Современные проблемы науки и образования. Калмановская фильтрация

Современные проблемы науки и образования. Калмановская фильтрация

19.05.2019

В рассмотренных до сих пор методах ковариационные матрицы фоновых оценок (моделирования или прогноза) оценивались в начале однократно и затем использовались для всего последующего процесса ассимиляции. Однако практика показывает, что ошибка прогноза (моделирования) может меняться от дня ко дню. Таким образом, на повестку дня встает вопрос об учете временной эволюции ковариационной матрицы ошибок фоновых оценок (прогноза). Эволюция во времени фоновых ошибок может быть важной по трём причинам.

    Во-первых, мы можем отличить области, где в предыдущем анализе фоновые ошибки были уменьшены при помощи наблюдений.

    Во вторых, мы можем отличить области, где фоновые ошибки росли из-за модельных ошибок.

    В третьих, модельные физика и динамика могут и усилить и уменьшить фоновые ошибки.

Фильтр Калмана является таким методом, который позволяет на основе анализа, сходного с оптимальной интерполяцией, учесть изменчивость ковариационной матрицы прогноза состояния среды.

Проблема ассимиляции гидрометеорологических данных может рассматриваться как решение задачи фильтрации, где ошибки измерений и моделирования выступают в виде шума на фоне истинных значений, который необходимо отфильтровать, чтобы выделить сигнал. Одним из наиболее эффективных методов решения подобной задачи является фильтр Калмана.

Фильтр Калмана представляет собой рекурсивный фильтр, который позволяет оценить состояние динамической системы на основе неполных и шумящих измерений. Для оценивания состояния среды только на основе шумных (т.е. имеющих ошибки) измерений необходимо иметь модель эволюции среды. Рекурсивность фильтра Калмана означает, что для оценки состояния среды достаточно иметь предыдущую оценку и текущие измерения, отягощенные шумом. Другую информацию о предыдущих шагах хранить не надо.

Атмосфера является системой, состояние которой характеризуется определенным набором характеристик, которые являются элементами вектора состояния системы , отнесенного к заданному моменту времени. Кроме того, имеется ряд переменных, некоторым образом связанных с вектором состояния системы, которые можно измерить с определенной точностью и которые относятся к определенному моменту времени. Эти величины составляют вектор измерений. Задача формулируется как построение оптимальной оценки вектора состояния системы, основываясь на векторе измерений с погрешностями. При этом вектор измерений рассматривается как входной сигнал, отягощенный погрешностями (шумом), а вектор состояния - как неизвестный многомерный сигнал, подлежащий оценке. Задача решается как отфильтровывание шума (погрешностей).

Условием оптимальности построенной оценки состояния является минимум ее среднеквадратической ошибки. Рисунок иллюстрирует работу алгоритма фильтра Калмэна. Начальными условиями на каждом новом цикле алгоритма служат оценка состояния системы и величина, характеризующая ее погрешность. В случае скалярной переменной такой характеристикой является дисперсия, которая тем больше, чем сильнее разброс индивидуальных значений относительно истинного значения. Распространенная оценка дисперсии - среднеквадратическое отклонение, то есть квадрат стандартного отклонения, - выражает степень разброса величины относительно среднего. Обобщением дисперсии для вектора, то есть совокупности скалярных величин, служит ковариационная матрица. Ее диагональные элементы являются дисперсиями соответствующих составляющих вектора, а недиагональные - ковариациями, характеризующими взаимосвязь между парой составляющих. Совокупность измерений, отнесенных к каждому из моментов времени, обобщает вектор измерений. Алгоритм последовательно обрабатывает вновь поступающие векторы измерений, учитывая при этом значения, вычисленные на предшествующем цикле. Эта особенность отличает алгоритм фильтра Калмана от нерекуррентных алгоритмов, которым для работы требуется хранить весь массив обрабатываемых данных. На следующем шаге с помощью обрабатываемых на данном цикле измерений уточняются начальные условия.

Для этого алгоритм вычисляет вес поправок к ним на основе ковариационных матриц оценки состояния и измерений. Чем меньшей погрешностью характеризуются измерения по сравнению с оценкой состояния системы, тем больший вес они получат. Относительные веса неизвестных, определяющих вектор состояния системы, зависят от степени их влияния на вектор измерений: больший вес получат те переменные, вклад которых в измерения больше.

Фильтр Калмана является примером последовательного метода ассимиляции распределенных во времени данных измерений, что означает корректировку начальных данных для моделирования на каждом шаге модели в отличии от 4-мерного вариационного анализа который рассматривает все данные измерений внутри определенного окна ассимиляции.

Фильтр Калмана

Фильтр Калмана широко используется в инженерных и эконометрических приложениях: от радаров и систем технического зрения до оценок параметров макроэкономических моделей . Калмановская фильтрация является важной частью теории управления , играет большую роль в создании систем управления. Совместно с линейно-квадратичным регулятором фильтр Калмана позволяет решить задачу линейно-квадратичного гауссовского управления . Фильтр Калмана и линейно-квадратичный регулятор - возможное решение большинства фундаментальных задач в теории управления.

В большинстве приложений количество параметров, задающих состояние объекта, больше, чем количество наблюдаемых параметров, доступных для измерения. При помощи модели объекта по ряду доступных измерений фильтр Калмана позволяет получить оценку внутреннего состояния.

Фильтр Калмана предназначен для рекурсивного дооценивания вектора состояния априорно известной динамической системы, то есть для расчёта текущего состояния системы необходимо знать текущее измерение, а также предыдущее состояние самого фильтра. Таким образом, фильтр Калмана, как и множество других рекурсивных фильтров, реализован во временно́м, а не в частотном представлении.

Наглядный пример возможностей фильтра - получение точных, непрерывно обновляемых оценок положения и скорости некоторого объекта по результатам временно́го ряда неточных измерений его местоположения. Например, в радиолокации стоит задача сопровождения цели, определения её местоположения, скорости и ускорения, при этом результаты измерений поступают постепенно и сильно зашумлены. Фильтр Калмана использует вероятностную модель динамики цели, задающую тип вероятного движения объекта, что позволяет снизить воздействие шума и получить хорошие оценки положения объекта в настоящий, будущий или прошедший момент времени.

Введение

Фильтр Калмана оперирует понятием вектора состояния системы (набором параметров, описывающих состояние системы на некоторый момент времени) и его статистическим описанием. В общем случае динамика некоторого вектора состояния описывается плотностями вероятности распределения его компонент в каждый момент времени. При наличии определенной математической модели производимых наблюдений за системой, а также модели априорного изменения параметров вектора состояния (а именно - в качестве марковского формирующего процесса) можно записать уравнение для апостериорной плотности вероятности вектора состояния в любой момент времени. Данное дифференциальное уравнение носит название уравнение Стратоновича. Уравнение Стратоновича в общем виде не решается. Аналитическое решение удается получить только в случае ряда ограничений (предположений):

  • гауссовости априорных и апостериорных плотностей вероятности вектора состояния на любой момент времени (в том числе начальный)
  • гауссовости формирующих шумов
  • гауссовости шумов наблюдений
  • белости шумов наблюдений
  • линейности модели наблюдений
  • линейности модели формирующего процесса (который, напомним, должен являться марковским процессом)

Классический фильтр Калмана является уравнениями для расчета первого и второго момента апостериорной плотности вероятности (в смысле вектора математических ожиданий и матрицы дисперсий, в том числе взаимных) при данных ограничениях. Ввиду того, что для нормальной плотности вероятности математическое ожидание и дисперсионная матрица полностью задают плотность вероятности, можно сказать, что фильтр Калмана рассчитывает апостериорную плотность вероятности вектора состояния на каждый момент времени. А значит полностью описывает вектор состояния как случайную векторную величину.

Расчетные значения математических ожиданий при этом являются оптимальными оценками по критерию среднеквадратической ошибки, что и обуславливает его широкое применение.

Существует несколько разновидностей фильтра Калмана, отличающихся приближениями и ухищрениями, которые приходится применять для сведения фильтра к описанному виду и уменьшения его размерности:

  • Расширенный фильтр Калмана (EKF, Extended Kalman filter). Сведение нелинейных моделей наблюдений и формирующего процесса с помощью линеаризации посредством разложения в ряд Тейлора .
  • Unscented Kalman filter (UKF). Используется в задачах, в которых простая линеаризация приводит к уничтожению полезных связей между компонентами вектора состояния. В этом случае «линеаризация» основана на unscented -преобразовании.
  • Ensemble Kalman filter (EnKF). Используется для уменьшения размерности задачи.
  • Возможны варианты с нелинейным дополнительным фильтром, позволяющим привести негауссовские наблюдения к нормальным.
  • Возможны варианты с «обеляющим» фильтром, позволяющим работать с «цветными» шумами
  • и т. д.

Используемая модель динамической системы

Фильтры Калмана базируются на дискретизированных по времени линейных динамических системах . Такие системы моделируются цепями Маркова при помощи линейных операторов и слагаемых с нормальным распределением . Состояние системы описывается вектором конечной размерности - вектором состояния . В каждый такт времени линейный оператор действует на вектор состояния и переводит его в другой вектор состояния (детерминированное изменение состояния), добавляется некоторый вектор нормального шума (случайные факторы) и в общем случае вектор управления, моделирующий воздействие системы управления. Фильтр Калмана можно рассматривать как аналог скрытым моделям Маркова , с тем отличием, что переменные, описывающие состояние системы, являются элементами бесконечного множества действительных чисел (в отличие от конечного множества пространства состояний в скрытых моделях Маркова). Кроме того, скрытые модели Маркова могут использовать произвольные распределения для последующих значений вектора состояния, в отличие от фильтра Калмана, использующего модель нормально распределенного шума. Существует строгая взаимосвязь между уравнениями фильтра Калмана и скрытой модели Маркова. Обзор этих и других моделей дан Roweis и Chahramani (1999) .

При использовании фильтра Калмана для получения оценок вектора состояния процесса по серии зашумленных измерений необходимо представить модель данного процесса в соответствии со структурой фильтра - в виде матричного уравнения определенного типа. Для каждого такта k работы фильтра необходимо в соответствии с приведенным ниже описанием определить матрицы: эволюции процесса F k ; матрицу наблюдений H k ; ковариационную матрицу процесса Q k ; ковариационную матрицу шума измерений R k ; при наличии управляющих воздействий - матрицу их коэффициентов B k .

Иллюстрация работы фильтра. Квадратами помечены матрицы . Эллипсами помечены матрицы многомерных нормальных распределений (включая средние значения и ковариации). Не обведёнными оставлены векторы . В простейшем случае некоторые матрицы не изменяются во времени (не зависят от индекса k ), но всё равно используются фильтром в каждый такт работы.

Модель системы/процесса подразумевает, что истинное состояние в момент k получается из истинного состояния в момент k −1 в соответствии с уравнением:

,
  • F k - матрица эволюции процесса/системы, которая воздействует на вектор x k −1 (вектор состояния в момент k −1 );
  • B k - матрица управления, которая прикладывается к вектору управляющих воздействий u k ;
  • w k - нормальный случайный процесс с нулевым математическим ожиданием и ковариационной матрицей Q k , который описывает случайный характер эволюции системы/процесса:

В момент k производится наблюдение (измерение) z k истинного вектора состояния x k , которые связаны между собой уравнением:

где H k - матрица измерений, связывающая истинный вектор состояния и вектор произведенных измерений, v k - белый гауссовский шум измерений с нулевым математическим ожиданием и ковариационной матрицей R k :

Начальное состояние и векторы случайных процессов на каждом такте {x 0 , w 1 , …, w k , v 1 , …, v k } считаются независимыми .

Многие реальные динамические системы нельзя точно описать данной моделью. На практике неучтённая в модели динамика может серьёзно испортить рабочие характеристики фильтра, особенно при работе с неизвестным стохастическим сигналом на входе. Более того, неучтённая в модели динамика может сделать фильтр неустойчивым . С другой стороны, независимый белый шум в качестве сигнала не будет приводить к расхождению алгоритма. Задача отделения шумов измерений от неучтенной в модели динамики сложна, решается она с помощью теории робастных систем управления .

Фильтр Калмана

Фильтр Калмана является разновидностью рекурсивных фильтров . Для вычисления оценки состояния системы на текущий такт работы ему необходима оценка состояния (в виде оценки состояния системы и оценки погрешности определения этого состояния) на предыдущем такте работы и измерения на текущем такте. Данное свойство отличает его от пакетных фильтров, требующих в текущий такт работы знание истории измерений и/или оценок. Далее под записью будем понимать оценку истинного вектора в момент n с учетом измерений с момента начала работы и по момент m включительно.

Состояние фильтра задается двумя переменными:

Итерации фильтра Калмана делятся на две фазы: экстраполяция и коррекция. Во время экстраполяции фильтр получает предварительную оценку состояния системы (в русскоязычной литературе часто обозначается , где означает «экстраполяция», а k - номер такта, на котором она получена) на текущий шаг по итоговой оценке состояния с предыдущего шага (либо предварительную оценку на следующий такт по итоговой оценке текущего шага, в зависимости от интерпретации). Эту предварительную оценку также называют априорной оценкой состояния, так как для её получения не используются наблюдения соответствующего шага. В фазе коррекции априорная экстраполяция дополняется соответствующими текущими измерениями для коррекции оценки. Скорректированная оценка также называется апостериорной оценкой состояния, либо просто оценкой вектора состояния . Обычно эти две фазы чередуются: экстраполяция производится по результатам коррекции до следующего наблюдения, а коррекция производится совместно с доступными на следующем шаге наблюдениями, и т. д. Однако возможно и другое развитие событий, если по некоторой причине наблюдение оказалось недоступным, то этап коррекции может быть пропущен и выполнена экстраполяция по нескорректированной оценке (априорной экстраполяции). Аналогично, если независимые измерения доступны только в отдельные такты работы, всё равно возможны коррекции (обычно с использованием другой матрицы наблюдений H k ).

Этап экстраполяции

Этап коррекции

Отклонение полученного на шаге k наблюдения от наблюдения, ожидаемого при произведенной экстраполяции:
Ковариационная матрица для вектора отклонения (вектора ошибки):
Оптимальная по Калману матрица коэффициентов усиления, формирующаяся на основании ковариационных матриц имеющейся экстраполяции вектора состояния и полученных измерений (посредством ковариационной матрицы вектора отклонения):
Коррекция ранее полученной экстраполяции вектора состояния - получение оценки вектора состояния системы:
Расчет ковариационной матрицы оценки вектора состояния системы:

Выражение для ковариационной матрицы оценки вектора состояния системы справедливо только при использовании приведенного оптимального вектора коэффициентов. В общем случае это выражение имеет более сложный вид.

Инварианты

Если модель абсолютно точна и абсолютно точно заданы начальные условия и , то следующие величины сохраняются после любого количества итераций работы фильтра - являются инвариантами:

Математические ожидания оценок и экстраполяций вектора состояния системы, матрицы ошибок являются нуль-векторами:

где - математическое ожидание .

Расчетные матрицы ковариаций экстраполяций, оценок состояния системы и вектора ошибок совпадают с истинными матрицами ковариаций:

Пример построения фильтра

Представим себе вагонетку , стоящую на бесконечно длинных рельсах при отсутствии трения . Изначально она покоится в позиции 0, но под действием случайных факторов на неё действует случайное ускорение . Мы измеряем положение вагонетки каждые ∆t секунд, но измерения неточны. Мы хотим получать оценки положения вагонетки и её скорости. Применим к этой задаче фильтр Калмана, определим все необходимые матрицы.

В данной задаче матрицы F , H , R и Q не зависят от времени, опустим их индексы. Кроме того, мы не управляем вагонеткой, поэтому матрица управления B отсутствует.

Координата и скорость вагонетки описывается вектором в линейном пространстве состояний

где - скорость (первая производная координаты по времени).

Будем считать, что между (k −1 )-ым и k -ым тактами вагонетка движется с постоянным ускорением a k , распределенным по нормальному закону с нулевым математическим ожиданием и среднеквадратическим отклонением σ a . В соответствии с механикой Ньютона можно записать

.

Ковариационная матрица случайных воздействий

(σ a - скаляр).

На каждом такте работы производится измерение положения вагонетки. Предположим, что погрешность измерений v k имеет нормальное распределение с нулевым математическим ожиданием и среднеквадратическим отклонением σ z . Тогда

и ковариационная матрица шума наблюдений имеет вид

.

Начальное положение вагонетки известно точно

, .

Если же положение и скорость вагонетки известна лишь приблизительно, то можно инициализировать матрицу дисперсий достаточно большим числом L , чтобы при этом число превосходило дисперсию измерений координаты

, .

В этом случае на первых тактах работы фильтр будет с бо́льшим весом использовать результаты измерений, чем имеющуюся априорную информацию.

Вывод формул

Ковариационная матрица оценки вектора состояния

По определению ковариационной матрицы P k |k

подставляем выражение для оценки вектора состояния

и расписываем выражение для вектора ошибок

и вектора измерений

выносим вектор погрешности измерений v k

так как вектор погрешности измерений v k не коррелирован с другими аргументами, получаем выражение

в соответствии со свойствами ковариации векторов данное выражение преобразуется к виду

заменяя выражение для ковариационной матрицы экстраполяции вектора состояния на P k |k −1 и определение ковариационной матрицы шумов наблюдений на R k , получаем

Полученное выражение справедливо для произвольной матрицы коэффициентов, но если в качестве неё выступает матрица коэффициентов, оптимальная по Калману, то данное выражение для ковариационной матрицы можно упростить.

Оптимальная матрица коэффициентов усиления

Фильтр Калмана минимизирует сумму квадратов математических ожиданий ошибок оценки вектора состояния.

Вектор ошибки оценки вектора состояния

Стоит задача минимизировать сумму математических ожиданий квадратов компонент данного вектора

,

что эквивалентно минимизации следа ковариационной матрицы оценки вектора состояния P k |k . Подставим в выражение для ковариационной матрицы оценки вектора состояния имеющиеся выражения и дополним до полного квадрата:

Заметим что, последнее слагаемое является ковариационной матрицей некоторой случайной величины, поэтому его след неотрицателен. Минимум следа достигнется при обнулении последнего слагаемого:

Утверждается, что данная матрица является искомой и при использовании в качестве матрицы коэффициентов в фильтре Калмана минимизирует сумму средних квадратов ошибок оценки вектора состояния.

Ковариационная матрица оценки вектора состояния при использовании оптимальной матрицы коэффициентов

Выражение для ковариационной матрицы оценки вектора состояния P k |k при использовании оптимальной матрицы коэффициентов примет вид:

Данная формула вычислительно проще и поэтому практически всегда используется на практике, но она корректна только при использовании оптимальной матрицы коэффициентов. Если ввиду малой вычислительной точности возникает проблема с вычислительной устойчивостью, либо специально используется матрица коэффициентов, отличная от оптимальной, следует использовать общую формулу для ковариационной матрицы оценки вектора состояния.

Критика фильтра Калмана

На настоящий момент основная критика фильтра Калмана ведётся по следующим направлениям

Эти фильтры в литературе также называются фильтрами Калмана - Бьюси . В отличие от задачи Винера, для задания случайного входного полезного сигнала (задающего воздействия) здесь используется формирующий фильтр (рис. 4.2), представляющий собой некоторую динамическую систему, описываемую линейными дифференциальными уравнениями в общем случае с переменными коэффициентами и возбуждаемую многомерным белым шумом и с гауссовским распределением.

Рис. 4.2. Оптимальный фильтр Калмана.

На рис. 4.2 это показано для непрерывного случая.

Формирующий фильтр, возбуждаемый белым шумом, представляет собой модель входного процесса системы управления (систему-аналог). Состояние этой модели в каждый момент времени определяется совокупностью переменных состояния число которых обусловливается видом входного сигнала, т. е. его корреляционной функцией или спектральной плотностью. Определение состояния системы-аналога производится измерительным устройством которое на своем выходе дает совокупность входных сигналов системы управления т. е. многомерный входной сигнал, искаженный аддитивной помехой представляющей собой многомерный белый шум с гауссовым распределением. В дискретном варианте задачи Р. Калмана входные и выходные величины формирующего фильтра рассматриваются в дискретные моменты времени где - целое число, период дискретности. В этом случае

модель входного сигнала описывается системой линейных разностных уравнений.

Требуется построить динамическую систему - фильтр Калмана которая дает наилучшую оценку многомерной величины в виде совокупности выходных величин фильтра Далее из этой совокупности могут формироваться линейным образом выходные величины систем управления .

К оценке предъявляется требование несмещенности, т. е. ее математическое ожидание

Выражение (4.9) записывается также в другом виде. При заданных измерениях величины от момента до момента I оценка в некоторый момент времени должна обладать свойством

Кроме того, накладывается условие минимума дисперсии ошибки оценки, которое записывается в виде

где Г - любая положительно-определенная матрица. Матричное произведение представляет собой квадратичную форму с весовой матрицей Г. Выражение (4.11) означает, что оценка величины удовлетворяет условию минимума дисперсии ошибки каждой из составляющих совокупности величин

При использовании фильтров Калмана возможны следующие случаи.

1. Для непрерывных систем решается задача оптимальной фильтрации, т. е. задача выделения полезного сигнала из аддитивной смеси полезного сигнала и помехи. В этом случае фильтр Калмана дает оценку совокупности переменных начиная с некоторого момента времени в виде первоначального грубого приближения которое тем точнее, чем больше имеется априорных сведений о совокупности Далее с течением времени эта оценка улучшается и постоянно приближается к теоретически достижимому

значению, которое уже не зависит от априорных сведений о значении а определяется свойствами формирующего фильтра и помехами измерительного устройства.

В установившемся состоянии фильтр Калмана совпадает с фильтром Винера и дает то же значение оценки.

2. В дискретных системах возможна постановка задачи оптимального определения оценки для времени по данным измерений входного сигнала в временных точках от до , т. е. задачи оптимального предсказания на один (или несколько) такт вперед. Эта задача имеет смысл и в случае равенства нулю помех измерительного устройства.

3. В дискретных системах возможна также постановка задачи оптимальной фильтрации, т. е. задачи определения оценки по данным предыдущих измерений, включая и момент времени Эта задача может быть решена в случае наличия конфликтной ситуации, даваемой помехами измерений.

Применительно к цифровым системам автоматического управления и регулирования необходимо отметить следующее. В цифровой системе управления, как правило, измерение входного сигнала в момент времени не дает возможности откорректировать ее выходную величину в этот же момент времени, так как реакция непрерывной части системы (ее приведенная весовая функция) на входной сигнал в этот же момент времени равна нулю и она не может быть не равной нулю. Поэтому выходная величина системы в момент времени может быть определена только в результате прогнозирования по результатам предыдущих измерений.

Указанная выше вторая задача, решаемая фильтрами Калмана, имеет очевидное практическое значение для цифровых автоматических систем. Однако следует заметить, что во многих случаях период дискретности цифровой системы управления приходится выбирать по различным соображениям (устойчивости, возможности потери входной информации и др.) сравнительно малым (тысячные и сотые доли секунды). Сама же непрерывная часть системы управления может содержать экстраполяторы, хорошо прогнозирующие требуемый выходной процесс. Такими экстраполяторами могут быть интеграторы различного вида и сами объекты управления. Поэтому задача оптимального прогнозирования на

такт вперед в некоторых случаях теряет свой смысл и может привести к неправильным решениям конкретной технической задачи. Однако прогнозирование на несколько тактов вперед обычно не теряет своего смысла и при малых периодах дискретности. Но в этом случае оно практически совпадает со случаем прогнозирования в непрерывных системах.

Третья задача, решаемая фильтром Калмана, имеет большие возможности, так как предполагает нахождение оптимального решения задачи построения системы управления при одновременном действии полезного сигнала и помехи. Ограничения в использовании фильтров Калмана для построения цифровых систем управления определяются следующими обстоятельствами.

1. Построение фильтра Калмана предполагает полные априорные сведения о структуре формирующего фильтра, т. е. полные априорные сведения о статистических свойствах входного сигнала и полные сведения о действующих помехах. Если эти сведения малодостоверны, то оптимизация теряет здесь смысл либо следует идти по пути значительного усложнения системы за счет использования принципов адаптации.

2. Использование фильтров Калмана предполагает отсутствие ограничений на структуру оптимальной системы. Поэтому переход от требуемой теоретической структуры к реальной структуре системы управления, содержащей те или иные заданные элементы, может значительно ухудшить результаты. Эти ограничения обычно не сказываются в тех случаях, когда вся система выработки оценки многомерной величины строится, например, на ЦВМ и не включает в себя заданных заранее элементов системы управления.

3. При построении фильтра Калмана предполагается, как это будет показано ниже, что для обработки может быть использовано предыдущих значений входных сигналов, где - порядок разностного уравнения, описывающего формирующий фильтр (рис. 4.2). В реальных условиях работы цифровой системы управления можно использовать для обработки большее число предыдущих входных сигналов, что позволяет существенно снизить влияние помех измерения входных сигналов и получить результаты, лучшие по сравнению с фильтром Калмана.

Использование реальных фильтров. В некоторых случаях построения систем управления входной сигнал задан своими

характеристиками, но помехи отсутствуют или они сравнительно малы, в результате чего построение оптимальной системы в смысле Винера или Калмана теряет смысл. Это не означает, однако, что реальная система управления может быть построена со сколь угодно малой дисперсией ошибки. В идеализированном случае винеровского или калмановского фильтра на проектируемую систему не накладывается никаких предварительных ограничений. Увеличение общего коэффициента с целью повышения точности воспроизведения полезного сигнала здесь ограничивается возрастанием ошибки за счет увеличения пропускания помех, действующих на входе. Это и создает конфликтную ситуацию.

В реальных системах помехи во входном сигнале могут и отсутствовать, но увеличение общего коэффициента усиления в этом случае ограничивается приближением к колебательной границе устойчивости, которое вызывает рост ошибки за счет увеличения колебательности системы. Максимальные достижимые коэффициенты усиления в этом случае будут определяться наличием в реальной системе некоторой совокупности звеньев с малыми постоянными времени, влияние которых уже не может быть скомпенсировано.

В этом смысле налнчие совокупности звеньев, характеризуемое суммой их постоянных времени или результирующим временным запаздыванием, эквивалентно по конечному результату действию на входе некоторой помехи. И в том и в другом случаях максимальная точность системы оказывается ограниченной, а дисперсия ошибки не может быть сделана меньше некоторого предельного значения.

Оценка минимальной суммы постоянных времени или суммарного временного запаздывания в проектируемой системе может быть сделана достаточно опытным конструктором при выборе ее элементов. При этом, конечно, конструктор может влиять на эту сумму в сторону ее уменьшения. Однако это может быть связано с переходом к более совершенным и дорогим элементам. Поэтому эта сумма может быть всегда оценена для данной конкретной ситуации и она зависит от уровня развития используемой техники.

Учет влияния малых постоянных времени накладывает на проектируемую систему некоторые ограничения, которых обычно нет при решении задачи оптимального синтеза. Эти ограничения в принципе могут быть учтены в виде

некоторого эквивалентного шума. Поясним это простейшим примером. Пусть полезный сигнал на входе имеет спектральную плотность для производной в виде

где - дисперсия первой производной, а - некоторая постоянная времени, и спектральную плотность помехи на входе соответствующую белому шуму. Пусть отыскивается оптимальное значение общего коэффициента усиления системы, имеющей передаточную функцию в разомкнутом состоянии вида

При отсутствии взаимной корреляции между полезным сигналом и помехой дисперсия ошибки

Дифференцирование (4.14) по коэффициенту усиления и приравнивание производной нулю дает условие минимума дисперсии ошибки

Подстановка (4.15) в (4.14) дает минимальное значение дисперсии ошибки, соответствующее оптимальному значению общего коэффициента усиления:

Пусть теперь решается задача оптимального выбора коэффициента усиления при том же полезном входном сигнале и при отсутствии помехи, но при условии, что передаточная функция разомкнутой системы может иметь вид

где - суммарное временное запаздывание, которое не может быть устранено в системе управления при выбранных

элементах. Такое суммарное временное запаздывание может быть введено, например, при наличии нескольких апериодических звеньев с малыми постоянными времени. Дисперсия ошибки в этом случае

Интеграл (4.18) не берется элементарным образом. Приближенное его вычисление дает

Минимум дисперсии ошибки будет при выполнении условия

Подстановка этого значения коэффициента усиления в (4.19) дает минимальную дисперсию ошибки

Приравнивание (4.16) и (4.21) позволяет определить уровень эквивалентного белого шума

который по своему действию приводит к такому же эффекту, как и влияние неустраняемого временного запаздывания.

Возможны, конечно, более сложные ситуации, когда, кроме наличия в системе некоторых малых параметров, на входе системы действуют реальные помехи. И в этом случае в принципе можно найти эквивалентную помеху, учитывающую наличие двух этих факторов. Однако подобный путь приводит к значительному усложнению расчетов. Поэтому эквивалентность малых постоянных времени по своему конечному действию входному шуму в системе управления имеет лишь некоторый познавательный интерес. Сама же задача синтеза системы управления в этом случае может более просто решаться на основе разработанных в настоящее время инженерных методов, предполагающих

использование типовых передаточных функций, типовых переходных характеристик, типовых логарифмических частотных характеристик и т. п.

Таким образом, при построении реальных фильтров, представляющих собой системы автоматического управления, работающие как при наличии помех на входе, так и при их отсутствии, структура их должна соответствовать изображенной на рис. 4.3. На вход системы поступает аддитивная смесь полезного сигнала и и помехи либо только полезный сигнал. Полезный сигнал может быть регулярной функцией времени, стационарным случайным процессом или нестационарным процессом. Помехи, как правило, представляются в виде случайного стационарного процесса с нулевым средним значением. Кроме того, на систему может действовать Еозмущение или несколько возмущений, приложенных к различным точкам объекта.

Рис. 4.3. Реальный одномерный фильтр.

Линейный оператор формирует из процесса и задающее воздействие которое и должно воспроизводиться на выходе системы управления с передаточной функцией Система управления должна состоять из неизменяемой части в качестве которой может рассматриваться, например, совокупность некоторых звеньев с малыми постоянными времени или звено временного запаздывания, и изменяемой части по отношению к которой имеется свобода выбора в части ее передаточной функции.

Таким образом, здесь приходится иметь дело с полужесткой структурой системы управления. Заметим, что сформулированное выше понятие неизменяемой части системы несколько отличается от обычно используемого в литературе, когда под неизменяемой частью просто понимается объект управления с его передаточной функцией. Дело в том, что применение различных корректирующих средств (последовательного типа, параллельного типа, обратных связей) позволяет активно влиять на передаточнуюфункциюобъекта, меняя ее нужным образом. Однако это может делаться только

до некоторого предела, который характеризуется минимальными значениями «остаточных» постоянных времени или временных запаздываний, которыми располагает конструктор. Поэтому неизменяемая часть системы определяется здесь в этом смысле.

При построении реальных фильтров возможны следующие случаи.

1. При условии задания характеристик полезного сигнала, помехи, возмущений и неизменяемой части системы требуется найти передаточную функцию системы управления при которой обеспечивается выполнение требований по точности, определяемых по среднеквадратичной ошибке, максимальной ошибке, наиболее вероятной ошибке или иным образом, и выполняются другие требования к системе, сформулированные в § 4.1.

Задача может облегчаться, если отсутствуют помехи на входе, либо отсутствуют возмущения, приложенные к объекту управления, либо отсутствует и то и другое. Однако она не становится при этом тривиальной.

2. При условии задания характеристик полезного сигнала, помехи, возмущений и неизменяемой части системы требуется определить передаточную функцию системы управления, при которой выполняется условие минимизации дисперсии ошибки что соответствует построению оптимальной системы.

Следует обратить внимание на то, что построение реальных фильтров представляет значительно более трудную задачу, чем построение, например, фильтра Винера. В этом можно убедиться, сравнив рис. 4.1 и рис. 4.3. Кроме того, выполнение первой сформулированной выше задачи часто оказывается более сложным, чем построение оптимальной системы. Дело заключается в том, что оптимальная система для имеющихся исходных данных всегда может быть построена и трудности нахождения оптимальной передаточной функции относятся к чисто математическим. Использование в настоящее время ЭВМ в значительной степени снимает эти трудности. Поэтому задача оптимизации системы управления, например, по минимуму дисперсии ошибки в некоторых случаях приобретает сейчас тривиальный характер.

В то же время задача построения системы с требуемой точностью при имеющихся исходных данных может и не

иметь решения. Если же решить эту задачу все же необходимо, то возможно, что придется решать попутно целый комплекс сложнейших проблем, связанных с переходом к более совершенным элементам системы управления, получением дополнительной информации о входных сигналах системы, например, по первой, второй и более высоким производным задающего воздействия, переходом к более совершенным средствам переработки информации и т. п.

Поэтому первая сформулированная выше задача не теряет своей актуальности, несмотря на развитие теории оптимальных систем, и, более того, она оказывает сейчас наиболее активное влияние на развитие техники автоматического управления.

Рис. 4.4. Реальный многомерный фильтр.

При переходе к многомерным системам управления задача построения реальных фильтров сохраняет свое значение. Структурная схема для этого случая изображена на рис. 4.4. На схеме показаны матрицы-столбцы полезных входных воздействий и помех задающих воздействий возмущающих воздействий управляемых величин и ошибки , а также матрицы передаточных функций

Все приведенные выше соображения по построению непрерывных систем управления на основе использования реальных фильтров практически сохраняют свое значение и для цифровых систем управления с учетом их особенностей - квантования по времени и квантования по уровню.

  • Tutorial

В интернете, в том числе и на хабре, можно найти много информации про фильтр Калмана. Но тяжело найти легкоперевариваемый вывод самих формул. Без вывода вся эта наука воспринимается как некое шаманство, формулы выглядят как безликий набор символов, а главное, многие простые утверждения, лежащие на поверхности теории, оказываются за пределами понимания. Целью этой статьи будет рассказать об этом фильтре на как можно более доступном языке.
Фильтр Калмана - это мощнейший инструмент фильтрации данных. Основной его принцип состоит в том, что при фильтрации используется информация о физике самого явления. Скажем, если вы фильтруете данные со спидометра машины, то инерционность машины дает вам право воспринимать слишком быстрые скачки скорости как ошибку измерения. Фильтр Калмана интересен тем, что в каком-то смысле, это самый лучший фильтр. Подробнее обсудим ниже, что конкретно означают слова «самый лучший». В конце статьи я покажу, что во многих случаях формулы можно до такой степени упростить, что от них почти ничего и не останется.

Ликбез

Перед знакомством с фильтром Калмана я предлагаю вспомнить некоторые простые определения и факты из теории вероятностей.

Случайная величина

Когда говорят, что дана случайная величина , то имеют ввиду, что эта величина может принимать случайные значения. Разные значения она принимает с разной вероятностью. Когда вы кидаете, скажем, кость, то выпадет дискретное множество значений: . Когда речь идет, например, о скорости блуждающей частички, то, очевидно, приходится иметь дело с непрерывным множеством значений. «Выпавшие» значения случайной величины мы будем обозначать через но иногда, будем использовать ту же букву, которой обозначаем случайную величину:
В случае с непрерывным множеством значений случайную величину характеризует плотность вероятности , которая нам диктует, что вероятность того, что случайная величина «выпадет» в маленькой окрестности точки длиной равна . Как мы видим из картинки, эта вероятность равна площади заштрихованного прямоугольника под графиком:

Довольно часто в жизни случайные величины распределены по Гауссу, когда плотность вероятности равна .

Мы видим, что функция имеет форму колокола с центром в точке и с характерной шириной порядка .
Раз мы заговорили о Гауссовом распределении, то грешно будет не упомянуть, откуда оно возникло. Также как и числа и прочно обосновались в математике и встречаются в самых неожиданных местах, так и распределение Гаусса пустило глубокие корни в теорию вероятностей. Одно замечательное утверждение, частично объясняющее Гауссово всеприсутствие, состоит в следующем:
Пусть есть случайная величина имеющая произвольное распределение (на самом деле существуют некие ограничения на эту произвольность, но они совершенно не жесткие). Проведем экспериментов и посчитаем сумму «выпавших» значений случайной величины. Сделаем много таких экспериментов. Понятно, что каждый раз мы будем получать разное значение суммы. Иными словами, эта сумма является сама по себе случайной величиной со своим каким-то определенным законом распределения. Оказывается, что при достаточно больших закон распределения этой суммы стремится к распределению Гаусса (к слову, характерная ширина «колокола» растет как ). Более подробно читаем в википедии: центральная предельная теорема . В жизни очень часто встречаются величины, которые складываются из большого количества одинаково распределенных независимых случайных величин, поэтому и распределены по Гауссу.

Среднее значение

Среднее значение случайной величины - это то, что мы получим в пределе, если проведем очень много экспериментов, и посчитаем среднее арифметическое выпавших значений. Среднее значение обозначают по-разному: математики любят обозначать через (математическое ожидание или mean value), а заграничные математики через (expectation). Физики же через или . Мы будем обозначать на заграничный лад: .
Например, для Гауссова распределения , среднее значение равно .

Дисперсия

В случае с распределением Гаусса мы совершенно четко видим, что случайная величина предпочитает выпадать в некоторой окрестности своего среднего значения .

Еще раз полюбоваться распределением Гаусса



Как видно из графика, характерный разброс значений порядка . Как же оценить этот разброс значений для произвольной случайной величины, если мы знаем ее распределение. Можно нарисовать график ее плотности вероятности и оценить характерную ширину на глаз. Но мы предпочитаем идти алгебраическим путем. Можно найти среднюю длину (модуль) отклонения от среднего значения: . Эта величина будет хорошей оценкой характерного разброса значений . Но мы с вами очень хорошо знаем, что использовать модули в формулах - одна головная боль, поэтому эту формулу редко используют для оценок характерного разброса.
Более простой способ (простой в смысле расчетов) - найти . Эту величину называют дисперсией, и часто обозначают как . Корень из дисперсии - хорошая оценка разброса случайной величины. Корень из дисперсии еще называют среднеквадратичным отклонением.
Например, для распределение Гаусса можно посчитать, что определенная выше дисперсия в точности равна , а значит среднеквадратичное отклонение равно , что очень хорошо согласуется с нашей геометрической интуицией.
На самом деле тут скрыто маленькое мошенничество. Дело в том, что в определении распределения Гаусса под экспонентой стоит выражение . Эта двойка в знаменателе стоит именно для того, чтобы среднеквадратичное отклонение равнялось бы коэффициенту . То есть сама формула распределения Гаусса написана в виде, специально заточенном для того, что мы будем считать ее среднеквадратичное отклонение.

Независимые случайные величины

Случайные величины бывают зависимыми и нет. Представьте, что вы бросаете иголку на плоскость и записываете координаты ее обоих концов. Эти две координаты зависимы, они связаны условием, что расстояние между ними всегда равно длине иголки, хотя и являются случайными величинами.
Случайные величины независимы, если результат выпадения первой из них совершенно не зависит от результата выпадения второй из них. Если случайные величины и независимы, то среднее значение их произведения равно произведению их средних значений:

Доказательство

Например, иметь голубые глаза и окончить школу с золотой медалью - независимые случайные величины. Если голубоглазых, скажем а золотых медалистов , то голубоглазых медалистов Этот пример подсказывает нам, что если случайные величины и заданы своими плотностями вероятности и , то независимость этих величин выражается в том, что плотность вероятности (первая величина выпала , а вторая ) находится по формуле:

Из этого сразу же следует, что:

Как вы видите, доказательство проведено для случайных величин, которые имеют непрерывный спектр значений и заданы своей плотностью вероятности. В других случаях идея доказательтсва аналогичная.

Фильтр Калмана

Постановка задачи

Обозначим за величину, которую мы будем измерять, а потом фильтровать. Это может быть координата, скорость, ускорение, влажность, степень вони, температура, давление, и т.д.
Начнем с простого примера, который и приведет нас к формулировке общей задачи. Представьте себе, что у нас есть радиоуправляемая машинка, которая может ехать только вперед и назад. Мы, зная вес машины, форму, покрытие дороги и т.д., расcчитали как контролирующий джойстик влияет на скорость движения .

Тогда координата машины будет изменяться по закону:

В реальной же жизни мы не можем учесть в наших расчетах маленькие возмущения, действующие на машину (ветер, ухабы, камушки на дороге), поэтому настоящая скорость машины будет отличаться от расчетной. К правой части написанного уравнения добавится случайная величина :

У нас есть установленный на машинке GPS сенсор, который пытается мерить истинную координату машинки, и, конечно же, не может ее померить точно, а мерит с ошибкой , которая является тоже случайной величиной. В итоге с сенсора мы получаем ошибочные данные:

Задача состоит в том, что, зная неверные показания сенсора , найти хорошее приближение для истинной координаты машины . Это хорошее приближение мы будем обозначать как .
В формулировке же общей задачи, за координату может отвечать все что угодно (температура, влажность...), а член, отвечающий за контроль системы извне мы обозначим за (в примере c машиной ). Уравнения для координаты и показания сенсора будут выглядеть так:

(1)

Давайте подробно обсудим, что нам известно:

Нелишним будет отметить, что задача фильтрации - это не задача сглаживания. Мы не стремимся сглаживать данные с сенсора, мы стремимся получить наиболее близкое значение к реальной координате .

Алгоритм Калмана

Мы будем рассуждать по индукции. Представьте себе, что на -ом шаге мы уже нашли отфильтрованное значение с сенсора , которое хорошо приближает истинную координату системы . Не забываем, что мы знаем уравнение, контролирующее изменение нам неизвестной координаты:

Поэтому, еще не получая значение с сенсора, мы можем предположить, что на шаге система эволюционирует согласно этому закону и сенсор покажет что-то близкое к . К сожалению, пока мы не можем сказать ничего более точного. С другой стороны, на шаге у нас на руках будет неточное показание сенсора .
Идея Калмана состоит в том, что чтобы получить наилучшее приближение к истинной координате , мы должны выбрать золотую середину между показанием неточного сенсора и - нашим предсказанием того, что мы ожидали от него увидеть. Показанию сенсора мы дадим вес а на предсказанное значение останется вес :

Коэффициент называют коэффициентом Калмана. Он зависит от шага итерации, поэтому правильнее было бы писать , но пока, чтобы не загромождать формулы расчетах, мы будем опускать его индекс.
Мы должны выбрать коэффициент Калмана таким, чтобы получившееся оптимальное значение координаты было бы наиболее близко к истинной координате . К примеру, если мы знаем, что наш сенсор очень точный, то мы будем больше доверять его показанию и дадим значению больше весу ( близко единице). Eсли же сенсор, наоборот, совсем не точный, тогда больше будем ориентироваться на теоретически предсказанное значение .
В общем случае, чтобы найти точное значение коэффициента Калмана , нужно просто минимизировать ошибку:

Используем уравнения (1) (те которые на голубом фоне в рамочке), чтобы переписать выражение для ошибки:

Доказательство


Теперь самое время обсудить, что означает выражение минимизировать ошибку? Ведь ошибка, как мы видим, сама по себе является случайной величиной и каждый раз принимает разные значения. На самом деле не существует однозначного подхода к определению того, что означает, что ошибка минимальна. Точно как и в случае с дисперсией случайной величины, когда мы пытались оценить характерную ширину ее разброса, так и тут мы выберем самый простой для расчетов критерий. Мы будем минимизировать среднее значение от квадрата ошибки:

Распишем последнее выражение:

ключ к доказательству

Из того что все случайные величины, входящие в выражение для , независимы и средние значения ошибок сенсора и модели равны нулю: , следует, что все «перекрестные» члены равны нулю:
.
Плюс к этому, формулы для дисперсий выглядит намного проще: и (так как )

Это выражение принимает минимальное значение, когда (приравниваем производную к нулю)

Здесь мы уже пишем выражение для коэффициента Калмана с индексом шага , тем самым мы подчеркиваем, что он зависит от шага итерации.
Подставляем в выражение для среднеквадратичной ошибки минимизирующее ее значение коэффициента Калмана . Получаем:

Наша задача решена. Мы получили итерационную формулу, для вычисления коэффициента Калмана.

Все формулы в одном месте


Пример

На рекламной картинке в начале статьи отфильтрованы данные с вымышленного GPS сенсора, установленного на вымышленной машине, которая едет равноускоренно c известным вымышленным ускорением .

Еще раз посмотреть на результат фильтрования


Код на матлабе

clear all; N=100 % number of samples a=0.1 % acceleration sigmaPsi=1 sigmaEta=50; k=1:N x=k x(1)=0 z(1)=x(1)+normrnd(0,sigmaEta); for t=1:(N-1) x(t+1)=x(t)+a*t+normrnd(0,sigmaPsi); z(t+1)=x(t+1)+normrnd(0,sigmaEta); end; %kalman filter xOpt(1)=z(1); eOpt(1)=sigmaEta; % eOpt(t) is a square root of the error dispersion (variance). It"s not a random variable. for t=1:(N-1) eOpt(t+1)=sqrt((sigmaEta^2)*(eOpt(t)^2+sigmaPsi^2)/(sigmaEta^2+eOpt(t)^2+sigmaPsi^2)) K(t+1)=(eOpt(t+1))^2/sigmaEta^2 xOpt(t+1)=(xOpt(t)+a*t)*(1-K(t+1))+K(t+1)*z(t+1) end; plot(k,xOpt,k,z,k,x)

Анализ

Если проследить, как с шагом итерации изменяется коэффициент Калмана , то можно показать, что он всегда стабилизируется к определенному значению . К примеру, когда среднеквадратичные ошибки сенсора и модели относятся друг к другу как десять к одному, то график коэффициента Калмана в зависимости от шага итерации выглядит так:

В следующем примере мы обсудим как это поможет существенно облегчить нашу жизнь.

Второй пример

На практике очень часто бывает, что нам вообще ничего не известно о физической модели того, что мы фильтруем. К примеру, вы захотели отфильтровать показания с вашего любимого акселерометра. Вам же заранее неизвестно по какому закону вы намереваетесь крутить акселерометр. Максимум информации, которую вы можете выцепить - это дисперсия ошибки сенсора . В такой непростой ситуации все незнание модели движения можно загнать в случайную величину :

Но, откровенно говоря, такая система уже совершенно не удовлетворяет тем условиям, которые мы налагали на случайную величину , ведь теперь туда запрятана вся неизвестная нам физика движения, и поэтому мы не можем говорить, что в разные моменты времени ошибки модели независимы друг от друга и что их средние значения равны нулю. В этом случае, по большому счету, теория фильтра Калмана не применима. Но, мы не будем обращать внимания на этот факт, а, тупо применим все махину формул, подобрав коэффициенты и на глаз, так чтобы отфильтрованные данные миленько смотрелись.
Но можно пойти по другому, намного более простому пути. Как мы видели выше, коэффициент Калмана с увеличением номера шага всегда стабилизируется к значению . Поэтому вместо того, чтобы подбирать коэффициенты и и находить по сложным формулам коэффициент Калмана , мы можем считать этот коэффициент всегда константой, и подбирать только эту константу. Это допущение почти ничего не испортит. Во-первых, мы уже и так незаконно пользуемся теорией Калмана, а во-вторых коэффициент Калмана быстро стабилизируется к константе. В итоге все очень упростится. Нам вообще никакие формулы из теории Калмана не нужны, нам просто нужно подобрать приемлемое значение и вставить в итерационную формулу:

На следующем графике показаны отфильтрованные двумя разными способами данные с вымышленного сенсора. При условии того, что мы ничего не знаем о физике явления. Первый способ - честный, со всеми формулами из теории Калмана. А второй - упрощенный, без формул.

Как мы видим, методы почти ничем не отличаются. Маленькое отличие наблюдается только вначале, когда коэффициент Калмана еще не стабилизировался.

Обсуждение

Как мы увидели, основная идея фильтра Калмана состоит в том, что надо найти коэффициент такой, чтобы отфильтрованное значение

В среднем меньше всего отличалось бы от реального значения координаты . Мы видим, что отфильтрованное значение есть линейная функция от показания сенсора и предыдущего отфильтрованного значения . А предыдущее отфильтрованное значение является, в свою очередь, линейной функцией от показания сенсора и предпредыдущего отфильтрованного значения . И так далее, пока цепь полностью не развернется. То есть отфильтрованное значение зависит от всех предыдущих показаний сенсора линейно:

Поэтому фильтр Калмана называют линейным фильтром.
Можно доказать, что из всех линейных фильтров Калмановский фильтр самый лучший. Самый лучший в том смысле, что средний квадрат ошибки фильтра минимален.

Многомерный случай

Всю теорию фильтра Калмана можно обобщить на многомерный случай. Формулы там выглядят чуть страшнее, но сама идея их вывода такая же, как и в одномерном случае. В этой прекрасной статье вы можете увидеть их:

Фильтр Калмана широко используется в инженерных и эконометрических приложениях: от радаров и систем технического зрения до оценок параметров макроэкономических моделей . Калмановская фильтрация является важной частью теории управления , играет большую роль в создании систем управления. Совместно с линейно-квадратичным регулятором фильтр Калмана позволяет решить задачу линейно-квадратичного гауссовского управления . Фильтр Калмана и линейно-квадратичный регулятор - возможное решение большинства фундаментальных задач в теории управления.

В большинстве приложений количество параметров, задающих состояние объекта, больше, чем количество наблюдаемых параметров, доступных для измерения. При помощи модели объекта по ряду доступных измерений фильтр Калмана позволяет получить оценку внутреннего состояния.

Фильтр Калмана предназначен для рекурсивного дооценивания вектора состояния априорно известной динамической системы, то есть для расчёта текущего состояния системы необходимо знать текущее измерение, а также предыдущее состояние самого фильтра. Таким образом, фильтр Калмана, как и множество других рекурсивных фильтров, реализован во временно́м, а не в частотном представлении.

Наглядный пример возможностей фильтра - получение точных, непрерывно обновляемых оценок положения и скорости некоторого объекта по результатам временно́го ряда неточных измерений его местоположения. Например, в радиолокации стоит задача сопровождения цели, определения её местоположения, скорости и ускорения, при этом результаты измерений поступают постепенно и сильно зашумлены. Фильтр Калмана использует вероятностную модель динамики цели, задающую тип вероятного движения объекта, что позволяет снизить воздействие шума и получить хорошие оценки положения объекта в настоящий, будущий или прошедший момент времени.

Введение

Фильтр Калмана оперирует понятием вектора состояния системы (набором параметров, описывающих состояние системы на некоторый момент времени) и его статистическим описанием. В общем случае динамика некоторого вектора состояния описывается плотностями вероятности распределения его компонент в каждый момент времени. При наличии определенной математической модели производимых наблюдений за системой, а также модели априорного изменения параметров вектора состояния (а именно - в качестве марковского формирующего процесса) можно записать уравнение для апостериорной плотности вероятности вектора состояния в любой момент времени. Данное дифференциальное уравнение носит название уравнение Стратоновича . Уравнение Стратоновича в общем виде не решается. Аналитическое решение удается получить только в случае ряда ограничений (предположений):

  • гауссовости априорных и апостериорных плотностей вероятности вектора состояния на любой момент времени (в том числе начальный)
  • гауссовости формирующих шумов
  • гауссовости шумов наблюдений
  • белости шумов наблюдений
  • линейности модели наблюдений
  • линейности модели формирующего процесса (который, напомним, должен являться марковским процессом)

Классический фильтр Калмана является уравнениями для расчета первого и второго момента апостериорной плотности вероятности (в смысле вектора математических ожиданий и матрицы дисперсий, в том числе взаимных) при данных ограничениях. Ввиду того, что для нормальной плотности вероятности математическое ожидание и дисперсионная матрица полностью задают плотность вероятности, можно сказать, что фильтр Калмана рассчитывает апостериорную плотность вероятности вектора состояния на каждый момент времени. А значит полностью описывает вектор состояния как случайную векторную величину.

Расчетные значения математических ожиданий при этом являются оптимальными оценками по критерию среднеквадратической ошибки, что и обуславливает его широкое применение.

Существует несколько разновидностей фильтра Калмана, отличающихся приближениями и ухищрениями, которые приходится применять для сведения фильтра к описанному виду и уменьшения его размерности:

  • Расширенный фильтр Калмана (EKF, Extended Kalman filter). Сведение нелинейных моделей наблюдений и формирующего процесса с помощью линеаризации посредством разложения в ряд Тейлора .
  • Unscented Kalman filter (UKF). Используется в задачах, в которых простая линеаризация приводит к уничтожению полезных связей между компонентами вектора состояния. В этом случае «линеаризация» основана на unscented -преобразовании.
  • Ensemble Kalman filter (EnKF). Используется для уменьшения размерности задачи.
  • Возможны варианты с нелинейным дополнительным фильтром, позволяющим привести негауссовские наблюдения к нормальным.
  • Возможны варианты с «обеляющим» фильтром, позволяющим работать с «цветными» шумами
  • и т. д.

Используемая модель динамической системы

Фильтры Калмана базируются на дискретизированных по времени линейных динамических системах . Такие системы моделируются цепями Маркова при помощи линейных операторов и слагаемых с нормальным распределением . Состояние системы описывается вектором конечной размерности - вектором состояния . В каждый такт времени линейный оператор действует на вектор состояния и переводит его в другой вектор состояния (детерминированное изменение состояния), добавляется некоторый вектор нормального шума (случайные факторы) и в общем случае вектор управления, моделирующий воздействие системы управления. Фильтр Калмана можно рассматривать как аналог скрытым моделям Маркова , с тем отличием, что переменные, описывающие состояние системы, являются элементами бесконечного множества действительных чисел (в отличие от конечного множества пространства состояний в скрытых моделях Маркова). Кроме того, скрытые модели Маркова могут использовать произвольные распределения для последующих значений вектора состояния, в отличие от фильтра Калмана, использующего модель нормально распределенного шума. Существует строгая взаимосвязь между уравнениями фильтра Калмана и скрытой модели Маркова. Обзор этих и других моделей дан Roweis и Chahramani (1999) .

При использовании фильтра Калмана для получения оценок вектора состояния процесса по серии зашумленных измерений необходимо представить модель данного процесса в соответствии со структурой фильтра - в виде матричного уравнения определенного типа. Для каждого такта k работы фильтра необходимо в соответствии с приведенным ниже описанием определить матрицы: эволюции процесса F k ; матрицу наблюдений H k ; ковариационную матрицу процесса Q k ; ковариационную матрицу шума измерений R k ; при наличии управляющих воздействий - матрицу их коэффициентов B k .

Многие реальные динамические системы нельзя точно описать данной моделью. На практике неучтённая в модели динамика может серьёзно испортить рабочие характеристики фильтра, особенно при работе с неизвестным стохастическим сигналом на входе. Более того, неучтённая в модели динамика может сделать фильтр неустойчивым . С другой стороны, независимый белый шум в качестве сигнала не будет приводить к расхождению алгоритма. Задача отделения шумов измерений от неучтенной в модели динамики сложна, решается она с помощью теории робастных систем управления .

Фильтр Калмана

Фильтр Калмана является разновидностью рекурсивных фильтров . Для вычисления оценки состояния системы на текущий такт работы ему необходима оценка состояния (в виде оценки состояния системы и оценки погрешности определения этого состояния) на предыдущем такте работы и измерения на текущем такте. Данное свойство отличает его от пакетных фильтров, требующих в текущий такт работы знание истории измерений и/или оценок. Далее под записью будем понимать оценку истинного вектора в момент n с учетом измерений с момента начала работы и по момент m включительно.

Состояние фильтра задается двумя переменными:

Итерации фильтра Калмана делятся на две фазы: экстраполяция и коррекция. Во время экстраполяции фильтр получает предварительную оценку состояния системы (в русскоязычной литературе часто обозначается , где означает «экстраполяция», а k - номер такта, на котором она получена) на текущий шаг по итоговой оценке состояния с предыдущего шага (либо предварительную оценку на следующий такт по итоговой оценке текущего шага, в зависимости от интерпретации). Эту предварительную оценку также называют априорной оценкой состояния, так как для её получения не используются наблюдения соответствующего шага. В фазе коррекции априорная экстраполяция дополняется соответствующими текущими измерениями для коррекции оценки. Скорректированная оценка также называется апостериорной оценкой состояния, либо просто оценкой вектора состояния . Обычно эти две фазы чередуются: экстраполяция производится по результатам коррекции до следующего наблюдения, а коррекция производится совместно с доступными на следующем шаге наблюдениями, и т. д. Однако возможно и другое развитие событий, если по некоторой причине наблюдение оказалось недоступным, то этап коррекции может быть пропущен и выполнена экстраполяция по нескорректированной оценке (априорной экстраполяции). Аналогично, если независимые измерения доступны только в отдельные такты работы, всё равно возможны коррекции (обычно с использованием другой матрицы наблюдений H k ).

Этап экстраполяции

Экстраполяция (предсказание) вектора состояния системы по оценке вектора состояния и примененному вектору управления с шага (k −1 ) на шаг k :
Ковариационная матрица для экстраполированного вектора состояния :

Этап коррекции

Отклонение полученного на шаге k наблюдения от наблюдения, ожидаемого при произведенной экстраполяции:
Ковариационная матрица для вектора отклонения (вектора ошибки):
Оптимальная по Калману матрица коэффициентов усиления, формирующаяся на основании ковариационных матриц имеющейся экстраполяции вектора состояния и полученных измерений (посредством ковариационной матрицы вектора отклонения):
Коррекция ранее полученной экстраполяции вектора состояния - получение оценки вектора состояния системы:
Расчет ковариационной матрицы оценки вектора состояния системы:

Выражение для ковариационной матрицы оценки вектора состояния системы справедливо только при использовании приведенного оптимального вектора коэффициентов. В общем случае это выражение имеет более сложный вид.

Инварианты

Если модель абсолютно точна и абсолютно точно заданы начальные условия и , то следующие величины сохраняются после любого количества итераций работы фильтра - являются инвариантами:

Математические ожидания оценок и экстраполяций вектора состояния системы, матрицы ошибок являются нуль-векторами:

где - математическое ожидание .

Расчетные матрицы ковариаций экстраполяций, оценок состояния системы и вектора ошибок совпадают с истинными матрицами ковариаций:

Пример построения фильтра

Представим себе вагонетку , стоящую на бесконечно длинных рельсах при отсутствующем трении . Изначально она покоится в позиции 0, но под действием случайных факторов на неё действует случайное ускорение . Мы измеряем положение вагонетки каждые ∆t секунд, но измерения неточны. Мы хотим получать оценки положения вагонетки и её скорости. Применим к этой задаче фильтр Калмана, определим все необходимые матрицы.

В данной задаче матрицы F , H , R и Q не зависят от времени, опустим их индексы. Кроме того, мы не управляем вагонеткой, поэтому матрица управления B отсутствует.

Координата и скорость вагонетки описывается вектором в линейном пространстве состояний

где - скорость (первая производная координаты по времени).

Будем считать, что между (k −1 )-ым и k -ым тактами вагонетка движется с постоянным ускорением a k , распределенным по нормальному закону с нулевым математическим ожиданием и среднеквадратическим отклонением σ a . В соответствии с механикой Ньютона можно записать

.

Ковариационная матрица случайных воздействий

(σ a - скаляр).

На каждом такте работы производится измерение положения вагонетки. Предположим, что погрешность измерений v k имеет нормальное распределение с нулевым математическим ожиданием и среднеквадратическим отклонением σ z . Тогда

и ковариационная матрица шума наблюдений имеет вид

.

Начальное положение вагонетки известно точно

, .

Если же положение и скорость вагонетки известна лишь приблизительно, то можно инициализировать матрицу дисперсий достаточно большим числом L , чтобы при этом число превосходило дисперсию измерений координаты

, .

В этом случае на первых тактах работы фильтр будет с бо́льшим весом использовать результаты измерений, чем имеющуюся априорную информацию.

Вывод формул

Ковариационная матрица оценки вектора состояния

По определению ковариационной матрицы P k |k

подставляем выражение для оценки вектора состояния

и расписываем выражение для вектора ошибок

и вектора измерений

выносим вектор погрешности измерений v k

так как вектор погрешности измерений v k не коррелирован с другими аргументами, получаем выражение

в соответствии со свойствами ковариации векторов данное выражение преобразуется к виду

заменяя выражение для ковариационной матрицы экстраполяции вектора состояния на P k |k −1 и определение ковариационной матрицы шумов наблюдений на R k , получаем

Полученное выражение справедливо для произвольной матрицы коэффициентов, но если в качестве неё выступает матрица коэффициентов, оптимальная по Калману, то данное выражение для ковариационной матрицы можно упростить.

Оптимальная матрица коэффициентов усиления

Фильтр Калмана минимизирует сумму квадратов математических ожиданий ошибок оценки вектора состояния.

Вектор ошибки оценки вектора состояния

Стоит задача минимизировать сумму математических ожиданий квадратов компонент данного вектора



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows