Моделирование на UML. Диаграммы реализации. Основные диаграммы языка UML Диаграмма компонентов обозначение элементов для построения

Моделирование на UML. Диаграммы реализации. Основные диаграммы языка UML Диаграмма компонентов обозначение элементов для построения

01.09.2022
Язык UML - это графический язык моделирования общего назначения, предназначенный для спецификации, визуализации, проектирования и документирования всех артефактов, создаваемых при разработке программных систем.

Существует много хороших книг в которых описано в деталях про UML (местами даже очень подробно), мне хотелось бы собрать в одном месте основные понятия про диаграммы, сущности и связи между ними для быстрого вспоминания, что-то наподобие шпаргалки.

В заметке используется материалы из книжек: Иванов Д. Ю., Новиков Ф. А. Унифицированный язык моделирования UML и Леоненков. Самоучитель по UML .

Для начала определимся с редактором. Под Linux я перепробовал разные UML-редакторы, больше всего мне понравился UMLet , хоть он и написан на Java но шевелится весьма проворно и большинство заготовок сущностей в нем есть. Еще есть ArgoUML кроссплатформенный UML-редактор, написан тоже на Java, функционально-богат но подтормаживает больше.

Я остановился на UMLet , установим его под Arch Linux и Ubuntu :

# под Arch Linux yaourt -S umlet # под Ubuntu sudo apt-get install umlet

В UML все сущности можно разбить на такие типы:

  • структурные;
  • поведенческие;
  • группирующие;
  • аннотационные;

В UML используются четыре основных типа отношений:

Зависимость (dependency) - указывает на то, что изменение независимой сущности каким-то образом влияет на зависимую сущность. Графически отношение зависимости изображается в виде пунктирной линии со стрелкой, направленной от зависимой сущности к независимой.

Ассоциация (association) - имеет место, если одна сущность непосредственно связана с другой (или с другими - ассоциация может быть не только бинарной). Графически ассоциация изображается в виде сплошной линии с различными дополнениями, соединяющей связанные сущности.

Обобщение (generalization) - это отношение между двумя сущностями, одна из которых является частным (специализированным) случаем другой. Графически обобщение изображается в виде линии с треугольной не закрашенной стрелкой на конце, направленной от частного (подкласса) к общему (суперклассу).

Реализации - отношение реализации указывает, что одна сущность является реализацией другой. Графически реализация изображается в виде пунктирной линии с треугольной не закрашенной стрелкой на конце, направленной от реализующей сущности к реализуемой.

В UML 2 определено 13 типов диаграмм. По стандартам каждая диаграмма должна иметь рамку с прямоугольником (правый нижний угол скошенный) в левом верхнем углу, в котором указывается идентификатор диаграммы (тег) и название.

Диаграммы для изображения структуры системы :

  • Диаграмма компонентов (component diagram, тег component );
  • Диаграмма размещения (deployment diagram, тег deployment );
  • Диаграмма классов (class diagram, тег class );
  • Диаграмма объектов (object diagram, тег object );
  • Диаграмма структуры внутренней (composite structure diagram, тег class );

Диаграммы для изображения поведения системы :

  • Диаграмма синхронизации (interaction diagram, тег timing );
  • Диаграмма деятельности (activity diagram, тег activity );
  • Диаграмма последовательности (sequence diagram, тег sd );
  • Диаграмма коммуникации (communication diagram, тег comm );
  • Диаграмма автомата (state machine diagram, тег state machine );
  • Обзорная диаграмма взаимодействия (interaction overview diagram, тег interaction );

Особняком стоят диаграммы:

  • Диаграмма использования(use case diagram, тег use case);
  • Диаграмма пакетов (package diagram, тег package );

Диаграмма использования

Диаграмма использования (use case diagram) - это наиболее общее представление функционального назначения системы.

Рассматривая диаграмму вариантов использования в качестве модели системы, можно ассоциировать ее с моделью черного ящика. Каждый вариант использования определяет последовательность действий, которые должны быть выполнены проектируемой системой при взаимодействии ее с соответствующим актером.

На диаграмме использования применяются два типа основных сущностей: варианты использования и действующие лица, между которыми устанавливаются следующие основные типы отношений.

Отношение ассоциации - это отношение устанавливает, какую конкретную роль играет актер при взаимодействии с экземпляром варианта использования. Отношение ассоциации обозначается сплошной линией между актером и вариантом использования. Эта линия может иметь дополнительные условные обозначения, такие, например, как имя и кратность.

Отношение расширения - определяет взаимосвязь экземпляров отдельного варианта использования с более общим вариантом, свойства которого определяются на основе способа совместного объединения данных экземпляров. Так, если имеет место отношение расширения от варианта использования А к варианту использования В, то это означает, что свойства экземпляра варианта использования В могут быть дополнены благодаря наличию свойств у расширенного варианта использования А.

Отношение расширения между вариантами использования обозначается пунктирной линией со стрелкой (вариант отношения зависимости), направленной от того варианта использования, который является расширением для исходного варианта использования.

Отношение обобщения служит для указания того факта, что некоторый вариант использования А может быть обобщен до варианта использования В. В этом случае вариант А будет являться специализацией варианта В. При этом В называется предком или родителем по отношению А, а вариант А - потомком по отношению к варианту использования В.

Графически данное отношение обозначается сплошной линией со стрелкой в форме не закрашенного треугольника, которая указывает на родительский вариант использования.

Отношение обобщения между вариантами использования применяется в том случае, когда необходимо отметить, что дочерние варианты использования обладают всеми атрибутами и особенностями поведения родительских вариантов.

Отношение включения между двумя вариантами использования указывает, что некоторое заданное поведение для одного варианта использования включается в качестве составного компонента в последовательность поведения другого варианта использования.

Отношение включения, направленное от варианта использования А к варианту использования В, указывает, что каждый экземпляр варианта А включает в себя функциональные свойства, заданные для варианта В.

Графически данное отношение обозначается пунктирной линией со стрелкой (вариант отношения зависимости), направленной от базового варианта использования к включаемому.

Диаграмма классов

Диаграмма классов (class diagram) - основной способ описания статической структуры системы.

На диаграмме классов применяется один основной тип сущностей: классы (включая многочисленные частные случаи классов: интерфейсы, примитивные типы, классы-ассоциации и т.д.), между которыми устанавливаются следующие основные типы отношений: зависимости, ассоциации, обобщения, реализации.

Отношение зависимости в общем случае указывает некоторое семантическое отношение между двумя элементами модели или двумя множествами таких элементов, которое не является отношением ассоциации, обобщения или реализации. Отношение зависимости используется в такой ситуации, когда некоторое изменение одного элемента модели может потребовать изменения другого зависимого от него элемента модели.

Отношение зависимости графически изображается пунктирной линией между соответствующими элементами со стрелкой на одном из ее концов, при этом стрелка направлена от класса-клиента зависимости к независимому классу или классу-источнику.

Над стрелкой могут находится специальные ключевые слова (стереотипы):

  • "access" - служит для обозначения доступности открытых атрибутов и операций класса-источника для классов-клиентов;
  • "bind" - класс-клиент может использовать некоторый шаблон для своей последующей параметризации;
  • "derive" - атрибуты класса-клиента могут быть вычислены по атрибутам класса-источника;
  • "import" - открытые атрибуты и операции класса-источника становятся частью класса-клиента, как если бы они были объявлены непосредственно в нем;
  • "refine" - указывает, что класс-клиент служит уточнением класса-источника в силу причин исторического характера, когда появляется дополнительная информация в ходе работы над проектом.

Отношение ассоциации соответствует наличию некоторого отношения между классами. Данное отношение обозначается сплошной линией с дополнительными специальными символами, которые характеризуют отдельные свойства конкретной ассоциации. В качестве дополнительных специальных символов могут использоваться имя ассоциации, а также имена и кратность классов-ролей ассоциации. Имя ассоциации является необязательным элементом ее обозначения.

Отношение агрегации имеет место между несколькими классами в том случае, если один из классов представляет собой некоторую сущность, включающую в себя в качестве составных частей другие сущности. Применяется для представления системных взаимосвязей типа "часть-целое".

Отношение композиции является частным случаем отношения агрегации. Это отношение служит для выделения специальной формы отношения "часть-целое", при которой составляющие части в некотором смысле находятся внутри целого. Специфика взаимосвязи между ними заключается в том, что части не могут выступать в отрыве от целого, т. е. с уничтожением целого уничтожаются и все его составные части.

Отношение обобщения является отношением между более общим элементом (родителем или предком) и более частным или специальным элементом (дочерним или потомком). Применительно к диаграмме классов данное отношение описывает иерархическое строение классов и наследование их свойств и поведения. При этом предполагается, что класс-потомок обладает всеми свойствами и поведением класса-предка, а также имеет свои собственные свойства и поведение, которые отсутствуют у класса-предка.

Диаграмма автомата

Диаграмма автомата (state machine diagram) или диаграмма состояний в UML 1 (state chart diagram) - это один из способов детального описания поведения в UML. В сущности, диаграммы автомата, как это следует из названия, представляют собой граф состояний и переходов конечного автомата нагруженный множеством дополнительных деталей и подробностей.

Диаграмма состояний описывает процесс изменения состояний только одного класса, а точнее - одного экземпляра определенного класса, т. е. моделирует все возможные изменения в состоянии конкретного объекта. При этом изменение состояния объекта может быть вызвано внешними воздействиями со стороны других объектов или извне. Именно для описания реакции объекта на подобные внешние воздействия и используются диаграммы состояний.

На диаграмме автомата применяют один основной тип сущностей - состояния, и один тип отношений - переходы, но и для тех и для других определено множество разновидностей, специальных случаев и дополнительных обозначений. Автомат представляет динамические аспекты моделируемой системы в виде ориентированного графа, вершины которого соответствуют состояниям, а дуги - переходам.

Начальное состояние представляет собой частный случай состояния, которое не содержит никаких внутренних действий (псевдосостояния). В этом состоянии находится объект по умолчанию в начальный момент времени. Оно служит для указания на диаграмме состояний графической области, от которой начинается процесс изменения состояний.

Конечное (финальное) состояние представляет собой частный случай состояния, которое также не содержит никаких внутренних действий (псевдосостояния). В этом состоянии будет находиться объект по умолчанию после завершения работы автомата в конечный момент времени.

Диаграмма деятельности

При моделировании поведения проектируемой или анализируемой системы возникает необходимость не только представить процесс изменения ее состояний, но и детализировать особенности алгоритмической и логической реализации выполняемых системой операций.

Диаграмма деятельности (activity diagram) - еще один способ описания поведения, который визуально напоминает старую добрую блок-схему алгоритма. Используется для моделирования процесса выполнения операций.

Основным направлением использования диаграмм деятельности является визуализация особенностей реализации операций классов, когда необходимо представить алгоритмы их выполнения.

На диаграмме деятельности применяют один основной тип сущностей - действие, и один тип отношений - переходы (передачи управления). Также используются такие конструкции как развилки, слияния, соединения, ветвления. Рекомендуется в качестве имени простого действия использовать глагол с пояснительными словами.

Диаграмма последовательности

Диаграмма последовательности (sequence diagram) - это способ описания поведения системы "на примерах".

Фактически, диаграмма последовательности - это запись протокола конкретного сеанса работы системы (или фрагмента такого протокола). В объектно-ориентированном программировании самым существенным во время выполнения является пересылка сообщений между взаимодействующими объектами. Именно последовательность посылок сообщений отображается на данной диаграмме, отсюда и название.

На диаграмме последовательности применяют один основной тип сущностей - экземпляры взаимодействующих классификаторов (в основном классов, компонентов и действующих лиц), и один тип отношений - связи, по которым происходит обмен сообщениями.

Возможные виды сообщений (изображение взято у larin.in):

Диаграмма коммуникации

Диаграмма коммуникации (communication diagram) - способ описания поведения, семантически эквивалентный диаграмме последовательности. Фактически, это такое же описание последовательности обмена сообщениями взаимодействующих экземпляров классификаторов, только выраженное другими графическими средствами.

Таким образом, на диаграмме коммуникации также как и на диаграмме последовательности применяют один основной тип сущностей - экземпляры взаимодействующих классификаторов и один тип отношений - связи. Однако здесь акцент делается не на времени, а на структуре связей между конкретными экземплярами.

Диаграмма компонентов

Диаграмма компонентов (component diagram) - показывает взаимосвязи между модулями (логическими или физическими), из которых состоит моделируемая система.

Основной тип сущностей на диаграмме компонентов - это сами компоненты, а также интерфейсы, посредством которых указывается взаимосвязь между компонентами. На диаграмме компонентов применяются следующие отношения:

  • реализации между компонентами и интерфейсами (компонент реализует интерфейс);
  • зависимости между компонентами и интерфейсами (компонент использует интерфейс);

Диаграмма размещения

Диаграмма размещения (deployment diagram) наряду с отображением состава и связей элементов системы показывает, как они физически размещены на вычислительных ресурсах во время выполнения.

На диаграмме размещения, по сравнению с диаграммой компонентов, добавляется два типа сущностей: артефакт, который является реализацией компонента и узел (может быть как классификатор, описывающий тип узла, так и конкретный экземпляр), а также отношение ассоциации между узлами, показывающее, что узлы физически связаны во время выполнения.

Диаграмма объектов

Диаграмма объектов (object diagram) - является экземпляром диаграммы классов.

На диаграмме объектов применяют один основной тип сущностей: объекты (экземпляры классов), между которыми указываются конкретные связи (чаще всего экземпляры ассоциаций). Диаграммы объектов имеют вспомогательный характер - по сути это примеры (можно сказать, дампы памяти), показывающие, какие имеются объекты и связи между ними в некоторый конкретный момент функционирования системы.

Диаграмма внутренней структуры (composite structure diagram) используется для более подробного представления структурных классификаторов, прежде всего классов и компонентов.

Структурный классификатор изображается в виде прямоугольника, в верхней части которого находится имя классификатора. Внутри находятся части (parts). Частей может быть несколько. Части могут взаимодействовать друг с другом. Это обозначается с помощью соединителей (connectors) различных видов. Место на внешней границе части, к которому присоединяется соединитель, называется портом (port). Порты располагаются также на внешней границе структурного классификатора.

Обзорная диаграмма взаимодействия (interaction overview diagram) является разновидностью диаграммы деятельности с расширенным синтаксисом: в качестве элементов обзорной диаграммы взаимодействия могут выступать ссылки на взаимодействия (interaction use), определяемые диаграммами последовательности.

Диаграмма синхронизации

Диаграмма синхронизации (timing diagram) представляет собой особую форму диаграммы последовательности, на которой особое внимание уделяется изменению состояний различных экземпляров классификаторов и их временной синхронизации.

Диаграмма пакетов

Диаграмма пакетов (package diagram) - единственное средство, позволяющее управлять сложностью самой модели.

Основные элементы нотации - пакеты и зависимости с различными стереотипами.

Модель сущность-связь (ER-модель)

Аналогом диаграммы классов (UML) может быть ER-модель , которая используется при проектировании баз-данных (реляционной модели).

Модель сущность-связь (ER-модель) - модель данных, позволяющая описывать концептуальные схемы предметной области. ER-модель используется при высокоуровневом (концептуальном) проектировании баз данных. С её помощью можно выделить ключевые сущности и обозначить связи, которые могут устанавливаться между этими сущностями. wikipedia

Любой фрагмент предметной области может быть представлен как множество сущностей, между которыми существует некоторое множество связей.

Основные понятия:

Сущность (entity) - это объект, который может быть идентифицирован неким способом, отличающим его от других объектов, например, КЛИЕНТ 777 . Сущность фактически представляет из себя множество атрибутов.

Набор сущностей (entity set) - множество сущностей одного типа (обладающих одинаковыми свойствами).

Связь (relationship) - это ассоциация, установленная между несколькими сущностями.

Домен (domain) - множество значений (область определения) атрибута.

Существует три типа бинарных связей:

  • один к одному - одиночный экземпляр сущности одного класса связан с одиночным экземпляром сущности другого класса, напимер, НАЧАЛЬНИК - ОТДЕЛ;
  • 1 к N или один ко многим - одиночный экземпляр сущности одного класса связан со многими экземплярами сущности другого класса, например, ОТДЕЛ - СОТРУДНИК;
  • N к M или многие ко многим - многие экземпляры сущности одного класса связаны со многими экземплярами сущности другого класса, например, СОТРУДНИК - ПРОЕКТ;
  • Словарь основных понятий по UML

    Объект (object) - сущность, обладающая уникальностью и инкапсулирующая в себе состояние и поведение.

    Класс (class) - описание множества объектов с общими атрибутами, определяющими состояние, и операциями, определяющими поведение.

    Интерфейс (interface) - именованное множество операций, определяющее набор услуг, которые могут быть запрошены потребителем и предоставлены поставщиком услуг.

    Кооперация (collaboration) - совокупность объектов, которые взаимодействуют для достижения некоторой цели.

    Действующее лицо (actor) - сущность, находящаяся вне моделируемой системы и непосредственно взаимодействующая с ней.

    Компонент (component) - модульная часть системы с четко определенным набором требуемых и предоставляемых интерфейсов.

    Артефакт (artifact) - элемент информации, который используется или порождается в процессе разработки программного обеспечения. Другими словами, артефакт - это физическая единица реализации, получаемая из элемента модели (например, класса или компонента).

    Узел (node) - вычислительный ресурс, на котором размещаются и при необходимости выполняются артефакты.

    Поведенческие сущности предназначены для описания поведения. Основных поведенческих сущностей всего две: состояние и действие.

    Состояние (state) - период в жизненном цикле объекта, находясь в котором объект удовлетворяет некоторому условию и осуществляет собственную деятельность или ожидает наступления некоторого события.

    Действие (action) - примитивное атомарное вычисление.

    Автомат является пакетом, в котором определено множество понятий, необходимых для представления поведения моделируемой сущности в виде дискретного пространства с конечным числом состояний и переходов.

    Классификатор (classifier) - это дескриптор множества однотипных объектов.

    Дополнительное чтиво

    • Фаулер М. UML. Основы, 3-е издание
    • Буч Г., Рамбо Д., Якобсон И. Язык UML. Руководство пользователя

Особенности изображения диаграмм языка UML

Для диаграмм языка UML существуют три типа визуальных графических обозначений, которые важны с точки зрения заключенной в них информации:

· Геометрические фигуры на плоскости, играющие роль вершин графов соответствующих диаграмм. При этом сами геометрические фигуры выступают в роли графических примитивов языка UML, а форма этих фигур (прямоугольник, эллипс) должна строго соответствовать изображению отдельных элементов языка UML (класс, вариант использования, состояние, деятельность). Графические примитивы языка UML имеют фиксированную семантику, переопределять которую пользователям не допускается. Графические примитивы должны иметь собственные имена, а, возможно, и другой текст, который содержится внутри границ соответствующих геометрических фигур или, как исключение, вблизи этих фигур.

· Графические взаимосвязи, которые представляются различными линиями на плоскости. Взаимосвязи в языке UML обобщают понятие дуг и ребер из теории графов, но имеют менее формальный характер и более развитую семантику.

· Специальные графические символы, изображаемые вблизи от тех или иных визуальных элементов диаграмм и имеющие характер дополнительной спецификации (украшений).

Все диаграммы в языке UML изображаются с использованием фигур на плоскости. Отдельные элементы – с помощью геометрических фигур, которые могут иметь различную высоту и ширину с целью размещения внутри них других конструкций языка UML. Наиболее часто внутри таких символов помещаются строки текста, которые уточняют семантику или фиксируют отдельные свойства соответствующих элементов языка UML. Информация, содержащаяся внутри фигур, имеет значение для конкретной модели проектируемой системы, поскольку регламентирует реализацию соответствующих элементов в программном коде.

Пути представляют собой последовательности из отрезков линий, соединяющих отдельные графические символы. При этом концевые точки отрезков линий должны обязательно соприкасаться с геометрическими фигурами, служащими для обозначения вершин диаграмм, как принято в теории графов. С концептуальной точки зрения путям в языке UML придается особое значение, поскольку это простые топологические сущности. Отдельные части пути или сегменты могут не существовать вне содержащего их пути. Пути всегда соприкасаются с другими графическими символами на обеих границах соответствующих отрезков линий, т.е. пути не могут обрываться на диаграмме линией, которая не соприкасается ни с одним графическим символом. Как отмечалось выше, пути могут иметь в качестве окончания или терминатора специальную графическую фигуру – значок, который изображается на одном из концов линий.



Дополнительные значки или украшения представляют собой графические фигуры фиксированного размера и формы. Они не могут увеличивать свои размеры, чтобы разместить внутри себя дополнительные символы. Значки размещаются как внутри других графических конструкций, так и вне их. Примерами значков могут служить окончания связей элементов диаграмм или графические обозначения кванторов видимости атрибутов и операций классов.

Диаграмма кооперации

Диаграммы кооперации предназначены для описания динамических аспектов моделируемой системы. Обычно они применяются для того, чтобы:

· показать набор взаимодействующих объектов в реальном окружении "с высоты птичьего полета";

· распределить функциональность между классами, основываясь на результатах изучения динамических аспектов системы;

· описать логику выполнения сложных операций, особенно в тех случаях, когда один объект взаимодействует еще с несколькими объектами;

· изучить роли, выполняемые объектами внутри системы, а также отношения между объектами, в которые они вовлекаются, выполняя эти роли.

Говоря о диаграммах кооперации, часто упоминают два "уровня" таких диаграмм:

· уровень экземпляров (примеров, Instance-Level): отображает взаимодействия между объектами (экземплярами классов); такая диаграмма обычно создается, чтобы исследовать внутреннее устройство объектно-ориентированной системы.

· уровень спецификации (Specification-Level): используется для изучения ролей, исполняемых в системе основными классами.

Она показывает взаимодействие между объектами, которое осуществляется путем посылки и приема сообщений.



Диаграмма компонентов

Компоненты связываются через зависимости, когда соединяется требуемый интерфейс одного компонента с имеющимся интерфейсом другого компонента. Таким образом иллюстрируются отношения клиент-источник между двумя компонентами.

Зависимость показывает, что один компонент предоставляет сервис, необходимый другому компоненту. Зависимость изображается стрелкой от интерфейса или порта клиента к импортируемому интерфейсу.

Основной тип сущностей на диаграмме компонентов ‒ это сами компоненты 1, а также интерфейсы 2, посредством которых указывается взаимосвязь между компонентами. На диаграмме компонентов применяются следующие отношения:

· реализации между компонентами и интерфейсами (компонент реализует интерфейс);

· зависимости между компонентами и интерфейсами (компонент использует интерфейс) 3.

Диаграмма развертывания

Диаграмма развертывания предназначена для визуализации элементов и компонентов программы, существующих лишь на этапе ее исполнения (runtime). При этом представляются только компоненты-экземпляры программы, являющиеся исполняемыми файлами или динамическими библиотеками. Те компоненты, которые не используются на этапе исполнения, на диаграмме развертывания не показываются. Так, компоненты с исходными текстами программ могут присутствовать только на диаграмме компонентов. На диаграмме развертывания они не указываются.

Диаграмма развертывания содержит графические изображения процессоров, устройств, процессов и связей между ними. В отличие от диаграмм логического представления, диаграмма развертывания является единой для системы в целом, поскольку должна всецело отражать особенности ее реализации. Разработка диаграммы развертывания, как правило, является последним этапом спецификации модели программной системы.

При разработке диаграммы развертывания преследуют следующие цели:

· определить распределение компонентов системы по ее физическим узлам;

· показать физические связи между всеми узлами реализации системы на этапе ее исполнения;

· выявить узкие места системы и реконфигурировать ее топологию для достижения требуемой производительности.

Сегодня процесс создания сложных программных приложений невозможно представить без разделения на этапы жизненного цикла. Под жизненным циклом программы будем понимать совокупность этапов:

  • Анализ предметной области и создание ТЗ (взаимодействия с заказчиком)
  • Проектирование структуры программы
  • Кодирование (набор программного кода согласно проектной документации)
  • Тестирование и отладка
  • Внедрение программы
  • Сопровождение программы
  • Утилизация
Остановимся детально на процессе проектирования. В ходе проектирования архитектором или опытным программистом создается проектная документация, включающая текстовые описания, диаграммы, модели будущей программы. В этом нелегком деле нам поможет язык UML.

UML - является графическим языком для визуализации, описания параметров, конструирования и документирования различных систем (программ в частности). Диаграммы создаются с помощью специальных CASE средств, например Rational Rose (http://www-01.ibm.com/software/rational/) и Enterprise Architect (http://www.sparxsystems.com.au/). На основе технологии UML строится единая информационная модель. Приведенные выше CASE средства способны генерировать код на различных объектно-ориентированных языках, а так же обладают очень полезной функцией реверсивного инжиниринга. (Реверсивный инжиниринг позволяет создать графическую модель из имеющегося программного кода и комментариев к нему.)

Рассмотрим типы диаграмм для визуализации модели (это must have, хотя типов гораздо больше):

Диаграмма вариантов использования (use case diagram)

Проектируемая система представляется в виде множества сущностей или актеров, взаимодействующих с системой с помощью, так называемых прецедентов. При этом актером (actor) или действующим лицом называется любая сущность, взаимодействующая с системой извне. Другими словами, каждый вариант использования определяет некоторый набор действий, совершаемый системой при диалоге с актером. При этом ничего не говорится о том, каким образом будет реализовано взаимодействие актеров с системой.

Диаграмма классов (class diagram)

Диаграмма классов служит для представления статической структуры модели системы в терминологии классов объектно-ориентированного программирования. Диаграмма классов может отражать, в частности, различные взаимосвязи между отдельными сущностями предметной области, такими как объекты и подсистемы, а также описывает их внутреннюю структуру (поля, методы…) и типы отношений (наследование, реализация интерфейсов …). На данной диаграмме не указывается информация о временных аспектах функционирования системы. С этой точки зрения диаграмма классов является дальнейшим развитием концептуальной модели проектируемой системы. На этом этапе принципиально знание ООП подхода и паттернов проектирования.

Диаграмма состояний (statechart diagram)

Главное предназначение этой диаграммы - описать возможные последовательности состояний и переходов, которые в совокупности характеризуют поведение элемента модели в течение его жизненного цикла. Диаграмма состояний представляет динамическое поведение сущностей, на основе спецификации их реакции на восприятие некоторых конкретных событий.

Диаграмма последовательности (sequence diagram)

Для моделирования взаимодействия объектов в языке UML используются соответствующие диаграммы взаимодействия. Взаимодействия объектов можно рассматривать во времени, и тогда для представления временных особенностей передачи и приема сообщений между объектами используется диаграмма последовательности. Взаимодействующие объекты обмениваются между собой некоторой информацией. При этом информация принимает форму законченных сообщений. Другими словами, хотя сообщение и имеет информационное содержание, оно приобретает дополнительное свойство оказывать направленное влияние на своего получателя.

Диаграмма кооперации (collaboration diagram)

На диаграмме кооперации в виде прямоугольников изображаются участвующие во взаимодействии объекты, содержащие имя объекта, его класс и, возможно, значения атрибутов. Как и на диаграмме классов, указываются ассоциации между объектами в виде различных соединительных линий. При этом можно явно указать имена ассоциации и ролей, которые играют объекты в данной ассоциации.
В отличие от диаграммы последовательности, на диаграмме кооперации изображаются только отношения между объектами, играющими определенные роли во взаимодействии.

Диаграмма компонентов (component diagram)

Диаграмма компонентов, в отличие от ранее рассмотренных диаграмм, описывает особенности физического представления системы. Диаграмма компонентов позволяет определить архитектуру разрабатываемой системы, установив зависимости между программными компонентами, в роли которых может выступать исходный, бинарный и исполняемый код. Во многих средах разработки модуль или компонент соответствует файлу. Пунктирные стрелки, соединяющие модули, показывают отношения взаимозависимости, аналогичные тем, которые имеют место при компиляции исходных текстов программ. Основными графическими элементами диаграммы компонентов являются компоненты, интерфейсы и зависимости между ними.

Диаграмма развертывания (deployment diagram)

Диаграмма развертывания предназначена для визуализации элементов и компонентов программы, существующих лишь на этапе ее исполнения (runtime). При этом представляются только компоненты-экземпляры программы, являющиеся исполнимыми файлами или динамическими библиотеками. Те компоненты, которые не используются на этапе исполнения, на диаграмме развертывания не показываются.
Диаграмма развертывания содержит графические изображения процессоров, устройств, процессов и связей между ними. В отличие от диаграмм логического представления, диаграмма развертывания является единой для системы в целом, поскольку должна всецело отражать особенности ее реализации. Эта диаграмма, по сути, завершает процесс ООАП для конкретной программной системы и ее разработка, как правило, является последним этапом спецификации модели.

На этом закончим обзорный экскурс по диаграммам в частности и проектированию в общем. Стоит отметить, что процесс проектирования уже давно стал стандартом разработки ПО, но часто приходится сталкиваться с великолепно написанной программой, которая из за отсутствия нормальной документации обрастает ненужным побочным функционалом, костылями, становится громоздкой и теряет былое качество. =(

Я убежден, что программист в первую очередь это кодер – он НЕ должен общаться с заказчиком, НЕ должен задумываться об архитектуре системы, не должен изобретать интерфейс к программе, он только должен кодировать – реализовывать алгоритмы, функционал, внешний вид, юзабилити, но не более…. Проектировщик же должен начиная от абстрактных диаграмм (описывающих предметную область) до диаграмм представляющих структуру данных, классов и процессов их взаимодействия, детально шаг за шагом все расписать. То есть сложность работы и зарплата проектировщика должна быть на порядок выше чем у программиста == кодера. Простите за крамолу....

Язык UML

Унифицированный язык моделирования (UML ) является стандартным инструментом для создания «чертежей» программного обеспечения. С помощью UML можно визуализировать, специфицировать, конструировать и документировать артефакты программных систем.

UML пригоден для моделирования любых систем: от информационных систем масштаба предприятия до распределенных Web -приложений и даже встроенных систем реального времени. UML – это язык для визуализации, специфицирования, конструирования и документирования артефактов программных систем. Язык моделирования, подобный UML, является стандартным средством для составления «чертежей» программного обеспечения.

Для понимания любой нетривиальной системы приходится разрабатывать большое количество взаимосвязанных моделей. В применении к программным системам это означает, что необходим язык, с помощью которого можно с различных точек зрения описать представления архитектуры системы на протяжении цикла ее разработки.

UML – это графический язык специфицирования, что означает построение точных и полных графических моделей, касающиеся анализа, проектирования и реализации, которые должны приниматься в процессе разработки и развертывания системы программного обеспечения.

UML – это язык конструирования, и модели, созданные с его помощью, могут быть непосредственно переведены на различные языки программирования. Иными словами, UML-модель можно отобразить на такие языки, как Java , C++, Visual Basic , и даже на таблицы реляционной базы данных.

Такое отображение модели на язык программирования позволяет осуществлять прямое проектирование: генерацию кода из модели UML в какой-то конкретный язык. Можно решить и обратную задачу: реконструировать модель по имеющейся реализации.

UML позволяет решить проблему документирования системной архитектуры и всех ее деталей, предлагает язык для формулирования требований к системе и определения тестов и, наконец, предоставляет средства для моделирования работ на этапе планирования проекта и управления версиями.

Использование UML эффективно в:

· информационных системах масштаба предприятия;

· банковских и финансовых услугах;

· телекоммуникациях;

· на транспорте;

· оборонной промышленности, авиации и космонавтике;

· розничной торговле;

· медицинской электронике;

· науке;

· распределенных Web -системах.

Сфера применения UML не ограничивается моделированием ПО. Он позволяет моделировать, скажем, документооборот в юридических системах, структуру и функционирование системы обслуживания пациентов в больницах, осуществлять проектирование аппаратных средств.

1 Структура и компоненты языка UML

1.1 Общие принципы

Конструктивное использование языка UML основывается на понимании общих принципов моделирования сложных систем и особенностей процесса объектно-ориентированного анализа и проектирования (ООАП). Выбор выразительных средств для построения моделей сложных систем основывается на нескольких принципах.

Первым является принцип абстрагирования, который предписывает включать в модель только те аспекты проектируемой системы, которые имеют непосредственное отношение к выполнению системой своих функций или своего целевого предназначения. При этом все второстепенные детали опускаются, чтобы чрезмерно не усложнять процесс анализа и исследования полученной модели.

Вторым принципом построения моделей сложных систем является принцип многомодельности. Это значит, что никакое единственное представление сложной системы не является достаточным для адекватного выражения всех ее особенностей.

Еще одним принципом прикладного системного анализа является принцип иерархического построения моделей сложных систем. Этот принцип предписывает рассматривать процесс построения модели на разных уровнях абстрагирования или детализации в рамках фиксированных представлений.

Таким образом, процесс ООАП можно представить как поуровневый спуск от наиболее общих моделей и представлений концептуального уровня к более частным и детальным представлениям логического и физического уровня. При этом на каждом из этапов ООАП данные модели последовательно дополняются все большим количеством деталей, что позволяет им более адекватно отражать различные аспекты конкретной реализации сложной системы.

Объектно-ориентированный анализ и проектирование системы предусматривает использование словаря языка UML , включающего три вида строительных блоков: сущности, отношения, диаграммы.

1.2 Сущности

Основными объектно-ориентированными блоками являются сущности. В языке UML имеется четыре вида сущностей: структурные, поведенческие, группирующие, аннотационные.

Структурные сущности – это имена существительные в моделях на языке UML. Они представляют собой статические части модели, соответствующие концептуальным или физическим элементам системы. Существует пять разновидностей концептуальных и логических сущностей.

Класс (Class ) – это описание совокупности объектов с общими атрибутами, операциями, отношениями и семантикой (рис. 3). Класс реализует один или несколько интерфейсов.

Рис. 3 Классы

Интерфейс (Interface ) – это совокупность операций, которые определяют набор услуг, предоставляемый классом или компонентом. Интерфейс описывает видимое извне поведение элемента (рис. 4). Интерфейс редко существует сам по себе – обычно он присоединяется к реализующему его классу или компоненту.

Рис. 4 Интерфейс

Кооперация (Collaboration ) определяет взаимодействие, и представляет совокупность ролей, работающих совместно, производят некоторый кооперативный эффект. Кооперация имеет как структурный, так и поведенческий аспект, – один и тот же класс может принимать участие в нескольких кооперациях (рис. 5).

Рис. 5 Кооперация

Прецедент (Use case ) – это описание последовательности выполняемых системой действий, которая производит наблюдаемый результат, значимый для какого-то определенного актера (Actor ). Прецедент применяется для структурирования поведенческих сущностей модели, и реализуются посредством кооперации (рис. 6).

Рис. 6 Прецедент

Активным классом (Active class ) называется класс, объекты которого вовлечены в один или несколько процессов (Threads ), и могут инициировать управляющее воздействие. Активный класс отличается от обычного класса тем, что деятельность его объектов осуществляется одновременно с деятельностью других элементов. Графически активный класс изображается так же, как простой класс, но ограничивающий прямоугольник рисуется жирной линией и обычно включает имя, атрибуты и операции (рис. 7)

Рис. 7 Активный класс

Компоненты и узлы соответствуют физическим сущностям системы.

Компонент (Component ) – это физическая заменяемая часть системы, соответствующая некоторому набору интерфейсов и обеспечивает его реализацию (рис. 8). Компонент – это физическая упаковка логических элементов, (классов, интерфейсов и кооперации), например компоненты СОМ+ или Java Beans , а также файлы исходного кода.

Рис. 8 Компонент

Узел (Node ) – это элемент, представляющий вычислительный ресурс, обладающий памятью и способностью обработки. Совокупность компонентов может размещаться в узле, а также мигрировать с одного узла на другой (рис. 9).

Рис. 9 Узел

Существуют также разновидности этих семи сущностей: актеры, сигналы, утилиты (виды классов), процессы и нити (виды активных классов), приложения, документы, файлы, библиотеки, страницы и таблицы (виды компонентов).

Поведенческие сущности (Behavioral things ) являются динамическими составляющими модели UML. Это глаголы языка: они описывают поведение модели. Существует всего два типа поведенческих сущностей.

Взаимодействие (Interaction ) – это поведение, суть которого заключается в обмене сообщениями между объектами для достижения определенной цели. С помощью взаимодействия описывается как отдельная операция, так и поведение совокупности объектов. Взаимодействие предполагает ряд других элементов, таких как сообщение (рис. 10), последовательность действий (поведение, инициированное сообщением) и связь (между объектами).

Рис. 10 Сообщение

Автомат (State machine ) – это алгоритм поведения, определяющий последовательность состояний, через которые объект или взаимодействие проходят на протяжении своего жизненного цикла в ответ на различные события, а также реакции на эти события (рис. 11). С помощью автомата можно описать поведение отдельного класса или кооперации классов. С автоматом связан ряд других элементов: состояния, переходы (из одного состояния в другое), события (сущности, инициирующие переходы) и виды действий (реакция на переход).

Рис. 11 Состояние

Взаимодействия и автоматы семантически связаны с различными структурными элементами, такими как классы, кооперации и объекты.

Группирующие сущности являются организующими частями модели, это блоки, на которые можно разложить модель. Основной группирующей сущностью является пакет.

Пакет (Package ) – это универсальный механизм организации элементов в группы (рис. 12). В пакет можно поместить структурные, поведенческие и даже другие группирующие сущности. В отличие от компонентов, существующих во время работы программы, пакеты носят чисто концептуальный характер, то есть существуют только во время разработки.

Рис. 12 Пакеты

Существуют также вариации пакетов, например каркасы (Frameworks ), модели и подсистемы.

Аннотационные сущности – пояснительные части модели UML. Это комментарии для дополнительного описания, разъяснения или замечания к любому элементу модели. Имеется только один базовый тип аннотационных элементов – примечание.

Примечание (Note ) – это символ для изображения комментариев, присоединенных к элементу или группе элементов (рис. 13).

Рис. 13 Примечание

Примечания используются, чтобы снабдить диаграммы комментариями или ограничениями, которые можно выразить в виде неформального или формального текста. Существуют вариации этого элемента, например требования, где описывают некое желательное поведение с точки зрения внешней по отношению к модели.

1.2 Отношения

В языке UML определены четыре типа отношений : зависимость, ассоциация, обобщение, реализация. Эти отношения являются основными связующими строительными блоками в UML .

Зависимость (Dependency ) – это семантическое отношение между двумя сущностями, при котором изменение одной из них, независимой, может повлиять на семантику другой, зависимой (рис. 14).

Рис . 14 Отношения зависимости

Ассоциация (Association ) – отношение, описывающее совокупность связей между объектами. Разновидностью ассоциации является агрегирование (Aggregation ) – структурное отношение между целым и его частями (рис. 15). Графическое изображение ассоциации может включать кратность и имена ролей (рис. 16).

Рис . 1 5 Агрегирование

Рис . 16 Имена ассоциаций

Обобщение (Generalization ) – это отношение “специализация/обобщение” (рис. 17), при котором объект специализированного элемента (потомок) может быть подставлен вместо объекта обобщенного элемента (родителя или предка). Таким образом, потомок (Child ) наследует структуру и поведение своего родителя (Parent ).


Рис. 17 Обобщение

Наконец, реализация (Realization ) – это отношение между классификаторами, при котором один классификатор определяет “контракт”, а другой гарантирует его выполнение (рис. 18).

Рис. 18 Реализация

Отношения реализации встречаются в двух случаях: во-первых, между интерфейсами и реализующими их классами или компонентами, а во-вторых, между прецедентами и реализующими их кооперациями.

1.2 Диаграммы

Диаграмма в UML – это графическое представление набора элементов, изображаемое в виде связанного графа с вершинами (сущностями) и ребрами (отношениями), используемое для визуализации системы с разных точек зрения. В UML выделяют 8 типов диаграмм (рис. 1 9 ).


Рис. 19 Интегрированная модель сложной системы в нотации UML

На диаграмме классов (C lass diagram) изображаются классы, интерфейсы, объекты и кооперации, а также их отношения. Используется при моделировании объектно-ориентированных систем.

На диаграмме вариантов использования (Use case diagram) представлены прецеденты и актеры (частный случай классов), а также отношения между ними. Они используются при моделировании поведения системы.

Диаграммы последовательностей (Sequence diagram) и кооперации (Collaboration diagram) являются частными случаями диаграмм взаимодействия. На диаграммах взаимодействия представлены связи между объектами (сообщения, которыми объекты могут обмениваться). Диаграммы взаимодействия относятся к динамическому виду системы. При этом диаграммы последовательности отражают временную упорядоченность сообщений, а диаграммы кооперации – структурную организацию обменивающихся сообщениями объектов. Эти диаграммы могут быть преобразованы друг в друга.

На диаграммах состояний (S tatechart diagrams ) представлен автомат, включающий состояния, переходы, события и виды действий. Диаграммы состояний используются при моделировании поведения интерфейса, класса или кооперации, зависящем от последовательности событий.

Диаграмма деятельности (Activity diagram) представляют переходы потока управления между объектами от одной деятельности к другой внутри системы.

Диаграмма компонентов (Component diagram) представляет зависимости между компонентами. Диаграммы компонентов отображаются на один или несколько классов, интерфейсов или коопераций.

На диаграмме развертывания (Deployment diagram) представлена конфигурация обрабатывающих узлов системы и размещенных в них компонентов.

Этот тип диаграмм предназначен для распределения классов и объектов по компонентам при физическом проектировании системы. Часто данный тип диаграмм называют диаграммами модулей.

Диаграмма компонентов, в отличие от ранее рассмотренных диаграмм, описывает особенности физического представления системы. Диаграмма компонентов позволяет определить архитектуру разрабатываемой системы, установив зависимости между программными компонентами, в роли которых может выступать исходный, бинарный и исполняемый код. Во многих средах разработки модуль или компонент соответствует файлу. Пунктирные стрелки, соединяющие модули, показывают отношения взаимозависимости, аналогичные тем, которые имеют место при компиляции исходных текстов программ. Основными графическими элементами диаграммы компонентов являются компоненты, интерфейсы и зависимости между ними.

Компонент (component) - физически существующая часть системы, которая обеспечивает реализацию классов и отношений, а также функционального поведения моделируемой программной системы.

Для более наглядного изображения компонентов были предложены и стали общепринятыми следующие графические стереотипы:

Во-первых, стереотипы для компонентов развертывания, которые обеспечивают непосредственное выполнение системой своих функций. Такими компонентами могут быть динамически подключаемые библиотеки (рис. 12, а), Web-страницы на языке разметки гипертекста (рис. 12, б) и файлы справки (рис. 12, в).

Во-вторых, стереотипы для компонентов в форме рабочих продуктов. Как правило – это файлы с исходными текстами программ (рис. 12, г).


Рис. 12. Варианты графического изображения компонентов на диаграмме компонентов.

Эти элементы иногда называют артефактами , подчеркивая при этом их законченное информационное содержание, зависящее от конкретной технологии реализации соответствующих компонентов. Более того, разработчики могут для этой цели использовать самостоятельные обозначения, поскольку в языке UML нет строгой нотации для графического представления артефактов.

Другой способ спецификации различных видов компонентов - указание текстового стереотипа компонента перед его именем. В языке UML для компонентов определены следующие стереотипы:

<> (файл) – определяет наиболее общую разновидность компонента, который представляется в виде произвольного физического файла.

<> (исполнимый) – определяет разновидность компонента-файла, который является исполнимым файлом и может выполняться на компьютерной платформе.

<> (документ) – определяет разновидность компонента-файла, который представляется в форме документа произвольного содержания, не являющегося исполнимым файлом или файлом с исходным текстом программы.

<> (библиотека) – определяет разновидность компонента-файла, который представляется в форме динамической или статической библиотеки.

<> (источник) – определяет разновидность компонента-файла, представляющего собой файл с исходным текстом программы, который после компиляции может быть преобразован в исполнимый файл.

<

> (таблица) – определяет разновидность компонента, который представляется в форме таблицы базы данных.

Интерфейсы

Различают два способа связи интерфейса и компонента. Если компонент реализует некоторый интерфейс, то такой интерфейс называют экспортируемым или поддерживаемым , поскольку этот компонент предоставляет его в качестве сервиса другим компонентам. Если же компонент использует некоторый интерфейс, который реализуется другим компонентом, то такой интерфейс для первого компонента называется импортируемым. Особенность импортируемого интерфейса состоит в том, что на диаграмме компонентов это отношение изображается с помощью зависимости.

На диаграмме компонентов могут быть также представлены отношения зависимости между компонентами и реализованными в них классами. Эта информация имеет значение для обеспечения согласования логического и физического представлений модели системы. Разумеется, изменения в структуре описаний классов могут привести к изменению этой зависимости. Ниже приводится фрагмент зависимости подобного рода, когда исполнимый компонент Control .exe зависит от соответствующих классов


Рис. Графическое изображение зависимости между компонентом и классами.

В этом случае из диаграммы компонентов не следует, что классы реализованы данным компонентом. Если требуется подчеркнуть, что некоторый компонент реализует отдельные классы, то для обозначения компонентa используется расширенный символ прямоугольника. При этом прямоугольник компонентa делится на две секции горизонтальной линией. Верхняя секция служит для записи имени компонентa и, возможно, дополнительной информации, а нижняя секция – для указания реализуемых данным компонентом классов



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows