Включение генератора на параллельную работу с системой. Включение синхронных генераторов на параллельную работу

Включение генератора на параллельную работу с системой. Включение синхронных генераторов на параллельную работу

12.07.2019

На электрических станциях всегда устанавливают несколько турбо- или гидроагрегатов, которые работают совместно в параллельном соединении на общие шины генераторного или повышенного напряжения.

В результате этого выработка электроэнергии на электростанциях производится несколькими параллельно работающими генераторами и такая совместная их работа имеет много ценных преимуществ.

1. повышает гибкость эксплуатации оборудования электростанций и подстанций, облегчает проведение планово-предупредительных ремонтов генераторов, основного оборудования и соответствующих РУ при минимуме необходимого резерва.

2. повышает экономичность работы электростанции, так как дает возможность распределять наиболее рационально суточный график нагрузки между агрегатами, чем достигается наилучшее использование мощности и повышается к. п. д.; на ГЭС дает возможность наиболее полно использовать мощность водяного потока в период паводков и летней и зимней межени;

3. повышает надежность и бесперебойность работы электростанций и электроснабжения потребителей.


Рис. 1. Принципиальная схема параллельной работы генераторов

Для увеличения производства и улучшения распределения электроэнергии многие электростанции объединяются для параллельной работы в мощные энергетические системы.

В нормальном режиме эксплуатации генераторы присоединены на общие шины (генераторного или повышенного напряжения) и вращаются синхронно. Их роторы вращаются с одинаковой угловой электрической скоростью

При параллельной работе мгновенные значения напряжений на выводах обоих генераторов должны быть равны по величине и обратны по знаку.

Для подключения генератора на параллельную работу с другим генератором (или с сетью) нужно произвести его синхронизацию, т. е. отрегулировать скорость вращения и возбуждение подключаемого генератора в соответствии с работающим.

Генераторы, работающий и включаемый на параллельную работу, должны быть сфазированы, т. е. иметь одинаковый порядок чередования фаз.

Как видно из рис. 1, при параллельной работе генераторы по отношению друг к другу включены навстречу, т. е. их напряжения U1 и U2 на выключателе будут прямо противоположны. По отношению же к нагрузке генераторы работают согласно, т. е. их напряжения U1 и U2 совпадают. Эти условия параллельной работы генераторов отражены на диаграммах рис. 2.


Рис. 2. Условия включения генераторов на параллельную работу. Напряжения генераторов равны по величине и противоположны по фазе.

Существуют два метода синхронизации генераторов: точная синхронизация и грубая синхронизация, или самосинхронизация.

Условия точной синхронизации генераторов.

При точной синхронизации возбужденный генератор подключают к сети (шинам) выключателем В (рис. 1) при достижении условий синхронизма - равенства мгновенных значений их напряжений U1 = U2

При раздельной работе генераторов их мгновенные фазные напряжения будут соответственно равны:

Отсюда вытекают условия, необходимые для параллельного включения генераторов. Для включаемого и работающего генераторов требуется:

1. равенство действующих значений напряжений U1 = U2

2. равенство угловых частот ω1 = ω2 или f1 = f2

3. совпадение напряжений по фазе ψ1 = ψ2 или Θ= ψ1 -ψ2 =0.

Точное выполнение этих требований создает идеальные условия, которые характеризуются тем, что в момент включения генератора уравнительный ток статора будет равен нулю. Однако следует отметить, что выполнение условий точной синхронизации требует тщательной подгонки сравниваемых величин напряжения частоты и фазных углов напряжения генераторов.

В связи с этим на практике невозможно полностью выполнить идеальные условия синхронизации; они выполняются приближенно, с некоторыми небольшими отклонениями. При невыполнении одного из указанных выше условий, когда U2, на выводах разомкнутого выключателя связи В будет действовать разность напряжений:


Рис. 3. Векторные диаграммы для случаев отклонения от условий точной синхронизации: а - Действующие напряжения генераторов не равны; б - угловые частоты не равны.

При включении выключателя под действием этой разности потенциалов в цепи потечет уравнительный ток, периодическая составляющая которого в начальный момент будет

Рассмотрим два случая отклонения от условий точной синхронизации, показанные на диаграмме (рис. 3):

1. действующие напряжения генераторов U1 и U2 не равны, остальные условия соблюдаются;

2. генераторы имеют одинаковые напряжения, но вращаются с разными скоростями, т. е. их угловые частоты ω1 и ω2 не равны, и имеет место несовпадение напряжений по фазе.

Как видно из диаграммы на рис. 3, а, неравенство действующих значений напряжений U1 и U2 обусловливает возникновение уравнительного тока I”ур, который будет почти чисто индуктивным, так как активные сопротивления генераторов и соединительных проводников сети весьма малы и ими пренебрегают. Этот ток не создает толчков активной мощности, а, следовательно, и механических напряжений в деталях генератора и турбины. В связи с этим при включении генераторов на параллельную работу разность напряжений может быть допущена до 5-10%, а в аварийных случаях - до 20%.

При равенстве действующих значений напряжений U1 = U2, но при расхождении угловых частот Δω=ω1 – ω2 ≠ 0 или Δf=f1 – f2 ≠ 0 происходит смещение векторов напряжений генераторов и сети (или 2-го генератора) на некоторый угол Θ, меняющийся во времени. Напряжения генераторов U1 и U2 в рассматриваемом случае будут отличаться по фазе не на угол 180°, а на угол 180°-Θ (рис. 3, б).

На выводах разомкнутого выключателя В, между точками а и б, будет действовать разность напряжений ΔU. Как и в предыдущем случае, наличие напряжения может быть установлено при помощи электрической лампочки, а действующую величину этого напряжения можно измерить вольтметром, включенным между точками а и б.

Если замкнуть выключатель В, то под действием разности напряжений ΔU возникает уравнительный ток I”ур, который в отношении U2 будет почти чисто активным и при включении генераторов на параллельную работу вызовет сотрясения и механические напряжения в валах и других деталях генератора и турбины.

При ω1 ≠ ω2 синхронизация получается вполне удовлетворительной, если скольжение s0

Вследствие инерционности регуляторов турбины нельзя осуществить длительное равенство угловых частот ω1 = ω2, и угол Θ между векторами напряжений, характеризующий относительное положение обмоток статора и ротора генераторов, не остается постоянным, а непрерывно меняется; его мгновенное значение будет Θ=Δωt.

На векторной диаграмме (рис. 4) последнее обстоятельство выразится в том, что с изменением угла сдвига фаз в между векторами напряжений U1 и U2 будет также изменяться ΔU. Разность напряжений при этом ΔU называется напряжением биений.

Рис. 4. Векторная диаграмма синхронизации генераторов при неравенстве частот.

Мгновенное значение напряжений биений Δu представляет собой разность мгновенных значений напряжений u1 и u2 генераторов (рис. 5).

Предположим, что достигнуто равенство действующих значений U1=U2, фазные углы начала отсчета времени ψ1 и ψ2 тоже равны.

Тогда можно написать

Кривая изменения напряжения биений показана на рис.5.

ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННОГО ГЕНЕРАТОРА С СЕТЬЮ

Наименование параметра Значение
Тема статьи: ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННОГО ГЕНЕРАТОРА С СЕТЬЮ
Рубрика (тематическая категория) Авто

Особенности работы генератора на сеть большой мощности. Обычно на электростанциях устанавливают несколько синхрон­ных генераторов для параллельной работы на общую электрическую сеть. Это обеспечивает увеличение общей мощности электростанции (при ограниченной мощности каждого из установленных на ней генераторов), повышает надежность энергоснабжения потребителœей и позволяет лучше организовать обслуживание агрегатов. Электрические станции, в свою очередь, объединяют для параллельной работы в мощные энергосистемы, позволяющие наилучшим образом решать задачу производства и распределœения электрической энергии. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, для синхронной машины, установленной на электрической станции или на каком-либо объекте, подключенном к энергосистеме, типичным является режим работы на сеть большой мощности, по сравнению с которой собственная мощность генератора является очень малой. В этом случае с большой степенью точности можно принять, что генератор работает параллельно с сетью бесконечно большой мощности т. е. чтонапряжение сети U c и ее частота f c являются постоянными, не зависящими от нагрузки данного генератора.

Включение генератора на параллельную работу с сетью. В рассматриваемом режиме крайне важно обеспечить возможно меньший бросок тока в момент присоединœения генератора к сети. В противном случае возможны срабатывание защиты поломка генератора или первичного двигателя.

Ток в момент подключения генератора к сети будет равен нулю, в случае если удастся обеспечить равенство мгновенных значений напряжений сети u с и генератора и г:

U cm sin (ω c t - α с) = U гm sin (ω г - α г ).

На практике выполнение условия (6.27) сводится к выполнению трех равенств: значений напряжений сети и генератора U cm = U гm или U c = U г; частот ω c = ω г или f с = f г; их начальных фазα с = α г (совпадение по фазе векторов Ú c и Ú г). Вместе с тем, для трехфазных генераторов нужно согласовать порядок чередования фаз.

Совокупность операций, проводимых при подключении генератора к сети, называют синхронизацией. Практически при синхронизации генератора сначала устанавливают номинальную частоту вращения ротора, что обеспечивает приближенное равенство частот f с ≈ f г а затем, регулируя ток возбуждения, добиваются равенства напряжения U c = U г. Совпадение по фазе векторов напряжений сети и генератора (α с = α г) контролируется специальными приборами - ламповым и стрелочными синхроноскопами .

Ламповые синхроноскопы применяют для синхронизации генераторов малой мощности, в связи с этим обычно их используют в лабораторной практике. Этот прибор представляет собой три лампы, включенные между фазами генератора и сети (рис. 6.32, а). На каждую лампу действует напряжение Δu = u с - u г, ĸᴏᴛᴏᴩᴏᴇ при f с ≠ f г изменяется с частотой Δf = f c - f г, называемойчастотой биений (рис. 6.32,б). В этом случае лампы мигают. При f с ≈ f г разность Δи изменяется медленно, вследствие чего лампы постепенно загораются и погасают.

Обычно генератор подключают к сети в тот момент, когда разность напряжений Δu на короткое время становится близкой нулю, т. е. в серединœе периода погасания ламп. В этом случае выполняется условие совпадения по фазе векторов Ú c и Ú г. Для более точного определœения этого момента часто применяют нулевой вольтметр, имеющий растянутую шкалу в области нуля. После включения генератора в сеть дальнейшая синхронизация частоты его вращения, т. е. обеспечение условия n 2 = n 1 , происходит автоматически.

Генераторы большой мощности синхронизируют с помощью стрелочных синхроноскопов, работающих по принципу вращающегося магнитного поля. В этих приборах при f с ≠ f г стрелка вращается с частотой, пропорциональной разности. частот f с - f г, в одну или другую сторону исходя из того, какая из этих частот больше. При f с = f г стрелка устанавливается на нуль; в данный момент и следует подключать генератор к сети. На электрических станциях обычно используют автоматические приборы для синхронизации генераторов без участия обслуживающего персонала.

Довольно часто применяют метод самосинхронизации, при котором генератор подключают к сети при отсутствии возбуждения (обмотка возбуждения замыкается на активное сопротивление). При этом ротор разгоняют до частоты вращения, близкой к синхронной (допускается скольжение до 2%), за счёт вращающего момента первичного двигателя и асинхронного момента͵ обусловленного индуцированием тока

в демпферной обмотке. После этого в обмотку возбуждения подают постоянный ток, что приводит к втягиванию ротора в синхронизм. При методе самосинхронизации в момент включения генератора возникает сравнительно большой бросок тока, который не должен превышать 3,5I a ном.

Регулирование активной мощности. После включения генератора в сеть его напряжение U становится равным напряжению сети U c . Относительно внешней нагрузки напряжения U и U c совпадают по фазе, а по контуру ʼʼгенератор - сетьʼʼ находятся в противофазе, т. е. Ú = - Ú c (рис. 6.33, а). При точном выполнении указанных трех условий, необходимых для синхронизации генератора, его ток I a после подключения машины к сети равняется нулю. Рассмотрим, какими способами можно регулировать ток I a при работе генератора параллельно с сетью на примере неявнополюсного генератора.

Ток, проходящий по обмотке якоря неявнополюсного генератора, можно определить из уравнения (6.23)

Í a = (É 0 - Ú)/(jX сн) = -j(É 0 - Ú)/X сн.

Так как U = U c = const, то силу тока I а можно изменять только двумя способами - изменяя ЭДС Е 0 по величинœе или по фазе. В случае если к валу генератора приложить внешний момент, больший момента͵ крайне важно го для компенсации магнитных потерь мощности в стали и механических потерь, то ротор приобретает ускорение, вследствие чего вектор É 0 смещается относительно вектора Ú на некоторый угол θ в направлении вращения векторов (рис. 6.33,б ). При этом возникает некоторая небалансная ЭДС ΔЕ , приводящая согласно (6.28) к появлению тока I а. Возникающую небалансную ЭДС ΔÉ = É 0 - Ú = É 0 + Ú c = jÍ a X сн можно показать на векторной диаграмме (рис. 6.33, б). Вектор тока I а отстает от вектора ΔЕ на 90°, поскольку его величина и направление определяются индуктивным сопротивлением X сн.

При работе в рассматриваемом режиме генератор отдает в сеть активную мощность

Р = mUI a cos φ и на вал его действует электромагнитный тормозной момент, который уравновешивает вращающий момент первичного двигателя, вследствие чего частота вращения ротора остается неизменной. Чем больше внешний момент, приложенный к валу генератора, тем больше угол θ , а следовательно, ток и мощность, отдаваемые генератором в сеть.

В случае если к валу ротора приложить внешний тормозной момент, то вектор É 0 будет отставать от вектора напряжения Ú на угол θ (рис. 6.33, в ). При этом возникают небалансная ЭДС ΔÉ и ток Í a , вектор которого отстает от вектора ΔÉ на 90°. Так как угол φ > 90°, активная составляющая тока находится в противофазе с напряжением генератора. Следовательно, в рассматриваемом режиме активная мощность Р = mUI a cos φ забирается из сети, и машина работает двигателœем, создавая электромагнитный вращающий момент, который уравновешивает внешний тормозной момент; частота вращения ротора при этом снова остается неизменной.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, для увеличения нагрузки генератора крайне важно увеличивать приложенный кего валу внешний момент (т. е. вращающий момент первичного двигателя), а для уменьшения нагрузки - уменьшать данный момент. При изменении направления внешнего момента (если вал ротора не вращать, а тормозить) машина автоматически переходит из генераторного в двигательный режим.

Регулирование реактивной мощности. В случае если в машинœе, подключенной к сети и работающей в режиме холостого хода (рис. 6.34, а), увеличить ток возбуждения I в, то возрастет ЭДС Е 0 (рис. 6.34, б ),возникнет небалансная ЭДС ΔÉ = - jI а X сн и по обмотке якоря будет проходить ток I а, который согласно (6.28) определяется только индуктивным сопротивлением Х сн машины. Следовательно, ток Í a реактивный: он отстает по фазе от напряжения Ú на угол 90° или опережает на тот же угол напряжение сети Ú c . При уменьшении тока возбуждения ток Í a изменяет свое направление: он опережает на 90° напряжение Ú (рис. 6.34, в ) и отстает на 90° от напряжения Ú c .Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, при изменении тока возбуждения изменяется лишь реактивная составляющая тока I а, т. е. реактивная мощность машины Q. Активная составляющая тока I а в рассматриваемых случаях равна нулю. Следовательно, активная мощность Р = 0, и машина работает в режиме холостого хода.

При работе машины под нагрузкой создаются те же условия: при изменении тока возбуждения изменяется лишь реактивная составляющая тока I а, т. е. реактивная мощность машины Q. Режим возбуждения синхронной машины с током I в.п, при

котором реактивная составляющая тока I а равна нулю, называют режимом полного или нормального возбуждения. В случае если ток возбуждения I в больше тока I в.п, при котором имеется режим полного возбуждения, то ток I а содержит отстающую от U реактивную составляющую, что соответствует активно-индуктивной нагрузке генератора. Такой режим называют режимом перевозбуждения. В случае если ток возбуждения I в меньше тока I в.п, то ток I а содержит реактивную составляющую, опережающую напряжение U , что соответствует активно-емкостной нагрузке генератора. Такой режим называют режимом недовозбуждения.

Перевозбужденная синхронная машина, работающая в режиме холостого хода, относительно сети эквивалентна емкости. Машину, специально предназначенную для работы в таком режиме, называют синхронным компенсатором и используют для повышения коэффициента мощности электрических установок и стабилизации напряжения в электрических сетях. Недовозбужденная синхронная машина, работающая в режиме холостого хода, относительно сети эквивалентна индуктивности.

Возникновение реактивной составляющей тока I а физически объясняется тем, что при работе синхронной машины на сеть бесконечно большой мощности суммарный магнитный поток сцепленный с каждой из фаз, ΣФ = Ф рез + Ф σ = Ф в + Ф а + Ф σ не зависит от тока возбуждения и при всœех условиях остается неизменным, так как

Ú = É 0 + É а + É σа = - Ú c = const.

Следовательно, в случае если ток возбуждения I в больше тока, требуемого для полного возбуждения, то возникает отстающая составляющая тока I а, которая создает размагничивающий поток реакции якоря Ф а; если ток I в меньше тока, крайне важно го для полного возбуждения, то возникает опережающая составляющая тока I а , которая создает подмагничивающий поток реакции якоря Ф а . Во всœех случаях суммарный поток машины ΣФ автоматически поддерживается неизменным.

ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННОГО ГЕНЕРАТОРА С СЕТЬЮ - понятие и виды. Классификация и особенности категории "ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННОГО ГЕНЕРАТОРА С СЕТЬЮ" 2017, 2018.

Для включения генераторов на параллельную работу они должны ыть синхронизированы. Существует два принципиально различных споба синхронизации: способ точной синхронизации и способ самосинзнизации.

Способ точной синхронизации состоит в том, что включаемый генерар предварительно приводят во вращение и возбуждают. В момент лючения его на параллельную работу с работающим генератором неводимо обеспечить следующие условия синхронизации:

1) порядок следования фаз у включаемого генератора должен совпать с порядком следования фаз работающего генератора (или сети, которую включается генератор);

2) напряжения включаемого и работающего генераторов должны ь равны по значению и совпадать по фазе; равенства напряжений добиваются изменением силы тока в обмотке возбуждения;

3) частота тока включаемого генератора должна быть равна частоте ка работающего; этого достигают, изменяя частоту вращения включаемого генератора.

Если все эти условия выполнены, включаемый генератор можно рубильником или выключателем соединить с работающим.

Взаимодействие между вращающимися магнитными полями Ф с1 , и Ф с2 статорных обмоток параллельно работающих генераторов и магнитными полями Ф p1 и Ф p2 электромагнитов роторов показано на рисунке 10.4. Векторы Ф с1 и Ф с1 вращаются синхронно с угловой частотой ω и совпадают по фазе в каждый момент времени. Векторы Ф p1 и Ф p2 также вращаются синхронно между собой и с векторами Ф с . Но углы ψ 1 , и ψ 2 сдвига фаз магнитного поля статора и ротора могут изменяться в различных пределах в зависимости от нагрузки. Если эти углы равны между собой, это означает, что оба генератора несут одинаковую активную нагрузку (если их номинальные мощности равны). Для того чтобы один из генераторов принял большую нагрузку, необходимо воздействовать на регулятор оборотов первичного двигателя этого генератора, повысить вращающий момент на его валу.

Последующее увеличение угла ψ укажет на то, что генератор принял добавочную нагрузку. Так, угол ψ 2 (рис. 10.4, б) больше угла ψ 1 , (рис. 10.4, а), поскольку этот генератор (рис. 10.4, б) нагружен больше.

Чтобы один из генераторов взял на себя часть реактивной мощности, нужно усилить ток возбуждения генератора. Одновременно с увеличением нагрузки вновь включенного генератора необходимо снижать нагрузку работающих генераторов, так как в противном случае возрастет частота.

С целью предотвращения повышения напряжения при увеличении тока возбуждения вновь включенного генератора следует снизить ток возбуждения у работавших ранее генераторов.

Точной синхронизации добиваются при помощи специально предназначенного для этого прибора - синхроноскопа . Для контроля равенства напряжений используют два вольтметра, один из которых измеряет напряжение работающего генератора, а другой - подключаемого. Равенство частот устанавливают по двум частотомерам.

По окончании монтажа генератора, предназначенного для параллельной работы, перед вводом его в эксплуатацию проверяют порядок следования фаз (рис. 10.5). Между зажимами генератора (на рубильнике P 1 ) и шинами сети, с которой генератор будет работать параллельно, включают по две последовательно соединенные электрические лампы. Каждая лампа рассчитана на фазное напряжение сети. Затем приводят в действие генератор и включают рубильник Р 2 (при отключенном Р 1 ).

Если векторы напряжений сети и генератора не совпадают по фазе, а также имеется разница в частотах сети и генератора, но чередование фаз оказалось одинаковым, то все три пары ламп будут гаснуть и загораться одновременно.

Если же чередование фаз в генераторе и сети неодинакбвы, то загорание и погасание ламп в различных фазах не совпадают по времени. В этом случае меняют местами два отходящих от генератора линейных провода (остановив предварительно генератор) и вновь проверяют совпадение фаз. Затем маркируют зажимы генератора соответственно фазам сети, а лампы снимают.

На электростанции, где включают генераторы на параллельную работу, приборы, предназначенные для синхронизации, устанавливают на специальных синхронизационных колонках . Ниже рассмотрены некоторые схемы точной синхронизации.

Схема 1 . Колонка синхронизации СК (рис. 10.6) состоит из двух параллельных цепей: в Одну последовательно включены две лампы Л , а в другую - вольтметр V 0 и лампа Л . От каждого из генераторов к синхронизационной колонке отходит по одному проводу от одно- именных фаз. Цепи синхронизации замыкаются по нулевому проводу на фазные обмотки генератора. Между проводами от фаз генераторов и синхронизационным устройством смонтированы штепсельные розетки 1, 2, 3.

Предположим, что синхронизируется с сетью генератор № 1. Его пускают в ход и, меняя частоту вращения первичного двигателя и силу тока возбуждения генератора, устанавливают по частотомеру Hz и вольтметру V частоту и напряжение, равные сетевым. После этого двумя штепселями замыкают контакты 1 и 3. Продолжая изменять частоту вращения включаемого генератора в небольших пределах и ток возбуждения, добиваются синхронизма. Его наступление фиксируется потуханием ламп Л и нулевым показанием вольтметра V 0 . При приближении стрелки вольтметра к нулю включают рубильник Р 1 . Генератор синхронизирован. Колонку синхронизации сразу же отключают (выключают штепселя 1 и 3). Оставлять штепселя в гнездах недопустимо, ибо при отключенных генераторах на их зажимах окажется напряжение сети, что представит опасность для обслуживающего персонала.

В рассмотренной схеме можно обойтись и без нулевого вольтметра. Однако в этом случае точность метода значительно снижается, так как лампы дают видимый накал лишь при напряжении 25...30% номинального и по ним трудно уловить момент действительного совпадения векторов напряжения. Лампы, включенные параллельно цепи с вольтметром, контролируют исправность этой цепи. Последовательно две включают потому, что в некоторые моменты цепь может оказаться под двойным фазным напряжением.

Если по данной схеме синхронизируются высоковольтные генераторы, то синхронизационную колонку включают через трансформаторы напряжения.

Схема 2 . На рисунке 10.7,а приведена схема включения лампового синхроноскопа. Лампы 1 присоединены к одной фазе, а лампы 2 и 3 подключены к разным фазам. При синхронизме лампы 1 погаснут, а лампы 2 и 3 будут иметь полный накал. При разной частоте вращения генераторов лампы 1, 2, 3, расположенные по кругу (рис. 10.7, б), загораются и погасают неодновременно, создавая впечатление так называемого вращения света. По направлению вращения можно судить о том, следует ли увеличить (Б) или уменьшить (М) частоту вращения включаемого генератора.

Генератор по этой схеме включают на параллельную работу в момент, когда вращение светового пятна прекратилось.

Рассмотренные выше способы точной синхронизации сравнительно сложны, и для автоматизации процессов точной синхронизации требуется сложная и дорогая аппаратура. Поэтому в практике широко применяется способ самосинхронизации , который заключается в следующем.

Невозбужденный генератор, у которого магнитное поле погашено специально включенным в цепь возбуждения возбудителя сопротивлением гашения поля R г.п (рис. 10.8), разгоняют первичным двигателем до частоты вращения, близкой к номинальной. При скольжении примерно 2...3% генератор включают в сеть рубильником Р . Одновременно подают возбуждение, шунтируя сопротивление гашения поля блокконтактами Бл . Генератор после этого постепенно втягивается в синхронизм.

В момент включения генератора в сеть на параллельную работу возникают кратковременные толчки тока, которые являются следствием подключения к сети невозбужденного генератора. Однако эти толчки не нарушают нормальной работы ранее работавших генераторов и потребителей.

Этот способ самосинхронизации считается основным и обязательным для всех многоагрегатных сельских электростанций.

К методу точной синхронизации обращаются лишь в тех случаях, когда из-за большой загруженности ранее работавших генераторов метод самосинхронизации нельзя применить.

Ручной самосинхронизацией пользуются только тогда, когда генераторы оснащены рубильником (на маломощных стан- циях) или выключателями без дистанционного управления. Для того чтобы судить о разности частот, включают, как показано на рисунке 10.8, лампу Л напряжением 6...36 В (в зависимости от значения остаточного напряжения генератора). Лампа имеет заметный накал при разности частот не менее 2 Гц. Однако наиболее совершенный способ измерения разности частот - это включение специальных реле типа ИРЧ (индукционных реле разности частот).

Порядок операций следующий. Генератор разгоняют первичным двигателем при выключенном рубильнике Р и разомкнутых блок-кон- тактах Бл . В цепь обмотки возбуждения возбудителя включено сопротивление R г.п гашения ноля. Когда пускаемый генератор достигает частоты вращения, близкой к синхронной, лампочка Л гаснет. При этом включают рубильник Р , замыкаются блок-контакты Бл и шунтируется опротивление гашения поля R г.п . Восстанавливается нормальное возбуждение, генератор втягивается в синхронизм.

При полуавтоматической самосинхронизации агрегаты запускают ручным воздействием на управление первичного двигателя, а включение генератора в сеть и подача возбуждения происходят автоматически.

Автоматическая самосинхронизация предполагает полную автоматизацию процессов пуска агрегата, включения генераторов в сеть и подачи возбуждения.

Необходимо помнить, что шунтовой реостат R в цепи возбуждения возбудителя должен быть установлен так, чтобы при расшунтировании обмотки возбуждения на клеммах генератора при холостом ходе обеспечивалось повышение напряжения до номинального значения, равного рабочему напряжению на шинах электростанции.


К атегория:

Передвижные электростанции



-

Параллельная работа генераторов


Мощность передвижных электростанций сравнительно невелика, поэтому включать в сеть, питаемую такой электростанцией, мощные электродвигатели, особенно короткозамкнутые, нельзя из-за опасности повредить оборудование электростанции и в-первую очередь обмотки генератора вследствие возникающих при этом значительных электродинамических усилий.

В случаях когда необходимо получить источники электроэнергии, превышающие мощность одной электростанции, создают такую схему, при которой обеспечивается совместная параллельная работа нескольких генераторов на общую сеть.

Параллельной работой нескольких генераторов обеспечивается не только возможность пуска относительно крупных электродвигателей, но и более высокое качество вырабатываемой электроэнергии, так как при этом достигается постоянство частоты и напряжения даже при значительных колебаниях нагрузок, что очень важно для обеспечения нормальной работы потребителей электроэнергии.

Пуск, работа и остановка электростанций с параллельно работающими генераторами имеют отличительные особенности, которые необходимо знать машинисту электростанции.

Для того чтобы два или несколько генераторов могли быть включены на параллельную работу, должны быть соблюдены следующие условия.

Равенство напряжений. Напряжение подключаемого генератора должно равняться напряжению на зажимах уже работающего генератора или, что то же самое, напряжению на шинах щита. Это равенство проверяют по вольтметру на щите станции.

Равенство частот. Частота тока подключаемого генератора должна быть равна частоте, показываемой частотомером на шинах синхронизации.

Частоту подключаемого генератора регулируют увеличением или уменьшением числа оборотов генератора, соответственно изменяя число оборотов первичного двигателя. Число оборотов двигателя контролируется счетчиком оборотов (тахометром).

Совпадение по фазе напряжения подключаемого генератора с напряжением уже работающих генераторов или с напряжением на шинах.

Одинаковая последовательность чередования фаз. Это значит, что порядок (последовательность) чередования фаз подключаемого генератора должен соответствовать порядку чередования фаз работающих машин.

Несоблюдение хотя бы одного из перечисленных условий при включении генератора на параллельную работу влечет за собой возникновение между генераторами значительных уравнительных токов, опасных как для самих генераторов, так и для всей аппаратуры, включенной между ними. Строгое выполнение указанных условий позволяет без особых затруднений включать генераторы на параллельную работу.

Создание условий для включения генератора в сеть на параллельную работу называется синхронизацией.

Для синхронизации машин пользуются обычными лампами накаливания, включенными по схеме «на затухание» или «на вращение света».

Синхронизацию генератора, а затем включение его на параллельную работу производят в такой последовательности.

Проверяют напряжение и частоту работающего генератора № 1, а затем подключаемый генератор № 2 приводят во вращение первичным двигателем с номинальной скоростью и, регулируя ток в цепи возбуждения генератора, добиваются получения напряжения, равного напряжению генератора № 1 или шин щита. Воздействуя на регулятор первичного двигателя генератора № 2, изменяют его скорость так, чтобы получить частоту, равную частоте генератора № 1. Проверку производят по показаниям частотомеров.

Для определения правильности чередования фаз и момента, когда можно подключить машину для параллельной работы, пользуются ламповым указателем момента синхронизации - ламповым синхроноскопом.

Если лампы включены по схеме «на затухание», то при одинаковом чередовании фаз подключаемой машины и сети сначала лампы мигают быстро и одновременно, а затем медленно и, наконец, совершенно гаснут. В момент полного погасания ламп подключают машину № 2 к шинам, нч которые уже работает машина № 1.

Для более точного определения наилучшего момента подключения генератора на параллельную чработу в схему вводят нулевой вольтметр, а лампы включают так, как показано на рис. 142,6. При одинаковом чередовании фаз синхронизируемых генераторов лампы мигают поочередно и при расположении их по кругу создается впечатление вращения. Подключать генератор на общие шины надо в момент, когда две лампы загорятся полным накалом, третья лампа погаснет, а стрелка вольтметра будет стоять на нуле.

Рис. 1. Схемы включения ламп для синхронизации генераторов: а - на затухание, б - на вращение света

Если при включении ламп синхроноскопа по схеме рис. 142, а вместо одновременного погасания и загорания всех трех ламп получится вращение света, а при схеме 142,6 - одновременное погасание и загорание света, это будет указывать на неправильное чередование фаз генератора и сети.

Для правильной работы указанных схем необходимо поменять местами начала двух фаз обмотки статора генератора.

Для включения двух генераторов на параллельную работу применяют также метод точной синхронизации и самосинхронизации.

В схеме по методу точной синхронизации (рис. 2) использованы два частотомера, два вольтметра, две последовательно включенные лампы и нулевой вольтметр, присоединяемые к шинам синхронизации с помощью длинной и короткой вилок. При включении вилок нулевой вольтметр и контрольные лампы, присоединенные к шинам a1 и а2, окажутся под действием разности потенциалов этих шин.

Для подключения генератора на параллельную работу по схеме рис. 2 добиваются равенства напряжений и частот, а также одинаковой последовательности чередования фаз синхронизируемых генераторов, после чего в момент, когда лампы гаснут, а стрелка вольтметра находится у нуля, подключают генератор к шинам.

Синхронизация генераторов требует особой тщательности выполнения всех операций, так как допущенные при этом ошибочные действия очень часто приводят к повреждению генераторов, первичных двигателей и аппаратов.

Широкое распространение получает метод самосинхронизации, который очень удобен и -прост, поскольку не требует точного равенства напряжений и частот, а также точного совпадения последовательности чередования фаз работающего и синхронизируемого генераторов.

При методе самосинхронизации (рис. 3) невозбужденный генератор доводят до подсинхронной скорости (скорости, близкой к синхронной) и при разности частот подключаемого генератора и сети не более 1-2 гц включают генератор в сеть. После включения в сеть генератор возбуждают и он, без какого-либо участия персонала станции, входит в синхронную работу с работающими генераторами или, как говорят, «втягивается в синхронизм».

На схеме рис. 3 устройство синхронизации состоит из трансформатора котельного типа, подключенного к нему делителя напряжения, сигнальной лампы и пакетного переключателя.

К лампе подводится напряжение генератора и напряжение сети. Остаточное напряжение генератора подводится к лампе от конца одной фазы обмотки статора и от нулевой точки через предохранители, блок-контакт автомата и пакетный переключатель, а пониженное напряжение сети -от шин через трансформатор и делитель напряжения. Лампа служит для определения момента включения генератора и выбирается в зависимости от остаточного напряжения невозбужденного генератора, которое находится в пределах 3-24 в.

Рис. 2. Схема коммутации станции при точной синхронизации генераторов: 1 - автомат, 2 - трансформатор тока, 3 - обмотка статора, 4 - обмотка ротора, 5 - якорь возбудителя, 6 - обмотка возбуждения возбудителя. 7 -реостат в цепи возбуждения возбудителя, 8 - гнездо, 9 - лампы

Наступление момента для включения невозбужденного генератора определяют по тому, насколько четко загорается и гаснет лампа. Установить этот момент нетрудно, так как четкое загорание и потухание лампы наступает только тогда, когда разность частот подключаемого генератора и сети не превышает 1-2 гц. При большей разности частот (3-4 гц) лампа не успевает погаснуть, это и свидетельствует о том, что момент включения еще не наступил.

Включение генератора на параллельную работу с другим» генераторами методом самосинхронизации осуществляется следующим образом.

Включают главный рубильник, при этом блок-контакты будут замкнуты; вставляют ключи (штеккеры) в гнезда и таким образом соединяют пакетный переключатель с подключаемым генератором. Далее устанавливают штурвал реостата цепи возбуждения возбудителя в положение, при котором на зажимах включаемого генератора в режиме холостого хода создается напряжение, на 10-15 в превышающее напряжение на шинах, после чего разворачивают генератор, наблюдая за сигнальной лампой цепи самосинхронизации.

Рис. 3. Схема коммутации станции при самосинхронизации генераторов

В один из моментов четкого зажигания и потухания лампы включают рубильник и генератор оказывается включенным в сеть. При включении главного рубильника его блок-контакты размыкаются и отключают цепь самосинхронизации, а также разрывают цепь, шунтирующую обмотку возбуждения возбудителя, вследствие чего генератор возбуждается и входит в синхронизм. Самосинхронизация является наиболее надежным методом включения генераторов на параллельную работу.

При параллельной работе нескольких станций необходимо вести постоянное наблюдение за правильным распределением нагрузок между параллельно работающими генераторами. Активную и реактивную нагрузки следует распределять между параллельно работающими генераторами пропорционально их номинальным мощностям. Распределение нагрузок между работающими станциями производят путем изменения подачи топлива в первичные двигатели (регулирование активной нагрузки) или изменения тока возбуждения генераторов (регулирование реактивной нагрузки).

Отключение генератора, работающего параллельно с генераторами других электростанций, производят в такой последовательности. Воздействуя на регулятор первичного двигателя, уменьшают подачу топлива и, наблюдая за показаниями амперметров в течение 1-3 мин, доводят нагрузку до нуля, одновременно уменьшая силу тока статора. При полном отсутствии нагрузки и небольшой силе тока статора отключают главный рубильник (автомат) и, следовательно, генератор от шин щита электростанции.

О времени и причинах остановки станции, а также о замеченных во время дежурства ненормальностях в работе электрооборудования дежурный машинист делает соответствующие записи в журнале дежурств.

ГЛАВА 15

ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННЫХ ГЕНЕРАТОРОВ С СЕТЬЮ

15.1. Особенности параллельной работы синхронных генераторов

В настоящее время электроэнергетические системы состоят из параллельно работающих электрических станций, соединенных линиями электропередачи, что повышает надежность электроснаб­ жения потребителей по сравнению с автономным электроснаб жением. Кроме того, при этом уменьшается установленная мощ ность электрических станций при неизменной мощности нагрузки и увеличивается экономичность за счет возможности включения (отключения) отдельных генераторов и целых электростанций в случае изменения нагрузки в системе и т. д.

При параллельной работе с общей электрической сетью мощ ности отдельных синхронных генераторов по сравнению с общей мощностью энергосистемы незначительны. Поэтому при любых изменениях режима работы отдельного генератора, включенного в энергосистему, ее напряжение и частота f с остаются практич ески неизменными и поддерживаются всеми остальными генер аторами.

В дальнейшем при рассмотрении параллельной работы син хронного генератора с сетью будем исходить из условия, что = const , f с = const .

15.2. Способы включения синхронного генератора на

параллельную работу с сетью

Процесс включения синхронного генератора на параллельную ра боту с сетью называется синхронизацией. При этом различают точную синхронизацию и самосинхронизацию (или грубую синхрон изацию). При включении генератора в сеть не должны возникать большие толчки тока, так как они вызывают большие моменты, действующие как на ротор, так и на статор, и значительные электродинамические силы, которые могут привести к повреждению обмоток.

Принципиальная схема синхронизации трехфазных генераторовприведена на рис. 15.1, а соответствующая ей расчетная электрическая схема для одной фазы - на рис. 15.2.

Рис. 15.2. Электрическая схема для расчета тока I c (одной фазы)

При замыкании рубильника (Р) в схеме на рис. 15.1 ток синхронизации I с (см. рис. 15.2) определяется по формуле

font-size:11.5pt">(15.1)

где Ė Г с https://pandia.ru/text/79/295/images/image006_85.gif" width="35" height="31 src="> - ЭДС (на­ пряжения) генератора и сети со­ ответственно; Z а - полное со­ противление обмотки якоря ге­ нератора.

Чтобы ток İ с был равен нулю (в контуре Е Г - Е с на рис. 15.2), необходимо выполнение следу­ ющих условий:

1. ЭДС генератора Ė Г и сети Ė с должны быть равны по зна­ чению и находиться в противо фазе.

2. Частота генератора f Г и ча­ стота сети fc должны быть рав­ ны, иначе после синхрониза­ции синхронный генератор бу­ дет работать в режиме асинх­ ронного двигателя (при f Г < f с ) или асинхронного генератора (при f Г > f с ).

3. Порядок чередования фаз генератора и сети должен быть одинаковым, иначе после син хронизации ротор генератора будет вращаться с синхронной ско­ ростью против направления вращения магнитного поля, т. е. бу­ дет работать в режиме электромагнитного тормоза со скольжением s = 2 .

Перечисленные условия являются условиями точной синхро низации.

Выполнение условий синхронизации проверяется следующим образом (см. рис. 15.1). При отключенном рубильнике (Р) син­ хронный генератор (СГ) ра­ботает в режиме холостого хода, при этом между контак­ тами рубильника действует ЭДС ΔĖ = ĖГ -Ėс = Ė 10- Ėс . Регули­ рованием тока возбуждения генератора тока возбуждения генератора добиваются равенства ЭДС Е г и Е с , контролируя их значения с помощью вольтметров V г и V c .

Если бы частота вращения генератора была постоянной и рав­ной номинальной, то частота индуктируемой ЭДС равнялась бы частоте напряжения сети и векторы Ė 10 и Ė c вращались с оди­наковой угловой частотой, а ΔĖ была бы постоянной.

В действительности получить строго постоянную частоту вра­щения генератора не удается и частоты ЭДС сети и генератора несколько отличаются. Поэтому векторы Ė 10 и Ė c перемещаются относительно друг друга с угловой частотой ω=2π(f г – f c ).

Вследствие этого ΔЕ изменяется от нуля до значения, равного сумме Ė 10 + Ė c и соответственно этому изменяется напряжение в трех лампах, которые одновременно то загораются, то гаснут. Наи­более благоприятным для включениия генератора в сеть является момент, когда ΔЕ= 0, что соответствует выполнению первого ус­ловия точной синхронизации. Однако лампы накаливания гаснут при напряжениях, равных 30...60% от номинальных значений. Поэтому, для того чтобы более точно определить момент выпол­нения первого условия синхронизации, параллельно одной из них включают так называемый нулевой вольтметр V 0 . В момент выполнения первого условия показания этого вольтметра равны нулю и лампы не горят. Если в этот момент замкнуть рубильник Р, ток в подключенном к сети генераторе будет равен нулю. Включение ламп по схеме, приведенной на рис. 15.1, называется включением на потухание света.

Возможна другая схема соединения трех ламп: одна из них подключается к одноименным фазам генератора и сети, а две другие - к разноименным фазам. При такой схеме включения, называемой включением на вращение света, лампы будут попеременно загораться и гаснуть. Вместе эти три лампы образуют ламповый синхроноскоп.

В настоящее время вместо ламповых применяются более сложные синхроноскопы, позволяющие полностью автоматизировать процесс синхронизации.

Частоту генератора в процессе синхронизации регулируют из­менением скорости вращения его первичного (приводного) двигателя. Если частоты генератора и сети совпадают, то лампы син-хроноскопа не мигают, поскольку ΔĖ = const . Таким образом, с помощью лампового синхроноскопа проверяют выполнение второго условия точной синхронизации.

С помощью лампового синхроноскопа проверяют и третье условие точной синхронизации - одинаковость порядка чередования фаз сети и генератора. Если при схеме включения ламп, приведенной на рис. 15.1, будет наблюдаться вращение, а не потуха­ние света, то это будет означать, что сеть и генератор имеют разный порядок чередования фаз, который в этом случае необходимо из­менить, что достигается путем переключения двух фаз либо сети, либо генератора.

Для применения метода точной синхронизации требуется до­вольно много времени (до 10 мин). В ряде случаев при резком увеличении нагрузки в электрической системе этого времени в распоряжении персонала электрической станции может не ока­заться. Тогда для ускорения включения генератора в сеть приме­няют способ самосинхронизации, при котором требуется выпол­нить лишь последние два условия точной синхронизации:

одинаковый порядок чередования фаз генератора и сети;

примерно равные частоты генератора и сети (f г ≈ f с ).

Соблюдение условия чередования фаз обычно проверяется при монтаже генератора, а следовательно, выполняется на электри­ческой станции автоматически. Время разгона генератора, опре­деляемое постоянной инерции блока приводной двигатель - ге­нератор, достаточно мало. Поскольку равенство частот должно со­блюдаться приближенно, то возможны два варианта включения на параллельную работу сети и генератора: f г < f с и f г > f с . В первом случае после включения синхронный генератор начинает рабо­тать параллельно с сетью в режиме асинхронного двигателя, а во втором - в режиме асинхронного генератора.

Как уже указывалось, самосинхронизация применяется при внезапном увеличении нагрузки в системе для быстрой компен­сации дефицита активной мощности в электрической системе. Следовательно, при работе в режиме асинхронного двигателя этот дефицит будет возрастать, так как двигатель будет дополнительно потреблять активную мощность. Значит, желательно осуществлять включение синхронного генератора на параллельную работу при f г < f с.

При самосинхронизации генератор включают в сеть невозбуж­денным (Е г=0), поэтому включение сопровождается скачком тока, установившееся значение которого

I c = Е с / z a = U c /z a . (15.2)

Скачок тока якоря приводит к броску потока якоря и ЭДС, наводимой в обмотке возбуждения. Чтобы избежать возникнове­ния перенапряжений и возможного в связи с этим электрическо­го пробоя, обмотку возбуждения на период включения генерато­ра замыкают на балластное активное сопротивление r б = (4...6) r в , где r в - активное сопротивление обмотки возбуждения. Часто в качестве балластного используют дугогасительное сопротивление. После установления тока якоря обмотку возбуждения переключа­ют с активного сопротивления на источник постоянного тока и плавно увеличивают ток возбуждения. Таким образом генератор втягивается в синхронизм и работает параллельно с сетью. Далее путем увеличения мощности приводного двигателя увеличивают активную мощность генератора до требуемого значения.

15.3. Регулирование активной мощности . Угловые характеристики активной мощности

Активную мощность генератора, работающего параллельно с сетью, при принятых допущениях ( = const , f с = const ) можно регулировать посредством изменения вращающего момента на его валу. Изменение вращающего момента достигается воздействием на двигатель, приводящий генератор во вращение. Активная мощ­ ность, отдаваемая генератором в сеть,



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows