Как читать двоичный код. Перевод текста в цифровой код

Как читать двоичный код. Перевод текста в цифровой код

17.10.2019

Поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток - нет тока, индукция магнитного поля больше пороговой величины или нет и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину индукции магнитного поля, потребуется ввести два пороговых значения, что не будет способствовать помехоустойчивости и надёжности хранения информации.
  • Двоичная арифметика является довольно простой. Простыми являются таблицы сложения и умножения - основных действий над числами.
  • Возможно применение аппарата алгебры логики для выполнения побитовых операций над числами.

Ссылки

  • Онлайн калькулятор для перевода чисел из одной системы счисления в другую

Wikimedia Foundation . 2010 .

Смотреть что такое "Бинарный код" в других словарях:

    2 битный код Грея 00 01 11 10 3 битный код Грея 000 001 011 010 110 111 101 100 4 битный код Грея 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000 Код Грея система счисления, в которой два соседних значения… … Википедия

    Код сигнальной точки (англ. Signal Point Code (SPC)) сигнальной системы 7 (SS7, ОКС 7) это уникальный (в домашней сети) адрес узла, используемый на третьем уровне MTP (маршрутизация) в телекоммуникационных ОКС 7 сетях для идентификации … Википедия

    В математике бесквадратным называется число, которое не делится ни на один квадрат, кроме 1. К примеру, 10 бесквадратное, а 18 нет, так как 18 делится на 9 = 32. Начало последовательности бесквадратных чисел таково: 1, 2, 3, 5, 6, 7,… … Википедия

    Для улучшения этой статьи желательно?: Викифицировать статью. Переработать оформление в соответствии с правилами написания статей. Исправить статью согласно стилистическим правилам Википедии … Википедия

    У этого термина существуют и другие значения, см. Python (значения). Python Класс языка: му … Википедия

    В узком смысле слова в настоящее время под словосочетанием понимается «Покушение на систему безопасности», и склоняется скорее к смыслу следующего термина Крэкерская атака. Это произошло из за искажения смысла самого слова «хакер». Хакерская… … Википедия

Результат уже получен!

Системы счисления

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

Ц n ·s n +Ц n-1 ·s n-1 +...+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +...+Д -k ·s -k

где Ц n -целое число в позиции n , Д -k - дробное число в позиции (-k), s - система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
0 2 1
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

159 10 =10011111 2 .

Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

615 10 =1147 8 .

Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0 0.428
x 2
0 0.856
x 2
1 0.712
x 2
1 0.424
x 2
0 0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

Следовательно можно записать:

0.214 10 =0.0011011 2 .

Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0 0.25
x 2
0 0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.125 10 =0.001 2 .

Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.214 10 =0.36C8B4 16 .

Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0 0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Получили:

0.512 10 =0.406111 8 .

Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.125 10 =10011111.001 2 .

Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.

Бинарный код представляет собой текст, инструкции процессора компьютера или другие данные с использованием любой двухсимвольной системы. Чаще всего это система 0 и 1. назначает шаблон бинарных цифр (бит) каждому символу и инструкции. Например, бинарная строка из восьми бит может представлять любое из 256 возможных значений и поэтому может генерировать множество различных элементов. Отзывы о бинарном коде мирового профессионального сообщества программистов свидетельствуют о том, что это основа профессии и главный закон функционирования вычислительных систем и электронных устройств.

Расшифровка бинарного кода

В вычислениях и телекоммуникациях бинарные коды используются для различных методов кодирования символов данных в битовые строки. Эти методы могут использовать строки фиксированной или переменной ширины. Для перевода в бинарный код существует множество наборов символов и кодировок. В коде с фиксированной шириной каждая буква, цифра или другой символ представляется битовой строкой той же длины. Эта битовая строка, интерпретируемая как бинарное число, обычно отображается в кодовых таблицах в восьмеричной, десятичной или шестнадцатеричной нотации.

Расшифровка бинарного кода: битовая строка, интерпретируемая как бинарное число, может быть переведена в десятичное число. Например, нижний регистр буквы a, если он представлен битовой строкой 01100001 (как и в стандартном коде ASCII), также может быть представлен как десятичное число 97. Перевод бинарного кода в текст представляет собой ту же процедуру, только в обратном порядке.

Как это работает

Из чего состоит бинарный код? Код, используемый в цифровых компьютерах, основан на в которой есть только два возможных состояния: вкл. и выкл., обычно обозначаемые нулем и единицей. Если в десятичной системе, которая использует 10 цифр, каждая позиция кратна 10 (100, 1000 и т. д.), то в двоичной системе каждое цифровое положение кратно 2 (4, 8, 16 и т. д.). Сигнал двоичного кода представляет собой серию электрических импульсов, которые представляют числа, символы и операции, которые необходимо выполнить.

Устройство, называемое часами, посылает регулярные импульсы, а такие компоненты, как транзисторы, включаются (1) или выключаются (0), чтобы передавать или блокировать импульсы. В двоичном коде каждое десятичное число (0-9) представлено набором из четырех двоичных цифр или битов. Четыре основных арифметических операции (сложение, вычитание, умножение и деление) могут быть сведены к комбинациям фундаментальных булевых алгебраических операций над двоичными числами.

Бит в теории связи и информации представляет собой единицу данных, эквивалентную результату выбора между двумя возможными альтернативами в системе двоичных номеров, обычно используемой в цифровых компьютерах.

Отзывы о бинарном коде

Характер кода и данных является базовой частью фундаментального мира ИТ. C этим инструментом работают специалисты мирового ИТ-«закулисья» — программисты, чья специализация скрыта от внимания рядового пользователя. Отзывы о бинарном коде от разработчиков свидетельствуют о том, что эта область требует глубокого изучения математических основ и большой практики в сфере матанализа и программирования.

Бинарный код — это простейшая форма компьютерного кода или данных программирования. Он полностью представлен двоичной системой цифр. Согласно отзывам о бинарном коде, его часто ассоциируется с машинным кодом, так как двоичные наборы могут быть объединены для формирования исходного кода, который интерпретируется компьютером или другим аппаратным обеспечением. Отчасти это верно. использует наборы двоичных цифр для формирования инструкций.

Наряду с самой базовой формой кода двоичный файл также представляет собой наименьший объем данных, который протекает через все сложные комплексные аппаратные и программные системы, обрабатывающие сегодняшние ресурсы и активы данных. Наименьший объем данных называется битом. Текущие строки битов становятся кодом или данными, которые интерпретируются компьютером.

Двоичное число

В математике и цифровой электронике двоичное число — это число, выраженное в системе счисления base-2 или двоичной цифровой системе, которая использует только два символа: 0 (ноль) и 1 (один).

Система чисел base-2 представляет собой позиционную нотацию с радиусом 2. Каждая цифра упоминается как бит. Благодаря своей простой реализации в цифровых электронных схемах с использованием логических правил, двоичная система используется почти всеми современными компьютерами и электронными устройствами.

История

Современная бинарная система чисел как основа для двоичного кода была изобретена Готтфридом Лейбницем в 1679 году и представлена ​​в его статье «Объяснение бинарной арифметики». Бинарные цифры были центральными для теологии Лейбница. Он считал, что двоичные числа символизируют христианскую идею творчества ex nihilo, или творение из ничего. Лейбниц пытался найти систему, которая преобразует вербальные высказывания логики в чисто математические данные.

Бинарные системы, предшествующие Лейбницу, также существовали в древнем мире. Примером может служить китайская бинарная система И Цзин, где текст для предсказания основан на двойственности инь и ян. В Азии и в Африке использовались щелевые барабаны с бинарными тонами для кодирования сообщений. Индийский ученый Пингала (около 5-го века до н.э.) разработал бинарную систему для описания просодии в своем произведении «Чандашутрема».

Жители острова Мангарева во Французской Полинезии использовали гибридную бинарно-десятичную систему до 1450 года. В XI веке ученый и философ Шао Юн разработал метод организации гексаграмм, который соответствует последовательности от 0 до 63, как представлено в бинарном формате, причем инь равен 0, янь — 1. Порядок также является лексикографическим порядком в блоках элементов, выбранных из двухэлементного набора.

Новое время

В 1605 году обсудил систему, в которой буквы алфавита могут быть сведены к последовательностям бинарных цифр, которые затем могут быть закодированы как едва заметные вариации шрифта в любом случайном тексте. Важно отметить, что именно Фрэнсис Бэкон дополнил общую теории бинарного кодирования наблюдением, что этот метод может использован с любыми объектами.

Другой математик и философ по имени Джордж Бул опубликовал в 1847 году статью под названием «Математический анализ логики», в которой описывается алгебраическая система логики, известная сегодня как булева алгебра. Система была основана на бинарном подходе, который состоял из трех основных операций: AND, OR и NOT. Эта система не была введена в эксплуатацию, пока аспирант из Массачусетского технологического института по имени Клод Шеннон не заметил, что булева алгебра, которую он изучил, была похожа на электрическую цепь.

Шеннон написал диссертацию в 1937 году, в которой были сделаны важные выводы. Тезис Шеннона стал отправной точкой для использования бинарного кода в практических приложениях, таких как компьютеры и электрические схемы.

Другие формы двоичного кода

Битовая строка не является единственным типом двоичного кода. Двоичная система в целом — это любая система, которая допускает только два варианта, таких как переключатель в электронной системе или простой истинный или ложный тест.

Брайль — это тип двоичного кода, который широко используется слепыми людьми для чтения и записи на ощупь, названный по имени его создателя Луи Брайля. Эта система состоит из сеток по шесть точек в каждой, по три на столбец, в котором каждая точка имеет два состояния: приподнятые или углубленные. Различные комбинации точек способны представлять все буквы, цифры и знаки пунктуации.

Американский стандартный код для обмена информацией (ASCII) использует 7-битный двоичный код для представления текста и других символов в компьютерах, оборудовании связи и других устройствах. Каждой букве или символу присваивается номер от 0 до 127.

Двоично-кодированное десятичное значение или BCD — это двоичное кодированное представление целочисленных значений, которое использует 4-битный граф для кодирования десятичных цифр. Четыре двоичных бита могут кодировать до 16 различных значений.

В номерах с кодировкой BCD только первые десять значений в каждом полубайте являются корректными и кодируют десятичные цифры с нулем, через девять. Остальные шесть значений являются некорректными и могут вызвать либо машинное исключение, либо неуказанное поведение, в зависимости от компьютерной реализации арифметики BCD.

Арифметика BCD иногда предпочтительнее числовых форматов с плавающей запятой в коммерческих и финансовых приложениях, где сложное поведение округления чисел является нежелательным.

Применение

Большинство современных компьютеров используют программу бинарного кода для инструкций и данных. Компакт-диски, DVD-диски и диски Blu-ray представляют звук и видео в двоичной форме. Телефонные звонки переносятся в цифровом виде в сетях междугородной и мобильной телефонной связи с использованием импульсно-кодовой модуляции и в сетях передачи голоса по IP.


Греческая Грузинская
Эфиопская
Еврейская
Акшара-санкхья Другие Вавилонская
Египетская
Этрусская
Римская
Дунайская Аттическая
Кипу
Майяская
Эгейская
Символы КППУ Позиционные , , , , , , , , , , Нега-позиционная Симметричная Смешанные системы Фибоначчиева Непозиционные Единичная (унарная)

Двоичная система счисления - позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях , двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах .

Двоичная запись чисел

В двоичной системе счисления числа записываются с помощью двух символов (0 и 1 ). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 5 10 , в двоичной 101 2 . Иногда двоичное число обозначают префиксом 0b или символом & (амперсанд) , например 0b101 или соответственно &101 .

В двоичной системе счисления (как и в других системах счисления, кроме десятичной) знаки читаются по одному. Например, число 101 2 произносится «один ноль один».

Натуральные числа

Натуральное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет значение:

(a n − 1 a n − 2 … a 1 a 0) 2 = ∑ k = 0 n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=\sum _{k=0}^{n-1}a_{k}2^{k},}

Отрицательные числа

Отрицательные двоичные числа обозначаются так же как и десятичные: знаком «−» перед числом. А именно, отрицательное целое число, записываемое в двоичной системе счисления (− a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет величину:

(− a n − 1 a n − 2 … a 1 a 0) 2 = − ∑ k = 0 n − 1 a k 2 k . {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=-\sum _{k=0}^{n-1}a_{k}2^{k}.}

дополнительном коде .

Дробные числа

Дробное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}} , имеет величину:

(a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 = ∑ k = − m n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}=\sum _{k=-m}^{n-1}a_{k}2^{k},}

Сложение, вычитание и умножение двоичных чисел

Таблица сложения

Пример сложения «столбиком» (десятичное выражение 14 10 + 5 10 = 19 10 в двоичном виде выглядит как 1110 2 + 101 2 = 10011 2):

Пример умножения «столбиком» (десятичное выражение 14 10 * 5 10 = 70 10 в двоичном виде выглядит как 1110 2 * 101 2 = 1000110 2):

Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1, называется двоичной точкой.

Преобразование двоичных чисел в десятичные

Допустим, дано двоичное число 110001 2 . Для перевода в десятичное запишите его как сумму по разрядам следующим образом:

1 * 2 5 + 1 * 2 4 + 0 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0 = 49

То же самое чуть иначе:

1 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 1 * 1 = 49

Можно записать это в виде таблицы следующим образом:

512 256 128 64 32 16 8 4 2 1
1 1 0 0 0 1
+32 +16 +0 +0 +0 +1

Двигайтесь справа налево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа. Таким образом, двоичное число 110001 2 равнозначно десятичному 49 10 .

Преобразование дробных двоичных чисел в десятичные

Нужно перевести число 1011010,101 2 в десятичную систему. Запишем это число следующим образом:

1 * 2 6 + 0 * 2 5 + 1 * 2 4 + 1 * 2 3 + 0 * 2 2 + 1 * 2 1 + 0 * 2 0 + 1 * 2 -1 + 0 * 2 -2 + 1 * 2 -3 = 90,625

То же самое чуть иначе:

1 * 64 + 0 * 32 + 1 * 16 + 1 * 8 + 0 * 4 + 1 * 2 + 0 * 1 + 1 * 0,5 + 0 * 0,25 + 1 * 0,125 = 90,625

Или по таблице:

64 32 16 8 4 2 1 0.5 0.25 0.125
1 0 1 1 0 1 0 , 1 0 1
+64 +0 +16 +8 +0 +2 +0 +0.5 +0 +0.125

Преобразование методом Горнера

Для того, чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Методом Горнера обычно переводят из двоичной в десятичную систему. Обратная операция затруднительна, так как требует навыков сложения и умножения в двоичной системе счисления.

Например, двоичное число 1011011 2 переводится в десятичную систему так:

0*2 + 1 = 1
1*2 + 0 = 2
2*2 + 1 = 5
5*2 + 1 = 11
11*2 + 0 = 22
22*2 + 1 = 45
45*2 + 1 = 91

То есть в десятичной системе это число будет записано как 91.

Перевод дробной части чисел методом Горнера

Цифры берутся из числа справа налево и делятся на основу системы счисления (2).

Например 0,1101 2

(0 + 1 )/2 = 0,5
(0,5 + 0 )/2 = 0,25
(0,25 + 1 )/2 = 0,625
(0,625 + 1 )/2 = 0,8125

Ответ: 0,1101 2 = 0,8125 10

Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой:

19/2 = 9 с остатком 1
9/2 = 4 c остатком 1
4/2 = 2 без остатка 0
2/2 = 1 без остатка 0
1/2 = 0 с остатком 1

Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижняя цифра (1) будет самой левой и т.д. В результате получаем число 19 в двоичной записи: 10011 .

Преобразование дробных десятичных чисел в двоичные

Если в исходном числе есть целая часть, то она преобразуется отдельно от дробной. Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

  • Дробь умножается на основание двоичной системы счисления (2);
  • В полученном произведении выделяется целая часть, которая принимается в качестве старшего разряда числа в двоичной системе счисления;
  • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над дробной частью произведения.

Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.

Перевод целой части дает 206 10 =11001110 2 по ранее описанным алгоритмам. Дробную часть 0,116 умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:

0,116 2 = 0 ,232
0,232 2 = 0 ,464
0,464 2 = 0 ,928
0,928 2 = 1 ,856
0,856 2 = 1 ,712
0,712 2 = 1 ,424
0,424 2 = 0 ,848
0,848 2 = 1 ,696
0,696 2 = 1 ,392
0,392 2 = 0 ,784
и т. д.

Таким образом 0,116 10 ≈ 0,0001110110 2

Получим: 206,116 10 ≈ 11001110,0001110110 2

Применения

В цифровых устройствах

Двоичная система используется в цифровых устройствах , поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток (ток больше пороговой величины) - нет тока (ток меньше пороговой величины), индукция магнитного поля больше пороговой величины или нет (индукция магнитного поля меньше пороговой величины) и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину напряжения, тока или индукции магнитного поля, потребуется ввести два пороговых значения и два компаратора ,

В вычислительной технике широко используется запись отрицательных двоичных чисел в дополнительном коде . Например, число −5 10 может быть записано как −101 2 но в 32-битном компьютере будет храниться как 2 .

В английской системе мер

При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 7 15 / 16 ″, 3 11 / 32 ″ и т. д.

Обобщения

Двоичная система счисления является комбинацией двоичной системы кодирования и показательной весовой функции с основанием равным 2. Следует отметить, что число может быть записано в двоичном коде , а система счисления при этом может быть не двоичной, а с другим основанием. Пример: двоично-десятичное кодирование , в котором десятичные цифры записываются в двоичном виде, а система счисления - десятичная.

История

  • Полный набор из 8 триграмм и 64 гексаграмм , аналог 3-битных и 6-битных цифр, был известен в древнем Китае в классических текстах книги Перемен . Порядок гексаграмм в книге Перемен , расположенных в соответствии со значениями соответствующих двоичных цифр (от 0 до 63), и метод их получения был разработан китайским учёным и философом Шао Юн в XI веке . Однако нет доказательств, свидетельствующих о том, что Шао Юн понимал правила двоичной арифметики, располагая двухсимвольные кортежи в лексикографическом порядке .
  • Наборы, представляющие собой комбинации двоичных цифр, использовались африканцами в традиционных гаданиях (таких как Ифа) наряду со средневековой геомантией .
  • В 1854 году английский математик Джордж Буль опубликовал знаковую работу, описывающую алгебраические системы применительно к логике , которая в настоящее время известна как Булева алгебра или алгебра логики . Его логическому исчислению было суждено сыграть важную роль в разработке современных цифровых электронных схем.
  • В 1937 году Клод Шеннон представил к защите кандидатскую диссертацию Символический анализ релейных и переключательных схем в , в которой булева алгебра и двоичная арифметика были использованы применительно к электронным реле и переключателям. На диссертации Шеннона по существу основана вся современная цифровая техника .
  • В ноябре 1937 года Джордж Штибиц , впоследствии работавший в Bell Labs , создал на базе реле компьютер «Model K» (от англ. «K itchen», кухня, где производилась сборка), который выполнял двоичное сложение. В конце 1938 года Bell Labs развернула исследовательскую программу во главе со Штибицом. Созданный под его руководством компьютер, завершённый 8 января 1940 года, умел выполнять операции с комплексными числами . Во время демонстрации на конференции American Mathematical Society в Дартмутском колледже 11 сентября 1940 года Штибиц продемонстрировал возможность посылки команд удалённому калькулятору комплексных чисел по телефонной линии с использованием телетайпа . Это была первая попытка использования удалённой вычислительной машины посредством телефонной линии. Среди участников конференции, бывших свидетелями демонстрации, были Джон фон Нейман , Джон Мокли и Норберт Винер , впоследствии писавшие об этом в своих мемуарах.
  • На фронтоне здания (бывшего Вычислительного Центра СО АН СССР) в Новосибирском Академгородке присутствует двоичное число 1000110, равное 70 10 , что символизирует дату постройки здания (

Можно с помощью стандартных программных средств операционной системы Microsoft Windows. Для этого откройте меню «Пуск» на вашем компьютере, в появившемся меню кликните «Все программы», выберите папку «Стандартные» и найдите в ней приложение «Калькулятор». В верхнем меню калькулятора выберите пункт «Вид», а затем «Программист». Форма калькулятора преобразуется.

Теперь введите число для перевода. В специальном окне под полем ввода вы увидите результат перевода числа код. Так, например, после ввода числа 216 вы получите результат 1101 1000.

Если у вас под рукой нет ни компьютера, ни смартфона, вы можете самостоятельно попробовать число, записанное арабскими цифрами, в двоичный код. Для этого необходимо постоянно делить число на 2 до того момента, пока не останется последнего остатка или результат не достигнет нуля. Выглядит это так (на примере числа 19):

19: 2 = 9 – остаток 1
9: 2 = 4 – остаток 1
4: 2 = 2 – остаток 0
2: 2 = 1 – остаток 0
1: 2 = 0 – достигнут 1 (делимое меньше делителя)

Выпишите остаток в обратную сторону – с самого последнего к самому первому. Вы получите результат 10011 – это и есть число 19 в .

Для перевода дробного десятичного числа в систему вначале необходимо перевести целую часть дробного числа в двоичную систему счисления, как это было показано в примере выше. Затем нужно дробную часть привычного числа умножить на основание двоичной . В результате произведения необходимо выделить целую часть – она принимает значение первого разряда числа системе после запятой. Финал алгоритма наступает, когда дробная часть произведения обращается в ноль, или если достигнута требуемая точность вычислений.

Источники:

  • Алгоритмы перевода на Wikipedia

Кроме привычной десятичной системы счисления в математике есть множество других способов представления чисел, в том числе в виде . Для этого используются всего два символа, 0 и 1, что делает двоичную систему удобной при использовании в работе различных цифровых устройств.

Инструкция

Системы в предназначены для символического отображения чисел. В обычной , в основном, используется десятичная система, которая очень удобна для расчетов, в том числе в уме. В мире цифровых устройств, в том числе компьютерном, который стал теперь для многих вторым домом, наибольшее распространение имеет , далее по мере убывания популярности идут восьмеричная и шестнадцатеричная.

Эти четыре системы имеют одно общее качество – они позиционные. Это значит, что значение каждого знака в итоговом числе зависит от того, в какой позиции он стоит. Отсюда вытекает понятие разрядности, в двоичном виде единицей разрядности является число 2, в – 10 и т.д.

Существуют алгоритмы перевода чисел из одной системы в другую. Эти методы просты и не требуют больших знаний, однако для развития этих навыков требуется некоторая сноровка, которая достигается практикой.

Перевод числа из другой системы счисления в осуществляется двумя возможными способами: итерационным делением на 2 или с помощью записи каждого отдельного знака числа в виде четверки символов, которые являются табличными величинами, однако могут быть найдены и самостоятельно ввиду своей простоты.

Используйте первый способ для приведения в двоичный вид десятичного числа. Это тем более удобно, что десятичными числами легче оперировать в уме.

Например, переведите число 39 в двоичный видРазделите 39 на 2 - получится 19 и 1 в остатке. Сделайте еще несколько итераций деления на 2, пока в конечном итоге не будет равен нулю, а промежуточные остатки тем временем записывайте в строку справа налево. Итоговый набор единиц и нулей и будет вашим числом в двоичном виде:39/2 = 19 → 1;19/2 = 9 → 1;9/2 = 4 → 1;4/2 = 2 → 0;2/2 = 1 → 0;1/2 = 0 → 1.Итак, получилось двоичное число 111001.

Чтобы перевести в двоичный вид число из по основаниям 16 и 8, найдите или сделайте сами таблицы соответствующих обозначений каждого цифрового и символьного элемента этих систем. А именно: 0 0000, 1 0001, 2 0010, 3 0011, 4 0100, 5 0101, 6 0110, 7 0111, 8 1000, 9 1001, A 1010, B 1011, C 1100, D 1101, E 1110, F 1111.

Каждый знак исходного числа запишите в соответствии с данными этой таблицы. Примеры:Восьмеричное число 37 = = 00110111 в двоичном виде;Шестнадцатеричное число 5FEB12 = = 010111111110101100010010 системе.

Видео по теме

Некоторые нецелые числа могут быть записаны в десятичном виде. В этом случае после запятой, отделяющей целую часть числа , стоит некоторое количество цифр, характеризующих нецелую часть числа . В разных случаях удобно использовать либо десятичные числа , либо дробные. Десятичные числа можно переводить в дробные.

Вам понадобится

  • умение сокращать дроби

Инструкция

Если знаменатель равен 10, 100 или, в случае, 10^n, где n - натуральное число, то дробь может быть записана в виде . Количество знаков после запятой определяет знаменатель дроби. Он равен 10^n, где n - количество знаков. Значит, к примеру, 0,3 можно записать как 3/10, 0,19 как 19/100 и.т.д.

Если в конце десятичной дроби стоит один или более нулей, то эти нули можно отбросить и переводить число с оставшимся количеством знаков после запятой в дробное. Пример: 1,7300 = 1,73 = 173/100.

Видео по теме

Источники:

  • Десятичные дроби
  • как перевести дробное

Основная часть программных продуктов для Android написана на языке программирования (ЯП) Java. Разработчики системы также предлагают программистам фреймворки для проектирования приложений на C/C++, Python и Java Script через библиотеку jQuery и PhoneGap.

Motodev Studio for Android, созданный на основе Eclipse и позволяющий программировать непосредственно на основе Google SDK.

Для написания некоторых программ и участков кода, выполнение которых требует максимальной , могут быть использованы библиотеки C/C++. Использование этих ЯП возможно через специальный пакет для разработчиков Android Native Development Kit, ориентированный специально для создания приложений с использованием C++.

Пакет Embarcadero RAD Studio XE5 также позволяет писать нативные приложения для Android. При этом для тестирования программы достаточно одного Android-устройства или установленного эмулятора. Разработчику также предлагается возможность писать на C/C++ низкоуровневые модули путем использования некоторых стандартных библиотек Linux и разработанной для Android библиотеки Bionic.

Кроме C/C++, программисты имеют возможность использовать C#, средства которого пригодятся при написании нативных программ для платформы. Работа на C# с Android возможно через интерфейс Mono или Monotouch. Тем не менее первоначальная лицензия на C# обойдется программисту в $400, что актуально только при написании крупных программных продуктов.

PhoneGap

PhoneGap дает возможность разрабатывать приложения с использованием таких языков, как HTML, JavaScript (jQuery) и CSS. При этом программы, создаваемые на данной платформе, подходят для других операционных и могут быть модифицированы под другие девайсы без дополнительного внесения изменений в программный код. С использованием PhoneGap разработчики программ на Android могут применять средства JavaScript для написания кода и HTML с CSS в качестве средств для создания разметки.

Решение SL4A дает возможность использовать в написании и скриптовые языки. При помощи среды планируется введение таких ЯП, как Python, Perl, Lua, BeanShell, JRuby и т.п. Тем не менее количество разработчиков, которые на сегодняшний день используют SL4A для своих программ, невелико, а проект до сих пор находится в стадии -тестирования.

Источники:

  • PhoneGap


© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows