Подготовка данных. Факторный анализ. Центр системной оптимизации бизнеса и управления качеством - факторный анализ Факторная матрица

Подготовка данных. Факторный анализ. Центр системной оптимизации бизнеса и управления качеством - факторный анализ Факторная матрица

02.07.2020

Дисперсионный анализ факторов

Факторная матрица

Переменная Фактор А Фактор Б

Как видно из матрицы, факторные нагрузки (или веса) А и Б для различных потребительских требований значительно отличаются. Факторная нагрузка А для требования Т 1 соответствует тесноте связи, характеризующейся коэффициентом корреляции, равным 0,83, т.е. хорошая (тесная) зависимость. Факторная нагрузка Б для того же требования дает r k = 0,3, что соответствует слабой тесноте связи. Как и предполагалось, фактор Б очень хоро­шо коррелируется с потребительскими требованиями Т 2 , Т 4 и Т 6 .

Учитывая, что факторные нагрузки как А, так и Б влияют на не относящиеся в их группу потребительские требования с теснотой связи не более 0,4 (т.е. слабо), можно считать, что представленная выше матрица интеркорреляций определяется двумя независимыми факторами, которые в свою очередь определяют шесть потребительских требований (за исключением Т 7).

Переменную Т 7 можно было выделить в самостоятельный фактор, так как ни с одним потребительским требованием она не имеет значимой корреляционной нагрузки (более 0,4). Но, на наш взгляд, этого не следует делать, так как фактор «дверь не должна ржаветь» не имеет непосредственного отношения к потребительским требованиям по конструкции двери.

Таким образом, при утверждении технического задания на проектирование конструкции дверей автомобиля именно названия полученных факторов будут вписаны как потребительские требования, по которым необходимо найти конструктивное решение в виде инженерных характеристик.

Укажем на одно принципиально важное свойство коэффициента корреляции между переменными: возведенный в квадрат, он показывает, какая часть дисперсии (разброса) признака является общей для двух переменных, насколько сильно эти переменные перекрываются. Так, например, если две переменные Т 1 и Т 3 с корреляцией 0,8 перекрываются со степенью 0,64 (0,8 2), то это означает, что 64% дисперсий той и другой переменной являются общими, т.е. совпадают. Можно также сказать, что общность этих переменных равна 64%.

Напомним, что факторные нагрузки в факторной матрице являются тоже коэффициентами корреляции, но между факторами и переменными (потребительскими требованиями).

Переменная Фактор А Фактор Б

Поэтому возведенная в квадрат факторная нагрузка (дисперсия) характеризует степень общности (или перекрытия) данной переменной и данного фактора. Определим степень перекрытия (дисперсию D) обоих факторов с переменной (потребительским требованием) Т 1 . Для этого необходимо вычислить сумму квадратов весов факторов с первой переменной, т.е. 0,83 х 0,83 + 0,3 х 0,3 = 0,70. Таким образом, общность переменной Т 1 с обоими факторами составляет 70%. Это достаточно значимое перекрытие.


В то же время низкая общность может свидетельствовать о том, что переменная измеряет или отражает нечто, качественно отличающеёся от других переменных, включенных в анализ. Это подразумевает, что данная переменная не совмещается с факторами по одной из причин: либо она измеряет другое понятие (как, например, переменная Т 7), либо имеет большую ошибку измерения, либо существуют искажающие дисперсию признаки.

Следует отметить, что значимость каждого фактора также определяется величиной дисперсии между переменными и факторной нагрузкой (весом). Для того чтобы вычислить собственное значение фактора, нужно найти в каждом столбце факторной матрицы сумму квадратов факторной нагрузки для каждой переменной. Таким образом, например, дисперсия фактора А (D А) составит 2,42 (0,83 х 0,83 + 0,3 х 0,3 + 0,83 х 0,83 + 0,4 х 0,4 + 0,8 х 0,8 + 0,35 х 0,35). Расчет значимости фактора Б показал, что D Б = 2,64, т.е. значимость фактора Б выше, чем фактора А.

Если собственное значение фактора разделить на число переменных (в нашем примере их семь), то полученная величина покажет, какую долю дисперсии (или объем информации) γ в исходной корреляционной матрице составит этот фактор. Для фактора А γ ~ 0,34 (34%), а для фактора Б - γ = 0,38 (38%). Просуммировав результаты, получим 72%. Таким образом, два фактора, будучи объединены, заполняют только 72% дисперсии показателей исходной матрицы. Это означает, что в результате факторизации часть информации в исходной матрице была принесена в жертву построения двухфакторной модели. В результате упущено 28% информации, которая могла бы восстановиться, если бы была принята шестифакторная модель.

Где же допущена ошибка, учитывая, что все рассмотренные пере­менные, имеющие отношение к требованиям по конструкции двери, учтены? Наиболее вероятно, что значения коэффициентов корреляции переменных, относящихся к одному фактору, несколько занижены. С учетом проведенного анализа можно было бы вернуться к формированию иных значений коэффициентов корреляции в матрице интеркорреляций (см. табл. 2.2).

На практике часто сталкиваются с такой ситуацией, при которой число независимых факторов достаточно велико, чтобы их все учесть в решении проблемы или с технической или экономической точки зрения. Существует ряд способов по ограничению числа факторов. Наиболее известный из них - анализ Парето. При этом отбираются те факторы (по мере уменьшения значимости), которые попадают в 80-85%-ную границу их суммарной значимости.

Факторный анализ можно использовать при реализации метода структурирования функции качества (QFD), широко применяемого за рубежом при формировании технического задания на новое изделие.

Если проводить факторный анализ как полагается, а не удовлтеоряться установками по умолчанию ("маленьким джиффи", как с насмешкой обозвали стандартный джентльменский набор методологи), предпочитаемым методом извлечения факторов является или метод максимального правдоподобия, или обобщенный метод наименьших квадратов. Вот тут-то нас может ожидать неприятность: процедура выдает сообщение об ошибке: correlation matrix is not positive definite. Что это означает, отчего случается и как бороться с проблемой?
Дело в том, что в процессе факторизации процедура выполняет поиск так называемой обратной матрицы по отношению к корреляционной. Здесь существует аналогия с привычными действительными числами: умножив число на обратное к нему число, мы должны получить единицу (например, 4 и 0.25). Однако для некоторых чисел обратных к ним не существует -- ноль невозможно умножить на что-то, что даст в итоге единицу. С матрицами та же история. Матрица, умноженная на обратную к ней матрицу, дает единичную матрицу (единицы стоят по диагонали, а все другие значения нулевые). Однако для некоторых матриц не существует обратных, а значит, провести для таких случаев факторный анализ становится невозможным. Выяснить данный факт можно при помощи особого числа, называющегося определителем (детерминантом). Если оно для матрицы стремится к нулю или отрицательное, то мы столкнулись с проблемой.
Каковы же причины этой ситуации? Чаще всего она возникает вследствие существования линейной зависимости между переменными. Звучит странно, поскольку именно такие зависимости мы ведь и ищем, используя многомерные методы. Однако, в случае, когда такие зависимости перестают быть вероятностными, становятся жестко детерминированными, алгоритмы многомерного анализа дают сбой. Рассмотрим следующий пример. Пусть у нас имеется такой набор данных:
data list free / V1 to V3. begin data. 1 2 3 2 1 2 3 5 4 4 4 5 5 3 1 end data. compute V4 = V1 + V2 + V3.
Последняя переменная представляет собой точную сумму первых трех. Когда возникает подобная ситуация в реальном исследовании? Когда мы включаем в набор переменных сырые баллы по субтестам и тесту в целом; когда количество переменных намного больше числа испытуемых (особенно если переменные сильно коррелируют или имеют ограниченный набор значений). В этом случае точные линейные зависимости могут возникать случайно. Часто зависимости являются артефактом процедуры измерения -- например, если подсчитываются проценты внутри наблюдений (скажем, процент высказываний определенного типа), используется метод ранжирования или распределения постоянной суммы, вводятся каие-то гораничения на выбор альтернатив и т.п. Как видим, вполне распространенные ситуации.
Если при проведении факторного анализа в SPSS вышеприведенного массива заказать вывод детерминанта и обратной корреляционной матрицы, то пакет сообщит о проблеме.
Как выявить группу переменных, которые создают мультиколлинеарность? Оказывается, старый добрый метод главных компонент, невзирая на линейную зависимость, продолжает работать и что-то выдает на-гора. Если увидите, что общности какой-то из переменных приближаются к 0.90-0.99, а собственные числа некоторых факторов становятся очень маленькими (или даже отрицательными), это нехороший знак. Закажите вдобавок вращение варимакс и посмотрите, какая группа переменных попала вместе с подозреваемой в преступной связи товаркой. Обычно и нагрузка ее на это фактор является необычно большой (0.99, к примеру). Если этот набор переменных небольшой, содержательно разнородный, исключена возможность артефактной линейной зависимости и выборка достаточно большая, то обнаружение такой связи можно считатьб не менее ценным результатом. Можно такую группу покрутить в регрессионном анализе: ту переменную, которая показала наибольшую нагрузку, сделать зависимой, а все остальные попробовать в качестве предикторов. R, т.е. коэффициент множественной корреляции, должен в этом случае быть равным 1. Если линейная связь очень запущенная, то регрессия молча выбросит еще какие-то из предикторов, смотрите внимательно, чего не хватает. Заказав дополнительно вывод диагностики мультиколлинеарности, можно в конце концов нащупать злополучный набор, образующий точную линейную зависимость.
Ну и, наконец, еще нресколько более мелких причин того, что корреляционная матрица не является положительно определенной. Это, во-первых, присутствие большого количества неответов. Иногда, чтобы использовать максимум имеющейся информации, исследователь заказывает обработку пропусков попарным способом. В итоге может получиться настолько "нелогичная" матрица связи, что модели факторного анализа она окажется не по зубам. Во-вторых, если вы решили факторизовать корреляционную матрицу, приведенную в литературе, вы можете столкнуться с негативным влиянием округления чисел.

Основные положения

Факторный анализ – это один из новых разделов многомерного статистического анализа. Первоначально этот метод разрабатывался для объяснения корреляции между исходными параметрами. Результатом корреляционного анализа является матрица коэффициентов корреляции. При малом числе признаков (переменных) можно провести визуальный анализ этой матрицы. С ростом числа признаков (10 и более) визуальный анализ не даст положительных результатов. Оказывается, что все многообразие корреляционных связей можно объяснить действием нескольких обобщенных факторов, которые являются функциями исследуемых параметров, при этом сами факторы могут быть неизвестны, но их можно выразить через исследуемые признаки. Основоположником факторного анализа является американский ученый Л.Терстоун.

Современные статистики под факторным анализом понимают совокупность методов, которые на основе реально существующей связи между признаками позволяет выявить латентные (скрытые) обобщающие характеристики организационной структуры и механизмы развития изучаемых явлений и процессов.

Пример: предположим, что n автомобилей оценивается по 2 признакам:

x 1 – стоимость автомобиля,

x 2 – длительность рабочего ресурса мотора.

При условии коррелированности x 1 и x 2 в системе координат появляется направленное и достаточно плотное скопление точек, формально отображаемое новыми осями и(Рис.5).

Рис.6

Характерная особенность F 1 и F 2 заключается в том, что они проходят через плотные скопления точек и в свою очередь коррелируют с x 1 x 2 .Максимальное

число новых осей будет равно числу элементарных признаков. Дальнейшие разработки факторного анализа показали, что этот метод может быть с успехом применены в задачах группировки и классификации объектов.

Представление информации в факторном анализе.

Для проведения факторного анализа информация должна быть представлена в виде матрицы размером m x n:

Строки матрицы соответствуют объектам наблюдений (i=), а столбцы – признакам (j=).

Признаки, характеризующие объект имеют разную размерность. Для того, чтобы их привести к одной размерности и обеспечить сопоставимость признаков матрицу исходных данных обычно нормируют, вводя единый масштаб. Самым распространенным способом нормировки является стандартизация. От переменных переходят к переменным

Среднее значение j признака,

Среднеквадратическое отклонение.

Такое преобразование называется стандартизацией.

Основная модель факторного анализа

Основная модель факторного анализа имеет вид:

z j – j -й признак (величина случайная);

F 1 , F 2 , …, F p – общие факторы (величины случайные, нормально распределенные);

u j – характерный фактор;

j1 , j2 , …, jp факторы нагрузки, характеризующие существенность влияния каждого фактора (параметры модели, подлежащие определению);

Общие факторы имеют существенное значение для анализа всех признаков. Характерные факторы показывают, что он относится только к данному -му признаку, это специфика признака, которая не может быть выражена через факторы. Факторные нагрузки j1 , j2 , …, jp характеризуют величину влияния того или иного общего фактора в вариации данного признака. Основная задача факторного анализа – определить факторные нагрузки. Дисперсию S j 2 каждого признака, можно разделить на 2 составляющие:

    первая часть обуславливает действие общих факторов – общность h j 2 ;

    вторая часть обуславливает действие характерного фактора –характерность - d j 2 .

Все переменные представлены в стандартизованном виде, поэтому дисперсия - гопризнака S j 2 = 1.

Если общие и характерные факторы не коррелируют между собой, то дисперсию j-го признака можно представить в виде:

где - доля дисперсии признака, приходящаяся на k -ый фактор.

Полный вклад какого-либо фактора в суммарную дисперсию равен:

Вклад всех общих факторов в суммарную дисперсию:

Результаты факторного анализа удобно представить в виде таблицы.

Факторные нагрузки

Общности

a 11 a 21 … a p1

a 12 a 22 a p2

… … … …

a 1m a 2m a pm

факторов

V 1 V 2 … V p

А - матрица факторных нагрузок. Ее можно получить различными способами, в настоящее время наиболее распространение получил метод главных компонент или главных факторов.

Вычислительная процедура метода главных факторов.

Решение задачи с помощью главных компонент сводится к поэтапному преобразованию матрицы исходных данных X :

Х - матрица исходных данных;

Z – матрица стандартизированных значений признаков,

R – матрица парных корреляций:

Диагональная матрица собственных (характеристических) чисел,

j находят решением характеристического уравнения

Е –единичная матрица,

 j – показатель дисперсии каждой главной компоненты ,

при условии стандартизации исходных данных , тогда=m

U – матрица собственных векторов, которые находят из уравнения:

Реально это означает решение m систем линейных уравнений для каждого

Т.е. каждому собственному числу соответствует система уравнений.

Затем находят V - матрицу нормированных собственных векторов.

Матрицу факторного отображения А вычисляют по формуле:

Затем находим значения главных компонент по одной из эквивалентных формул:

Совокупность из четырех промышленных предприятий оценена по трем характерным признакам:

    среднегодовая выработка на одного работника х 1 ;

    уровень рентабельности х 2 ;

Уровень фондоотдачи х 3.

Результат представлен в стандартизированной матрице Z :

По матрице Z получена матрица парных корреляций R :

    Найдем определитель матрицы парных корреляций(например методом Фаддеева):

    Построим характеристическое уравнение:

    Решая это уравнение найдем:

Таким образом исходные элементарные признаки х 1 , х 2 , х 3 могут быть обобщены значениями трех главных компонент, причем:

F 1 объясняет примерно всей вариации,

F 2 - , аF 3 -

Все три главные компоненты объясняют вариации полностью на 100%.

Решая эту систему находим:

Аналогично строятся системы для  2 и  3 . Для  2 решение системы:

Матрица собственных векторов U принимает вид:

    Каждый элемент матрицы разделим на сумму квадратов элементов j-го

столбца, получим нормированную матрицу V .

Отметим, что должно выполнятся равенство =E .

    Матрицу факторного отображения получим из матричного соотношения

=

По смыслу каждый элемент матрицы А представляет частные коэффициенты матрицы корреляции между исходным признаком x j и главными компонентами F r . Поэтому все элементы .

Из равенства следует условиеr - число компонент .

Полный вклад каждого фактора в суммарную дисперсию признаков равен:

Модель факторного анализа примет вид:

Найдем значения главных компонент (матрицу F ) по формуле

Центр распределения значений главных компонент находится в точке (0,0,0).

Далее аналитические выводы по результатам расчетов следуют уже после принятия решения о числе значащих признаков и главных компоненти определения названий главным компонентам. Задачи распознавания главных компонент, определения для них названий решают субъективно на основе весовых коэффициентовиз матрицы отображенияА .

Рассмотрим вопрос формулировки названий главных компонент.

Обозначим w 1 – множество незначимых весовых коэффициентов, в которое включаются близкие к нулю элементы,,

w 2 - множество значимых весовых коэффициентов,

w 3 – подмножество значимых весовых коэффициентов, не участвующих в формировании названия главной компоненты.

w 2 - w 3 – подмножество весовых коэффициентов, участвующих в формировании названия.

Вычисляем коэффициент информативности для каждого главного фактора

Набор объяснимых признаков считаем удовлетворительным, если значения коэффициентов информативности лежат в пределах 0,75-0,95.

a 11 =0,776 a 12 =-0,130 a 13 =0,308

a 12 =0,904 a 22 =-0,210 a 23 =-0,420

а 31 =0,616 а 32 =0,902 а 33 =0,236

Для j=1 w 1 = ,w 2 ={a 11 ,a 21 ,a 31 },

.

Для j=2 w 1 ={ a 12 , a 22 }, w 2 ={ а 32 },

Для j=3 w 1 ={ а 33 }, w 2 ={a 13 ,a 33 },

Значениями признаков x 1 , x 2 , x 3 определяется состав главной компоненты на 100%. при этом наибольший вклад признакаx 2 , смысл которого-рентабельность. корректным для названия признака F 1 будет эффективность производства .

F 2 определяется компонентой x 3 (фондоотдача), назовем ее эффективность использования основных производственных средств .

F 3 определяется компонентами x 1 ,x 2 –в анализе может не рассматриваться т.к. она объясняет всего 10% общей вариации.

Литература.

    Попов А.А.

Excel: Практическое руководство, ДЕСС КОМ.-М.-2000.

    Дьяконов В.П., Абраменкова И.В. Mathcad7 в математике, физике и в Internet. Изд-во « Номидж», М.-1998, раздел 2.13. Выполнение регрессии.

    Л.А. Сошникова, В.Н. Томашевич и др. Многомерный статистический анализ в экономике под ред. В.Н. Томашевича.- М. –Наука, 1980.

    Колемаев В.А., О.В. Староверов, В.Б. Турундаевский Теория вероятностей и математическая статистика. –М. – Высшая школа- 1991.

    К Иберла. Факторный анализ.-М. Статистика.-1980.

Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны

Пусть генеральные совокупности X и Y распределены нормально, причем их дисперсии известны (например из предшествующего опыта или найдены теоретически). По независимым выборкам объемов n и m, извлеченным из этих совокупностей, найдены выборочные средние x в и y в.

Требуется по выборочным средним при заданном уровне значимости проверить нулевую гипотезу, состоящую в том, что генеральные средние (математические ожидания) рассматриваемых совокупностей равны между собой, т. е. Н 0: М(X) = М(Y).

Учитывая, что выборочные средние являются несмещенными оценками генеральных средних, т. е. М(x в) = М(X) и М(y в) = М(Y), нулевую гипотезу можно записать так: Н 0: М(x в) = М(y в).

Таким образом, требуется проверить, что математические ожидания выборочных средних равны между собой. Такая задача ставится, потому что, как правило, выборочные средние являются различными. Возникает вопрос: значимо или незначимо различаются выборочные средние?

Если окажется, что нулевая гипотеза справедлива, т. е. генеральные средние одинаковы, то различие выборочных средних незначимо и объясняется случайными причинами и, в частности, случайным отбором объектов выборки.

Если нулевая гипотеза будет отвергнута, т. е. генеральные средние неодинаковы, то различие выборочных средних значимо и не может быть объяснено случайными причинами. А объясняется тем, что сами генеральные средние (математические ожидания) различны.

В качестве проверки нулевой гипотезы примем случайную величину.

Критерий Z – нормированная нормальная случайная величина. Действительно, величина Z распределена нормально, так как является линейной комбинацией нормально распределенных величин X и Y; сами эти величины распределены нормально как выборочные средние, найденные по выборкам, извлеченным из генеральных совокупностей; Z – нормированная величина, потому что М(Z) = 0, при справедливости нулевой гипотезы D(Z) = 1, поскольку выборки независимы.

Критическая область строится в зависимости от вида конкурирующей гипотезы.

Первый случай . Нулевая гипотеза Н 0:М(X)=М(Y). Конкурирующая гипотеза Н 1: М(X) ¹М(Y).

В этом случае строят двустороннюю критическую область исходя из требования, чтобы вероятность попадания критерия в эту область, в предположении справедливости нулевой гипотезы, была равна принятому уровню значимости .

Наибольшая мощность критерия (вероятность попадания критерия в критическую область при справедливости конкурирующей гипотезы) достигается тогда, когда «левая» и «правая» критические точки выбраны так, что вероятность попадания критерия в каждый интервал критической области равна:

P(Z < zлев.кр)=a¤2,

P(Z > zправ.кр)=a¤2. (1)

Поскольку Z – нормированная нормальная величина, а распределение такой величины симметрично относительно нуля, критические точки симметричны относительно нуля.

Таким образом, если обозначить правую границу двусторонней критической области через zкр, то левая граница -zкр.

Итак, достаточно найти правую границу, чтобы найти саму двустороннюю критическую область Z < -zкр, Z > zкр и область принятия нулевой гипотезы (-zкр, zкр).

Покажем, как найти zкр – правую границу двусторонней критической области, используя функцию Лапласа Ф(Z). Известно, что функция Лапласа определяет вероятность попадания нормированной нормальной случайной величины, например Z, в интервале (0;z):

Р(0 < Z

Так как распределение Z симметрично относительно нуля, то вероятность попадания Z в интервал (0; ¥) равна 1/2. Следовательно, если разбить этот интервал точкой zкр на интервал (0, zкр) и (zкр, ¥), то по теореме сложения Р(0< Z < zкр)+Р(Z > zкр)=1/2.

В силу (1) и (2) получим Ф(zкр)+a/2=1/2. Следовательно, Ф(zкр) =(1-a)/2.

Отсюда заключаем: для того чтобы найти правую границу двусторонней критической области (zкр), достаточно найти значение аргумента функции Лапласа, которому соответствует значение функции, равное (1-a)/2.

Тогда двусторонняя критическая область определяется неравенствами Z < – zкр, Z > zкр, или равносильным неравенством ½Z½ > zкр, а область принятия нулевой гипотезы неравенством – zкр < Z < zкр или равносильным неравенством çZ ç< zкр.

Обозначим значение критерия, вычисленное по данным наблюдений, через zнабл и сформулируем правило проверки нулевой гипотезы.

Правило.

1. Вычислить наблюдаемое значение критерия

2. По таблице функции Лапласа найти критическую точку по равенству Ф(zкр)=(1-a)/2.

3. Если ç zнабл ç < zкр – нет оснований отвергнуть нулевую гипотезу.

Если ç zнабл ç> zкр – нулевую гипотезу отвергают.

Второй случай . Нулевая гипотеза Н0: M(X)=M(Y). Конкурирующая гипотеза Н1: M(X)>M(Y).

На практике такой случай имеет место, если профессиональные соображения позволяют предположить, что генеральная средняя одной совокупности больше генеральной средней другой. Например, если введено усовершенствование технологического процесса, то естественно допустить, что оно приведет к увеличению выпуска продукции.

В этом случае строят правостороннюю критическую область исходя из требования, чтобы вероятность попадания критерия в эту область, в предположении справедливости нулевой гипотезы, была равна принятому уровню значимости:

P(Z> zкр)=a. (3)

Покажем, как найти критическую точку при помощи функции Лапласа. Воспользуемся соотношением

P(0 zкр)=1/2.

В силу (2) и (3) имеем Ф(zкр)+a=1/2. Следовательно, Ф(zкр)=(1-2a)/2.

Отсюда заключаем, для того чтобы найти границу правосторонней критической области (zкр), достаточно найти значение функции Лапласа, равное (1-2a)/2. Тогда правосторонняя критическая область определяется неравенством Z > zкр, а область принятия нулевой гипотезы – неравенством Z < zкр.

Правило.

1. Вычислить наблюдаемое значение критерия zнабл.

2. По таблице функции Лапласа найти критическую точку из равенства Ф(zкр)=(1-2a)/2.

3. Если Z набл < z кр – нет оснований отвергнуть нулевую гипотезу. Если Z набл > z кр – нулевую гипотезу отвергаем.

Третий случай. Нулевая гипотеза Н0: M(X)=M(Y). Конкурирующая гипотеза Н1: M(X)

В этом случае строят левостороннюю критическую область исходя из требования, вероятность попадания критерия в эту область, в пред-

положении справедливости нулевой гипотезы, была равна принятому уровню значимости P(Z < z’кр)=a, т.е. z’кр= – zкр. Таким образом, для того чтобы найти точку z’кр, достаточно сначала найти “вспомогательную точку” zкр а затем взять найденное значение со знаком минус. Тогда левосторонняя критическая область определяется неравенством Z < -zкр, а область принятия нулевой гипотезы – неравенством Z > -zкр.

Правило.

1. Вычислить Zнабл.

2. По таблице функции Лапласа найти “вспомогательную точку” zкр по равенству Ф(zкр)=(1-2a)/2, а затем положить z’кр = -zкр.

3. Если Zнабл > -zкр, – нет оснований отвергать нулевую гипотезу.

Если Zнабл < -zкр, – нулевую гипотезу отвергают.

Представляют собой совокупность статистических процедур, направленных на выделение из заданного множества переменных подмножеств переменных, тесно связанных (коррелирующих) между собой. Переменные, входящие в одно подмножество и коррелирующие между собой, но в значительной степени независимые от переменных из других подмножеств, образуют факторы. Цель факторного анализа - идентифицировать явно не наблюдаемые факторы с помощью множества наблюдаемых переменных. Дополнительным способом проверки числа выделенных факторов является вычисление корреляционной матрицы, которая близка исходной, если факторы выделены правильно. Эта матрица называется воспроизведенной корреляционной матрицей. Для того чтобы увидеть, как эта матрица отклоняется от исходной корреляционной матрицы (с которой начинался анализ), можно вычислить разность между ними. Остаточная матрица может указать на "несогласие", т. е. на то, что рассматриваемые коэффициенты корреляции не могут быть получены с достаточной точностью на основе имеющихся факторов. В методах главных компонент и факторного анализа не существует такого внешнего критерия, позволяющего судить о правильности решения. Вторая проблема заключается в том, что после выделения факторов возникает бесконечное множество вариантов вращения, базирующихся на тех же исходных переменных, но дающих разные решения (факторные структуры определяются несколько иным образом). Окончательный выбор между возможными альтернативами внутри бесконечного множества математически равнозначных решений зависит от содержательного осмысления исследователями результатов интерпретации. А поскольку объективного критерия для оценки различных решений нет, предлагаемые обоснования выбора решения могут казаться голословными и неубедительными.


Надо отметить, что четких статистических критериев полноты факторизации не существует. Тем не менее, низкие ее значения, например меньше 0,7, свидетельствуют о желательности сокращения количества признаков или увеличения количества факторов.

Мет Коэффициент взаимосвязи между некоторым признаком и общим фактором, выражающий меру влияния фактора на признак, называется факторной нагрузкой данного признака по данному общему фактору.

Матрица, состоящая из факторных нагрузок и имеющая число столбцов, равное числу общих факторов, и число строк, равное числу исходных признаков, называется факторной матрицей.

Основой для вычисления факторной матрицы является матрица парных коэффициентов корреляции исходных признаков.

Корреляционная матрица фиксирует степень взаимосвязи между каждой парой признаков. Аналогично факторная матрица фиксирует степень линейной связи каждого признака с каждым общим фактором.

Величина факторной нагрузки не превышает по модулю единицы, а знак ее говорит о положительной или отрицательной связи признака с фактором.

Чем больше абсолютная величина факторной нагрузки признака по некоторому фактору, тем в большей степени этот фактор определяет данный признак.

Значение факторной нагрузки по некоторому фактору, близкое к нулю, говорит о том, что этот фактор практически на данный признак не влияет.

Факторная модель дает возможность вычислять вклады факторов в общую дисперсию всех признаков. Суммируя квадраты факторных нагрузок для каждого фактора по всем признакам, получаем его вклад в общую дисперсию системы признаков: чем выше доля этого вклада, тем более значимым, существенным является данный фактор.

При этом можно выявить и оптимальное количество общих факторов, достаточно хорошо описывающих систему исходных признаков.

Значение (мера проявления) фактора у отдельного объекта называется факторным весом объекта по данному фактору. Факторные веса позволяют ранжировать, упорядочить объекты по каждому фактору.

Чем больше факторный вес некоторого объекта, тем больше в нем проявляется та сторона явления или та закономерность, которая отражается данным фактором.

Факторные веса могут быть как положительными, так и отрицательными.

В силу того, что факторы являются стандартизованными величинами со средним значением, равным нулю, факторные веса, близкие к нулю, говорят о средней степени проявления фактора, положительные – о том, что эта степень выше средней, отрицательные – о том. ч то она ниже средней.

Практически, если число уже найденных главных компонент (или факторов) не больше, чем m /2, объясняемая ими дисперсия не менее 70%, а следующая компонента дает вклад в суммарную дисперсию не более 5%, факторная модель считается достаточно хорошей.

Если Вы хотите найти значения факторов и сохранить их в виде дополнительных переменных задействуйте выключатель Scores... (Значения) Факторное значение, как правило, лежит в пределах -3 до +3.

Факторный анализ - более мощный и сложный аппарат, чем метод главных

компонент, поэтому он применяется в том случае, если результаты

компонентного анализа не вполне устраивают. Но поскольку эти два метода

решают одинаковые задачи, необходимо сравнить результаты компонентного и


факторного анализов, т. е. матрицы нагрузок, а также уравнения регрессии на

главные компоненты и общие факторы, прокомментировать сходство и различия

результатов.

Максимально возможное количество факторов m при заданном числе признаков р определяется неравенством

(р+m)<(р-m)2,

В завершение всей процедуры факторного анализа с помощью математических преобразований выражают факторы fj через исходные признаки, то есть получают в явном виде параметры линейной диагностической модели.

Методы главных компонент и факторного анализа представляют собой совокупность статистических процедур, направленных на выделение из заданного множества переменных подмножеств переменных, тесно связанных (коррелирующих) между собой. Переменные, входящие в одно подмножество и коррелирующие между собой, но в значительной степени независимые от переменных из других подмножеств, образуют факторы1 . Цель факторного анализа - идентифицировать явно не наблюдаемые факторы с помощью множества наблюдаемых переменных.

Общее выражение для j -го фактора может быть записано так:

где Fj (j изменяется от 1 до k ) - это общие факторы, Ui - характерный, Aij - константы, используемые в линейной комбинации k факторов. Характерные факторы могут не коррелировать друг с другом и с общими факторами.

Процедуры факторно-аналитической обработки, применяемые к полученным данным, различны, но структура (алгоритм) анализа состоит из одних и тех же основных этапов: 1. Подготовка исходной матрицы данных. 2. Вычисление матрицы взаимосвязей признаков. 3. Факторизация (при этом необходимо указать количество факторов, выделяемых в ходе факторного решения, и метод вычисления). На этом этапе (как и на следующем) можно также оценить, насколько хорошо полученное факторное решение сближает исходные данные. 4. Вращение - преобразование факторов, облегчающее их интерпретацию. 5. Подсчет факторных значений по каждому фактору для каждого наблюдения. 6. Интерпретация данных .

изобретение факторного анализа было связано именно с необходимостью одновременного анализа большого количества коэффициентов корреляции различных шкал между собой. Одна из проблем, связанных с методами главных компонент и факторного анализа заключается в том, что критериев, которые позволяли бы проверить правильность найденного решения, не существует. Например, при регрессионном анализе можно сопоставить показатели по зависимым переменным, полученные эмпирическим путем, с показателями, вычисленными теоретически на основе предлагаемой модели, и использовать корреляцию между ними как критерий правильности решения по схеме корреляционного анализа для двух наборов переменных. В дискриминантном анализе правильность решения базируется на том, насколько точно предсказана принадлежность испытуемых к тем или иным классам (если сравнивать с реальной принадлежностью, имеющей место в жизни). К сожалению, в методах главных компонент и факторного анализа не существует такого внешнего критерия, позволяющего судить о правильности решения, Вторая проблема заключается в том, что после выделения факторов возникает бесконечное множество вариантов вращения, базирующихся на тех же исходных переменных, но дающих разные решения (факторные структуры определяются несколько иным образом). Окончательный выбор между возможными альтернативами внутри бесконечного множества математически равнозначных решений зависит от содержательного осмысления исследователями результатов интерпретации. А поскольку объективного критерия для оценки различных решений нет, предлагаемые обоснования выбора решения могут казаться голословными и неубедительными.

Третья проблема заключается в том, что факторный анализ довольно часто применяют с целью спасти плохо продуманное исследование, когда становится ясно, что ни одна статистическая процедура не дает желаемого результата. Мощь методов главных компонент и факторного анализа позволяет из хаотичной информации выстроить упорядоченную концепцию (что и создает им сомнительную репутацию).

Вторая группа терминов относится к матрицам, которые строятся и интерпретируются как часть решения. Поворот факторов - это процесс поиска наиболее легко интерпретируемого решения для данного количества факторов. Существуют два основных класса поворотов: ортогональный и косоугольный . В первом случае все факторы априорно выбираются ортогональными (не коррелирующими друг с другом) и строится матрица факторных нагрузок , представляющая собой матрицу взаимосвязей между наблюдаемыми переменными и факторами. Величина нагрузок отражает степень связи каждой наблюдаемой переменной и каждым фактором и интерпретируется как коэффициент корреляции между наблюдаемой переменной и фактором (латентной переменной), а потому изменяется в пределах от -1 до 1. Решение, полученное после ортогонального поворота, интерпретируется на основе анализа матрицы факторных нагрузок путем выявления того, с каким из факторов в максимальной степени связана та или иная наблюдаемая переменная. Таким образом, каждый фактор оказывается заданным группой первичных переменных, имеющих по нему наибольшие факторные нагрузки.

Если выполняется косоугольное вращение (т. е. априорно допускается возможность корреляции факторов между собой), то строится еще несколько дополнительных матриц. Матрица факторной корреляции содержит корреляции между факторами. Матрица факторных нагрузок , упомянутая выше, расщепляется на две: структурную матрицу взаимосвязей между факторами и переменными и матрицу факторного отображения , выражающую линейные взаимосвязи между каждой наблюдаемой переменной и каждым фактором (без учета влияния наложения одних факторов на другие, выражаемого корреляцией факторов между собой). После косоугольного вращения интерпретация факторов происходит на основе группировки первичных переменных (подобно тому, как было описано выше), но уже с использованием в первую очередь матрицы факторного отображения.

Наконец, для обоих поворотов вычисляется матрица коэффициентов факторных значений , используемая в специальных уравнениях регрессионного типа для вычисления факторных значений (факторных баллов, показателей по факторам) для каждого наблюдения на основе значений для них первичных переменных.

Сравнивая методы главных компонент и факторного анализа, отметим следующее. В ходе выполнения анализа по методу главных компонент строится модель для наилучшего объяснения (максимального воспроизведения) полной дисперсии экспериментальных данных, полученных по всем переменным. В результате выделяются «компоненты». При факторном анализе предполагается, что каждая переменная объясняется (детерминируется) некоторым количеством гипотетических общих факторов (влияющих на все переменные) и характерными факторами (для каждой переменной своими). И вычислительные процедуры выполняются таким образом, чтобы освободиться как от дисперсии, полученной в результате ошибки измерения, так и от дисперсии, объясняемой специфичными факторами, и анализировать только дисперсии, объясняемые гипотетически существующими общими факторами. В результате получаются объекты, называемые факторами. Однако, как уже упоминалось, с содержательно-психологической точки зрения эта разница в математических моделях существенного значения не имеет, поэтому в дальнейшем, если не дается особых пояснений, о каком именно случае идет речь, мы будем использовать термин «фактор» как по отношению к компонентам, так и по отношению к факторам.

Размеры выборки и пропущенные данные. Чем больше выборка, тем больше достоверность показателей взаимосвязи. Поэтому очень важно иметь достаточно большую выборку. Требуемый размер выборки также зависит от степени взаимосвязи показателей в популяции в целом и количества факторов: при сильной и достоверной взаимосвязи и небольшом количестве четко очерченных факторов будет достаточно и не очень большой выборки.

Так, выборка, размер которой 50 испытуемых, оценивается как очень плохая, 100 - плохая, 200 - средняя, 300 - хорошая, 500 - очень хорошая и 1000 - превосходная (Comrey, Lee , 1992). Исходя из этих соображений, в качестве общего принципа можно порекомендовать исследовать выборки не менее 300 испытуемых. Для решения, базирующегося на достаточном количестве маркерных переменных с высокими факторными нагрузками (>0.80) достаточно выборки порядка 150 испытуемых (Guadagnoli, Velicer , 1988). нормальность для каждой переменной в отдельности проверяется по асимметрии (насколько кривая изучаемого распределения сдвинута вправо или влево по сравнению с теоретически нормальной кривой) и эксцессу (степень вытянутости вверх или прогнутости вниз «колокола» имеющегося распределения, визуально представленного в частотной диаграмме, в сравнении с «колоколом» графика плотности, характерным для нормального распределения). Если переменная имеет существенные асимметрию и эксцесс, то ее можно преобразовать, введя новую переменную (как однозначную функцию от рассматриваемой) таким образом, чтобы эта новая переменная была распределена нормально (подробнее об этом см.: Tabachnik, Fidell , 1996, гл. 4).

Собственные векторы и соответствующие собственные числа
для рассматриваемого учебного примера

Собственный вектор 1

Собственный вектор 2

Собственное значение 1

Собственное значение 2

Поскольку корреляционная матрица диагонализируема, то для получения результатов факторного анализа к ней можно применять матричную алгебру собственных векторов и собственных величин (см. Приложение 1). Если матрица диагонализируема, то вся существенная информация о факторной структуре содержится в ее диагональной форме. В факторном анализе собственные числа соответствуют дисперсии, объясняемой факторами. Фактор с наибольшей собственной величиной объясняет наибольшую дисперсию и т. д., пока не доходит до факторов с небольшими или отрицательными собственными величинами, которые обычно не учитываются при анализе. Матрица факторных нагрузок является матрицей взаимосвязей (интерпретируемых как коэффициенты корреляций) между факторами и переменными. Первый столбец - это корреляции между первым фактором и каждой переменной по очереди: стоимость путевки (-.400), комфортабельность комплекса (.251), температура воздуха (.932), температура воды (.956). Второй столбец - это корреляции между вторым фактором и каждой переменной: стоимость путевки (.900), комфортабельность комплекса (-.947), температура воздуха (.348), температура воды (.286). Фактор интерпретируется на основе сильно связанных с ним (т. е. имеющих по нему высокие нагрузки) переменных. Так, первый фактор главным образом «климатический» (температура воздуха и воды ), в то время как второй «экономический» (стоимость путевки и комфортабельность комплекса ).

Интерпретируя эти факторы, следует обратить внимание на то, что переменные, имеющие высокие нагрузки по первому фактору (температура воздуха и температура воды ), взаимосвязаны положительно, тогда как переменные, имеющие высокие нагрузки по второму фактору (стоимость путевки и комфортабельность комплекса ), взаимосвязаны отрицательно (от дешевого курорта нельзя ожидать большой комфортабельности). Первый фактор называется униполярным (все переменные сгруппированы на одном полюсе), а второй - биполярным (переменные распались на две противоположные по смыслу группы - два полюса). Переменные, имеющие факторные нагрузки со знаком «плюс», образуют положительный полюс, а со знаком «минус» - отрицательный. При этом названия полюсов «положительный» и «отрицательный» при интерпретации фактора не имеют оценочного смысла «плохой» и «хороший». Выбор знака происходит во время вычислений случайным образом. Ортогональное вращение

Вращение обычно применяется после выделения факторов для максимизации высоких корреляций и минимизации низких. Существуют многочисленные методы вращения, но чаще всего используется поворот варимакс , представляющий собой процедуру максимизации дисперсий. Этот поворот максимизирует дисперсии факторных нагрузок, делая высокие нагрузки выше, а низкие ниже для каждого из факторов. Эта цель достигается с помощью матрицы преобразования Λ:

Матрица преобразования - это матрица синусов и косинусов угла Ψ, на который выполняется поворот. (Отсюда и название преобразования - поворот , потому что с геометрической точки зрения происходит поворот осей вокруг начала координат факторного пространства.) Выполнив поворот и получив матрицу факторных нагрузок после поворота, можно проанализировать серию других показателей (см. табл. 4). Общность переменной - это дисперсия, рассчитанная с помощью факторных нагрузок. Это квадратичная множественная корреляция переменной, предсказанная факторной моделью. Общность вычисляется как сумма квадратов факторных нагрузок (СКН) для переменной по всем факторам. В табл. 4 общность для стоимости путевки равна (-.086)2+(.981)2 = .970, т. е. 97% дисперсии стоимости путевки объясняется факторами 1 и 2.

Доля дисперсии фактора по всем переменным - это СКН по фактору, деленная на количество переменных (в случае ортогонального вращения)7 . Для первого фактора доля дисперсии равна:

[(-.086)2+(-.071)2+(.994)2+(.997)2]/4 = 1.994/4 = .50,

т. е. первый фактор объясняет 50% дисперсии переменных. Второй фактор объясняет 48% дисперсии переменных и (в силу ортогональности вращения) два фактора в сумме объясняют 98% дисперсии переменных.

Связь между факторными нагрузками, общностями, СКН,
дисперсией и ковариацией ортогональных факторов после поворота

Общности (h2 )

Стоимость путевки

∑a2 =.970

Уровень комфорта

∑a2 =.960

Температура воздуха

∑a2 =.989

Температура воды

∑a2 =.996

∑a2 =1.994

∑a2 =1.919

Доля дисперсии

Доля ковариации

Доля дисперсии решения, объясняемая фактором, - доля ковариации - это СКН для фактора, деленная на сумму общностей (сумму СКН по переменным). Первый фактор объясняет 51% дисперсии решения (1.994/3.915); второй - 49% (1.919/3.915); два фактора вместе объясняют всю ковариацию.

Eigenval – отражают величину дисперсии соответствующего количества факторов. В качестве упражнения рекомендуем выписать все эти формулы для получения расчетных значений по переменным. Например, для первого респондента:

1.23 = -.086(1.12) + .981(-1.16)

1.05 = -.072(1.12) - .978(-1.16)

1.08 = .994(1.12) + .027(-1.16)

1.16 = .997(1.12) - .040(-1.16)

Или в алгебраической форме:

Z стоимости путевки = a 11F 1 + a 12F 2

Z комфортабельности комплекса = a 2lF 1 + a 22F 2

Z температуры воздуха = a 31F 1 + a 32F 2

Z температуры воды = a 41F 1 + a 42F 2

Чем больше нагрузка, тем с большей уверенностью можно считать, что переменная определяет фактор. Комри и Ли (Comrey, Lee , 1992) предполагают, что нагрузки, превышающие 0.71 (объясняет 50% дисперсии), - превосходные, 0% дисперсии) - очень хорошие, 0%) - хорошие, 0%) - удовлетворительные и 0.32 (объясняет 10% дисперсии) - слабые.

Предположим, что вы проводите (до некоторой степени "глупое") исследование, в котором измеряете рост ста людей в дюймах и сантиметрах. Таким образом, у вас имеются две переменные. Если далее вы захотите исследовать, например, влияние различных пищевых добавок на рост, будете ли вы продолжать использовать обе переменные? Вероятно, нет, т. к. рост является одной характеристикой человека, независимо от того, в каких единицах он измеряется.

Зависимость между переменными можно обнаружить с помощью диаграммы рассеяния . Полученная путем подгонки линия регрессии дает графическое представление зависимости. Если определить новую переменную на основе линии регрессии, изображенной на этой диаграмме, то такая переменная будет включить в себя наиболее существенные черты обеих переменных. Итак, фактически, вы сократили число переменных и заменили две одной. Отметим, что новый фактор (переменная) в действительности является линейной комбинацией двух исходных переменных.

Познакомившись с понятиями факторной нагрузки и области совместных изменений, можно пойти дальше, снова привлекая для изложения аппарат матриц, элементами которых на этот раз будут коэффициенты корреляции.

Матрица коэффициентов корреляции, полученных, как правило, экспериментальным путем, называется матрицей корреляции, или корреляционной матрицей.

Элементы этой матрицы являются коэффициентами корреляции между всеми переменными данной совокупности.

Если мы имеем, например, набор, состоящий из тестов, то число коэффициентов корреляции, полученных экспериментальным путем, составит

Эти коэффициенты заполняют половину матрицы, находящуюся по одну сторону ее главной диагонали. По другую сторону находятся, очевидно, те же коэффициенты, так как и т. д. Поэтому корреляционная матрица симметрична.

Схема 3.2. Полная матрица корреляции

На диагонали этой матрицы находятся единицы, поскольку корреляция каждой переменной с самой собой равна +1.

Матрица корреляции, у которой элементы главной диагонали равны 1, называется «полной матрицей» корреляции (схема 3.2) и обозначается

Необходимо отметить, что, помещая на главной диагонали единицы, или корреляции каждой переменной с самой собой, мы учитываем полную дисперсию каждой переменной, представленной в матрице. Тем самым принимается во внимание влияние не только общих, но и специфичных факторов.

Наоборот, если на главной диагонали корреляционной матрицы находятся элементы соответствующие общностям и относящиеся лишь к общей дисперсии переменных, то учитывается влияние только общих факторов, элиминируется влияние специфичных факторов и ошибок, т. е. отбрасываются специфичность и дисперсия ошибок.

Матрица корреляции, в которой элементы главной диагонали соответствуют общностям, называется редуцированной и обозначается R (схема 3.3).

Схема 3.3. Редуцированная матрица корреляции

Выше уже говорилось о факторной нагрузке, или наполнении данной переменной конкретным фактором. При этом подчеркивалось, что факторная нагрузка имеет вид коэффициента корреляции между данной переменной и данным фактором.

Матрица, столбцы которой состоят из нагрузок данного фактора применительно ко всем переменным данной совокупности, а строки - из факторных нагрузок данной переменной, называется матрицей факторов, или факторной матрицей. Здесь также можно говорить о полной и редуцированной факторной матрице. Элементы полной факторной матрицы соответствуют полной единичной дисперсии каждой переменной из данной совокупности. Если нагрузки на общие факторы обозначить через с, а нагрузки специфичных факторов - через и, то полную факторную матрицу можно представить в следующем виде:

Схема 3.4. Полная факторная матрица для четырех переменных

Показанная здесь факторная матрица состоит из двух частей Первая часть содержит элементы, относящиеся к четырем переменным и трем общим факторам, причем предполагается, что все они относятся ко всем переменным. Это не есть необходимое условие, так как некоторые элементы первой части матрицы могут быть равными нулю, а это значит, что некоторые факторы относятся не ко всем переменным. Элементы первой части матрицы - это нагрузки общих факторов (например, элемент показывает нагрузку второго общего фактора при первой переменной).

Во второй части матрицы мы видим 4 нагрузки характерных факторов, по одной в каждой строке, что соответствует их характерности. Каждый из этих факторов относится лишь к одной переменной. Все другие элементы этой части матрицы равны нулю. Характерные факторы можно, очевидно, разбить на специфичные и обусловленные ошибками.

Столбец факторной матрицы характеризует фактор и его влияние на все переменные. Строка характеризует переменную и, ее наполненность различными факторами, иначе говоря, факторную структуру переменной.

При анализе только первой части матрицы мы имеем дело с факторной матрицей, показывающей общую дисперсию каждой переменной. Эта часть матрицы называется редуцированной и обозначается F. Эта матрица не учитывает нагрузки характерных факторов и не принимает во внимание специфичной дисперсии. Напомним, что в соответствии со сказанным выше об общих дисперсиях и факторных нагрузках, представляющих собой квадратные корни из общих дисперсий, сумма квадратов элементов каждой строки редуцированной факторной матрицы F равна общности данной переменной

Соответственно сумма квадратов всех элементов строки полной матрицы факторов равна , или полной дисперсии данной переменной.

Так как в факторном анализе основное внимание уделяется общим факторам, то мы в дальнейшем будем использовать главным образом редуцированную корреляционную и редуцированную факторную матрицу.




© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows