выберите название, пин, на который она будет действовать, режим кнопки или переключателя, название для состояний «включено» и «выключено». В приложении инвертировать сигнал с кнопки нельзя. Для моих реле: кнопка выключена - 0 на выходе, реле включено и наоборот. Прописывать правила работы логики можно установив сервер на локальном компьютере.
  3. Далее нажимаете треугольничек справа вверху. Программа переходит из режима редактирования в работу.
  4. Кнопки работают. Что примечательно поддерживается мультитач. Я пробовал одновременно нажимать 6 кнопок. Все работает (у телефона по описанию 10 точек нажатия).

Вторая часть - это прошивка NodeMCU. Скачиваете и устанавливаете библиотеки Blynk https://github.com/blynkkk/blynk-library . Запускаете Arduino IDE - Файл - Образцы - Blynk - BoardsAndShields - ESP8266_Standalone.

Вписываете в пример Auth Token с секретной бумажки почты. А также SSID вашей сети WiFi и пароль доступа к ней.

Все. Компилите и шьете. Все заработало с первого раза. При условии использования облачного сервиса в интернет должен иметь доступ как мобильный телефон, так и NodeMCU.

Создание приложения в App Inventor .

App Inventor - среда визуальной разработки android-приложений, требующая от пользователя минимальных знаний программирования. Первоначально разработана в Google Labs, после закрытия этой лаборатории была передана Массачусетскому технологическому институту. Для программирования в App Inventor используется графический интерфейс, визуальный язык программирования очень похожий на язык Scratch и StarLogo TNG. Разобраться с написанием приложения не так сложно. Полезной документации на русском я не нашел, а вот видео на ютубе очень много.

У сервиса две основных вкладки. Первая - это «Designer», здесь в визуальном редакторе размещаются компоненты. Скорость разработки интерфейса очень высока благодаря одной особенности сервиса App Inventor. На мобильный девайс необходимо установить приложение MIT App Inventor 2 Companion. Запустить его. На сайте выбрать Connect - AI Companion. Будет сгенерирован и выведен на экран QR код. В приложении надо нажать «scan QR code» и отсканировать код. Через пару секунд приложение появится на экране мобильного девайса. Новые элементы или любые измененные данные буквально через секунду становятся доступными для проверки на мобильном устройстве.

На экране размещаются: поле ввода для ввода IP адреса, кнопка установки адреса и отправки тестового запроса. Ниже располагается компонент «WebViewer», в нем будет отображаться присланная в ответ от NodeMCU страница. Ниже идут 4 группы по две кнопки, которые включают и выключают реле. Также нужен компонент «TinyDB», в нем будем хранить переменную для построения запроса. Также я для пробы добавил компонент распознавания голоса, чтобы можно было управлять реле голосовыми командами. Описывать алгоритм действий при распознавании текста не буду, так как пользоваться этой функцией крайне неудобно. Сначала нужно нажать на кнопку, потом выводится окошко от гугла с надписью «говорите», потом произносится команда. Причем после окончания произношения команды система распознавания ждет некоторое время, потом соображает, что все уже сказано. Затем идет распознавание речи и приходит текстовый ответ. Его надо сравнить с заранее заготовленными фразами. И только после этого команда будет выполнена. Проще тапнуть кнопку.

Вторая вкладка называется «Blocks». Здесь в виде блоков задается вся «программная» часть приложения.

Здесь из блоков составляется алгоритм работы программы. Основная часть алгоритма есть на скрине. Опишу, что здесь происходит.

  • When SET.Click - когда нажата кнопка «сет», вызвать функцию IP
  • Далее идет сама функция IP. Она сохраняет в TinyDB IP адрес из поля ввода, дописывая вначале «http://». Потом WebViewer.GoToUrl берет адрес из TinyDB, дописывает «/test» в конце и переходит по этому адресу. У меня получается «http://192.168.0.1/test». В WebViewer на экране загружается информация о том, что тест пройден, и выводится время непрерывной работы NodeMCU. Если IP адрес был введен неверно, то получаем сообщение о невозможности открыть страницу.
  • When ON1.Click (ON1 это название кнопки) вызывает функцию ON1.
  • Функция ON1 берет адрес из TinyDB, дописывает к нему «/D1/0», получается «http://192.168.0.1/D1/0», и посылает запрос. NodeMCU, получив данный запрос, соображает, что на пин D1 нужно установить 0. Выполняет и отсылает ответ «GPIO set OK», который мы и видим в WebViewer.
  • Следующая кнопка OFF1 проделывает то же самое, только в конце дописывает «/D1/1». Устанавливает логическую 1 на пин D1. Реле выключается.

Остальные кнопки действуют аналогично, меняя в запросе номера пинов и необходимое состояние.

После того, как все проверено и работает, нажимаете Build - App (save .apk to my computer). Идет компиляция и скачивание apk-файла приложения. Его необходимо установить на мобильное устройство, предварительно в настройках разрешив установку приложений из сторонних источников. Теперь приложение запускается самостоятельно. AI Companion уже не нужен и связь с интернетом тоже.

Вот так можно без особых усилий создать приложение для Android-устройства для управления нагрузкой по сети WiFi.

NodeMCU и мобильный телефон подключены к домашнему роутеру. Там, где нет точки доступа WiFi, NodeMCU может выполнять функции точки доступа для подключения мобильного устройства напрямую к ESP8266. Например, управление открытием гаражной двери и включением света в гараже.

P.S. Поднять точку доступа на платформе мне пока не удалось. Пример, идущий с библиотеками, не компилируется. Arduino IDE просто виснет в процессе компиляции. С этим мне еще предстоит разобраться.

P.P.S. Точку на платформа поднял, но адекватной работы пока не добился. Команды выполнялись или с задержкой в пару секунд либо не выполнялись совсем. Пока исследование модуля приостановлено. Занят обслуживанием авто.

В данной статье будет подробно расписано создание небольшого приложения для мобильной операционной системы Android и скетча для Arduino. На Arduino Uno будет стоять Wireless Shield с Bluetooth-модулем. Приложение будет подключаться к Bluetooth-модулю и посылать некую команду. В свою очередь скетч по этой команде будет зажигать или гасить один из подключенных к Arduino светодиодов.

Нам понадобится

Создание приложения для Android

Заготовка

Разработка для ОС Android ведется в среде разработки ADT, Android Development Tools. Которую можно скачать с портала Google для разработчиков. После скачивания и установке ADT, смело его запускаем. Однако, еще рано приступать к разработке приложения. Надо еще скачать Android SDK нужной версии. Для этого необходимо открыть Android SDK Manager «Window → Android SDK Manager». В списке необходимо выбрать нужный нам SDK, в нашем случае Android 2.3.3 (API 10). Если телефона нет, то выбирайте 2.3.3 или выше; а если есть - версию, совпадающую с версией ОС телефона. Затем нажимаем на кнопку «Install Packages», чтобы запустить процесс установки.

После завершения скачивания и установки мы начинаем создавать приложение. Выбираем «File → New → Android Application Project». Заполним содержимое окна так, как показано на рисунке.

    Application Name - то имя приложения, которое будет показываться в Google Play Store. Но выкладывать приложение мы не собираемся, поэтому имя нам не особо важно.

    Project Name - имя проекта в ADT.

    Package Name - идентификатор приложения. Он должен быть составлен следующим образом: название Вашего сайта задом наперед, плюс какое-либо название приложения.

В выпадающих списках «Minimum Required SDK», «Target SDK», «Compile With» выбираем ту версию, которую мы скачали ранее. Более новые версии SDK поддерживают графические темы для приложений, а старые нет. Поэтому в поле «Theme» выбираем «None». Нажимаем «Next».

Снимаем галочку с «Create custom launcher icon»: в рамках данной статьи не будем заострять внимание на создании иконки приложения. Нажимаем «Next».

В появившемся окне можно выбрать вид «Activity»: вид того, что будет на экране, когда будет запущено приложение. Выбираем «Blank activity», что означает, что мы хотим начать всё с чистого листа. Нажимаем «Next».

В нашем приложении будет всего одно Activity, поэтому в появившемся окне можно ничего не менять. Поэтому просто жмем на «Finish».

Все, наше приложение создано.

Настройка эмулятора

Отладка приложений для Android производится на реальном устройстве или, если такового нет, то на эмуляторе. Сконфигурируем свой.

Для этого запустим «Window → Android Virtual Device Manager». В появившемся окне нажмем «New». Заполняем поля появившейся формы. От них зависит сколько и каких ресурсов будет предоставлять эмулятор «телефону». Выберите разумные значения и нажимайте «ОК».

В окне Android Virtual Device Manager нажимаем кнопку «Start». Это запустит эмулятор. Запуск занимает несколько минут. Так что наберитесь терпения.

В результате вы увидите окно эмулятора подобное этому:

Заполнение Activity

Activity - это то, что отображается на экране телефона после запуска приложения. На нем у нас будет две кнопки «Зажечь красный светодиод» и «Зажечь синий светодиод». Добавим их. В панели «Package Explorer» открываем res/layout/activity_main.xml . Его вид будет примерно таким же, как на скриншоте.

Перетаскиваем 2 кнопки «ToggleButton» на экранную форму. Переключаемся во вкладку «activity_main.xml» и видим следующий код:

activity_main_aiutogen.xml xmlns:tools = android:layout_width ="match_parent" android:layout_height ="match_parent" android:paddingBottom = android:paddingLeft = android:paddingRight ="@dimen/activity_horizontal_margin" android:paddingTop ="@dimen/activity_vertical_margin" tools:context =".MainActivity" > android:id ="@+id/toggleButton1" android:layout_alignParentLeft ="true" android:layout_alignParentTop ="true" android:text ="ToggleButton" /> android:id ="@+id/toggleButton2" android:layout_width ="wrap_content" android:layout_height ="wrap_content" android:layout_above ="@+id/textView1" android:layout_alignParentRight ="true" android:text ="ToggleButton" /> >

Это ни что иное, как наша Activity, которая отображается не в виде графики, а описанная в формате XML.

Сделаем имена компонентов более понятными. Изменим поля android:id следующим образом.

android:id ="@+id/toggleRedLed" ... android:id ="@+id/toggleGreenLed" ...

А еще добавим им подписи, изменим их цвет и размер текста. Результирующий код разметки будет выглядеть следующим образом.

activity_main.xml "http://schemas.android.com/apk/res/android" xmlns:tools ="http://schemas.android.com/tools" android:layout_width ="fill_parent" android:paddingBottom ="@dimen/activity_vertical_margin" android:paddingLeft ="@dimen/activity_horizontal_margin" android:paddingRight ="@dimen/activity_horizontal_margin" android:paddingTop ="@dimen/activity_vertical_margin" tools:context =".MainActivity" android:weightSum ="2" android:orientation ="horizontal" > android:id ="@+id/toggleRedLed" android:layout_width ="wrap_content" android:layout_height ="fill_parent" android:layout_weight ="1" android:background ="#FF0000" android:textOff ="OFF" android:textOn ="ON" android:textSize ="30dp" /> android:id ="@+id/toggleGreenLed" android:layout_width ="wrap_content" android:layout_height ="fill_parent" android:layout_weight ="1" android:background ="#00FF00" android:textOff ="OFF" android:textSize ="30dp" android:textOn ="ON" /> >

Эти же изменения можно сделать и в графическом режиме, воспользовавшись вкладкой «Outline/Properties».

Пробный запуск

Мы можем запустить только что созданное приложение на эмуляторе. Идем в настройки запуска «Run» → Run Configurations», в левой части нажимаем на «Android Application». Появляется новая конфигурация «New_configuration». В правой части окна выбираем вкладку «Target» и выбираем опцию «Launch on all compatible devices/AVD».

Нажимаем «Apply», а затем «Run». Приложение запустится в эмуляторе.

Можно понажимать кнопки. Но ничего происходить не будет, поскольку обработчики нажатий еще нами не написаны.

Чтобы запустить приложение на реальном устройстве, необходимо включить в его настройках опцию «Отладка USB» и подключить его к компьютеру.

На реальном устройстве приложение выглядит абсолютно аналогично.

Написание кода для Android

Правка манифеста

Каждое Android-приложение должно сообщить системе о том, какие права необходимо ему предоставить. Перечисление прав идет в так называемом файле манифеста AndroidManifest.xml . В нем мы должны указать тот факт, что хотим использовать Bluetooth в своем приложении. Для этого достаточно добавить буквально пару строк:

AndroidManifest.xml "http://schemas.android.com/apk/res/android" package ="ru.amperka.arduinobtled" android:versionCode ="1" android:versionName ="1.0" > android:minSdkVersion ="10" android:targetSdkVersion ="10" /> "android.permission.BLUETOOTH" /> "android.permission.BLUETOOTH_ADMIN" />
android:allowBackup ="true" android:icon ="@drawable/ic_launcher" android:label ="@string/app_name" android:theme ="@style/AppTheme" > android:name ="ru.amperka.arduinobtled.MainActivity" android:label ="@string/app_name" > > "android.intent.category.LAUNCHER" /> > > > >

Добавляем основной код

Пришла пора вдохнуть жизнь в наше приложение. Открываем файл MainActivity.java (src → ru.amperka.arduinobtled). Изначально он содержит следующий код:

MainActivityAutogen.java package ru.amperka.arduinobtled ; import android.os.Bundle ; import android.app.Activity ; import android.view.Menu ; public class MainActivity extends Activity { @Override protected void onCreate(Bundle savedInstanceState) { super .onCreate (savedInstanceState) ; setContentView(R.layout .activity_main ) ; } @Override public boolean onCreateOptionsMenu(Menu menu) { getMenuInflater() .inflate (R.menu .main , menu) ; return true ; } }

Дополним код в соответствии с тем, что нам нужно:

    Будем включать Bluetooth, если он выключен.

    Будем обрабатывать нажатия на кнопки

    Будем посылать информацию о том, какая кнопка была нажата.

Передавать на Arduino мы будем один байт с двузначным числом. Первая цифра числа - номер пина, к которому подключен тот или иной светодиод, вторая - состояние светодиода: 1 - включен, 0 - выключен.

Число-команда, рассчитывается очень просто: Если нажата красная кнопка, то берется число 60 (для красного светодиода мы выбрали 6-й пин Arduino) и к нему прибавляется 1 или 0 в зависимости от того, должен ли сейчас гореть светодиод или нет. Для зеленой кнопки всё аналогично, только вместо 60 берется 70 (поскольку зеленый светодиод подключен к 7 пину). В итоге, в нашем случае, возможны 4 команды: 60, 61, 70, 71.

Напишем код, который реализует всё сказанное.

MainActivity.java package ru.amperka.arduinobtled ; import java.io.IOException ; import java.io.OutputStream ; import java.lang.reflect.InvocationTargetException ; import java.lang.reflect.Method ; import android.app.Activity ; import android.bluetooth.BluetoothAdapter ; import android.bluetooth.BluetoothDevice ; import android.bluetooth.BluetoothSocket ; import android.content.Intent ; import android.os.Bundle ; import android.util.Log ; import android.view.Menu ; import android.view.View ; import android.view.View.OnClickListener ; import android.widget.Toast ; import android.widget.ToggleButton ; public class MainActivity extends Activity implements View .OnClickListener { //Экземпляры классов наших кнопок ToggleButton redButton; ToggleButton greenButton; //Сокет, с помощью которого мы будем отправлять данные на Arduino BluetoothSocket clientSocket; //Эта функция запускается автоматически при запуске приложения @Override protected void onCreate(Bundle savedInstanceState) { super .onCreate (savedInstanceState) ; setContentView(R.layout .activity_main ) ; //"Соединям" вид кнопки в окне приложения с реализацией redButton = (ToggleButton) findViewById(R.id .toggleRedLed ) ; greenButton = (ToggleButton) findViewById(R.id .toggleGreenLed ) ; //Добавлем "слушатель нажатий" к кнопке redButton.setOnClickListener (this ) ; greenButton.setOnClickListener (this ) ; //Включаем bluetooth. Если он уже включен, то ничего не произойдет String enableBT = BluetoothAdapter.ACTION_REQUEST_ENABLE ; startActivityForResult(new Intent(enableBT) , 0 ) ; //Мы хотим использовать тот bluetooth-адаптер, который задается по умолчанию BluetoothAdapter bluetooth = BluetoothAdapter.getDefaultAdapter () ; //Пытаемся проделать эти действия try { //Устройство с данным адресом - наш Bluetooth Bee //Адрес опредеяется следующим образом: установите соединение //между ПК и модулем (пин: 1234), а затем посмотрите в настройках //соединения адрес модуля. Скорее всего он будет аналогичным. BluetoothDevice device = bluetooth.getRemoteDevice ("00:13:02:01:00:09" ) ; //Инициируем соединение с устройством Method m = device.getClass () .getMethod ( "createRfcommSocket" , new Class { int .class } ) ; clientSocket = (BluetoothSocket) m.invoke (device, 1 ) ; clientSocket.connect () ; //В случае появления любых ошибок, выводим в лог сообщение } catch (IOException SecurityException e) { Log.d ("BLUETOOTH" , e.getMessage () ) ; } catch (NoSuchMethodException e) { Log.d ("BLUETOOTH" , e.getMessage () ) ; } catch (IllegalArgumentException e) { Log.d ("BLUETOOTH" , e.getMessage () ) ; } catch (IllegalAccessException e) { Log.d ("BLUETOOTH" , e.getMessage () ) ; } catch (InvocationTargetException e) { Log.d ("BLUETOOTH" , e.getMessage () ) ; } //Выводим сообщение об успешном подключении Toast.makeText (getApplicationContext() , "CONNECTED" , Toast.LENGTH_LONG ) .show () ; } @Override public boolean onCreateOptionsMenu(Menu menu) { // Inflate the menu; this adds items to the action bar if it is present. getMenuInflater() .inflate (R.menu .main , menu) ; return true ; } //Как раз эта функция и будет вызываться @Override public void onClick(View v) { //Пытаемся послать данные try { //Получаем выходной поток для передачи данных OutputStream outStream = clientSocket.getOutputStream () ; int value = 0 ; //В зависимости от того, какая кнопка была нажата, //изменяем данные для посылки if (v == redButton) { value = (redButton.isChecked () ? 1 : 0 ) + 60 ; } else if (v == greenButton) { value = (greenButton.isChecked () ? 1 : 0 ) + 70 ; } //Пишем данные в выходной поток outStream.write (value) ; } catch (IOException e) { //Если есть ошибки, выводим их в лог Log.d ("BLUETOOTH" , e.getMessage (, OUTPUT) ; pinMode(7 , OUTPUT) ; } void loop() { //Если данные пришли if (Serial.available () > 0 ) { //Считываем пришедший байт byte incomingByte = Serial.read () ; //Получаем номер пина путем целочисленного деления значения принятого байта на 10 //и нужное нам действие за счет получения остатка от деления на 2: //(1 - зажечь, 0 - погасить) digitalWrite(incomingByte / 10 , incomingByte % 2 ) ; } }

Особенности заливки скетча

Для связи Bluetooth-Bee с контроллером используются те же пины (0 и 1), что и для прошивки. Поэтому при программировании контроллера переключатель «SERIAL SELECT» на «Wireless Shield» должен быть установлен в положение «USB», а после прошивки его надо вернуть в положение «MICRO».

Результат

Заключение

В данной статье мы научились создавать приложения для операционной системы Android и передавать данные по Bluetooth. Теперь при нажатии на кнопку на экране телефона на базе операционной системы Android, произойдет изменение состояния светодиода на плате.

Вы можете развить мысль и сделать более дружественный интерфейс на Android, управлять с его помощью гораздо более сложными устройствами, публиковать классные приложения в Android Market и ещё много-много всего интересного!



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows