Большая энциклопедия нефти и газа. Исследование принципов взаимодействия усилителя и фотодиода. преобразование тока фотодиода в напряжение

Большая энциклопедия нефти и газа. Исследование принципов взаимодействия усилителя и фотодиода. преобразование тока фотодиода в напряжение

17.05.2019

Изобретение относится к устройству усилителей для фотоприемников, а именно к устройству усилителя фотодиода дымового пожарного извещателя. Технический результат: компенсация сигнала помехи на выводах фотодиода, что в результате повышает помехозащищенность дымового пожарного извещателя и снижает его стоимость за счет отказа от экранирования. Усилитель (фиг.1) содержит дифференциальный усилитель (ДУ) (2) с источником напряжения питания (1), снабженным формирователем потенциала (ФП) (3), лежащего в интервале потенциалов напряжения источника питания, при этом выводы фотодиода (4) подключены к входам ДУ (2). Введены первый и второй резисторы (Р) (5, 6), первый вход ДУ (2) соединен с ФП (3) через первый Р (5), а второй вход ДУ (2) соединен с ФП (3) через второй Р (6), причем первый и второй Р (5, 6) имеют равные значения сопротивления. Для работы в импульсном режиме (фиг.2) выводы фотодиода (4) подключены к входам ДУ (2) через конденсаторы (7) равной величины, а фотодиод (4) шунтирован резистором (8). 1 з.п. ф-лы, 2 ил.

Рисунки к патенту РФ 2410833

Изобретение относится к устройству усилителей для фотоприемников, в частности к устройству усилителя фотодиода дымового пожарного извещателя.

Известна схема усилителя фотодиода дымового пожарного извещателя, включающая линейный транзисторный усилитель с источником напряжения питания, в которой фотодиод включен между плюсом источника питания и входом линейного транзисторного усилителя (см. www.unitest.ru, Руководство по эксплуатации пожарного дымового извещателя ИП 212-49АМ).

Недостатком известной схемы является ее недостаточная помехозащищенность и зависимость коэффициента усиления от напряжения питания усилителя. Это требует экранирования усилителя и фотодиода, стабилизации питания усилителя, что удорожает конструкцию.

Наиболее близкой по технической сущности и достигаемому результату к заявленной схеме является схема усилителя фотодиода дымового пожарного извещателя, включающая дифференциальный усилитель с источником напряжения питания, снабженным формирователем потенциала, лежащего в интервале потенциалов источника напряжения питания, с которым соединен первый вход дифференциального усилителя, а также фотодиод, подключенный ко второму входу дифференциального усилителя и к одному из полюсов источника напряжения питания (см. www.irset.spb.ru. Паспорт пожарного дымового извещателя ИП 212-3СУ).

Недостатком известной схемы усилителя фотодиода является ее недостаточная помехозащищенность, что также требует экранирования усилителя и фотодиода.

Недостаточная помехозащищенность известной схемы усилителя фотодиода объясняется различными условиями протекания тока на входах усилителя при воздействии на фотодиод напряжения помехи. Результат воздействия помехи на каждый из двух выводов фотодиода различен несмотря на то, что это воздействие одинаково для обоих выводов фотодиода. Это связано с тем, что различны условия распространения помехи в подключенном к полюсу источника питания и втором выводах фотодиода, а более конкретно, различны сопротивления для протекания тока помехи от точки воздействия до полюса источника питания усилителя. При воздействии помехи наведенный на выводы фотодиода заряд стекает на полюса источника питания, и на пути этих токов оказываются элементы электрической схемы, которые образуют делители напряжения и формируют разность потенциалов на входах дифференциального усилителя, что создает дополнительный сигнал помехи, который суммируется с основным сигналом от фотодиода и препятствует его правильной передаче. В связи с тем, что в известной схеме пути токов и сопротивления элементов электрической схемы не идентичны, то, при одинаковой энергии воздействия помехи на оба вывода фотодиода, потенциал на входах усилителя оказывается не одинаковым: возникает разность потенциалов, вызванная помехой, что снижает помехозащищенность и ограничивает область применения усилителя.

В рамках данной заявки решается задача повышения помехоустойчивости схемы усилителя фотодиода при эксплуатации пожарного дымового извещателя при одновременном удешевлении его конструкции за счет отказа от экранирования.

Поставленная задача решается тем, что в схеме усилителя фотодиода, включающей дифференциальный усилитель с источником напряжения питания, снабженным формирователем потенциала, лежащего в интервале потенциалов источника напряжения питания, выводы фотодиода подключены к входам дифференциального усилителя, при этом первый вход дифференциального усилителя соединен с делителем напряжения через первый резистор, а второй вход дифференциального усилителя соединен с делителем напряжения через второй резистор, причем первый и второй резисторы имеют равные значения сопротивления.

Предпочтительно для работы в импульсном режиме выводы фотодиода подключать к входам усилителя через конденсаторы равной величины, а фотодиод шунтировать резистором с величиной сопротивления из диапазона 100 кОм-10 мОм. В этом случае постоянная составляющая сигнала не будет проходить на вход усилителя, а наведенный заряд будет стекать через шунтирующий резистор.

Сущность изобретения состоит в следующем.

В данной схеме усилителя фотодиода условия протекания тока, вызванного воздействием помехи, одинаковы для обоих выводов фотодиода и подключенных непосредственно к ним входов дифференциального усилителя, так как для каждого из них сопротивление между точкой воздействия помехи и любым полюсом источника питания одинаково благодаря наличию резисторов равной величины. В связи с этим происходит компенсация напряжения синфазного сигнала помехи, напряжение на входах усилителя не содержит сигнала помехи и не искажает полезный сигнал. Уровень сигнала помехи при этом снижается в тысячи раз, позволяя извещателю устойчиво работать даже в условиях сверхвысоких помех, в которых при использовании схемы по прототипу напряжение помехи намного превышало бы полезный сигнал.

Сущность изобретения поясняется неограничивающим примером его реализации и прилагаемыми чертежами, на которых:

фиг.1 - изображает схему усилителя фотодиода для случая измерения непрерывного сигнала;

фиг.2 - изображает схему усилителя фотодиода для случая измерения импульсного сигнала.

Для пояснения сущности изобретения на чертежах введены следующие обозначения:

1 - источник питания; 2 - дифференциальный усилитель; 3 -формирователь потенциала, лежащего в интервале потенциалов источника напряжения питания; 4 - фотодиод; 5 - первый резистор; 6 - второй резистор; 7 - конденсаторы; 8 - шунтирующий резистор.

Схема усилителя фотодиода для случая измерения непрерывного сигнала иллюстрируется на фиг.1. Усилитель фотодиода содержит подключенный к полюсам источника питания 1 дифференциальный усилитель 2 и формирователь потенциала 3, лежащего в интервале потенциалов источника напряжения питания. Формирователь потенциала 3 выполнен в виде резистивного делителя напряжения. Выводы фотодиода 4 включены между инвертирующим и неинвертирующим входами дифференциального усилителя 2, при этом инвертирующий вход усилителя соединен с формирователем потенциала 3 через первый резистор 5, а неинвертирующий вход усилителя соединен с формирователем потенциала 3 через второй резистор 6, причем первый и второй резисторы имеют равные значения сопротивления 100 кОм.

Предпочтительная величина сопротивления первого и второго резисторов составляет 100 Ом-10 мОм.

Схему усилителя фотодиода либо помещают в электромагнитное поле, создающее помеху, либо подают напряжение синфазной помехи от генератора на оба вывода фотодиода. Измеряют напряжение помехи на выходе дифференциального усилителя 2. В результате компенсации напряжение помехи, пересчитанное с учетом коэффициента усиления дифференциального усилителя 2, оказывается в тысячи раз меньше напряжения синфазной помехи, поданной от генератора. Для имитации условий распространения помехи в несбалансированном усилителе отключают резистор 5. В результате воздействия сигнала помехи дифференциальный усилитель 2 входит в насыщение. В аналогичных условиях схема согласно прототипу также входит в насыщение при подаче напряжения помехи.

Схема усилителя фотодиода для случая измерения импульсного сигнала иллюстрируется на фиг.2. Усилитель фотодиода содержит подключенные к полюсам источника питания 1 дифференциальный усилитель 2 и формирователь потенциала 3, лежащего в интервале потенциалов источника напряжения питания. Формирователь потенциала 3 выполнен в виде диодного формирователя потенциала. Выводы фотодиода 4 включены между инвертирующим и неинвертирующим входами дифференциального усилителя 2 через конденсаторы 7 равной величины (из диапазона от 100 пФ до 10 нФ), при этом инвертирующий вход дифференциального усилителя 2 соединен с формирователем потенциала 3 через первый резистор 5, а неинвертирующий вход усилителя соединен с формирователем потенциала 3 через второй резистор 6, причем первый и второй резисторы имеют равные значения сопротивления 510 кОм.

Схему усилителя фотодиода помещают в электромагнитное поле, создающее помеху, либо подают напряжение синфазной помехи от генератора на оба вывода фотодиода. Измеряют напряжение помехи на выходе дифференциального усилителя 2. В результате компенсации напряжение помехи, пересчитанное с учетом коэффициента усиления дифференциального усилителя 2, оказывается в тысячи раз меньше напряжения синфазной помехи, поданной от генератора. Для имитации условий распространения помехи в несбалансированном усилителе отключают резистор 5, в результате дифференциальный усилитель 2 входит в насыщение. В аналогичных условиях схема согласно прототипу также входит в насыщение при подаче напряжения помехи.

Преимущества данной схемы усилителя обеспечиваются тем, что в результате создания одинаковых условий распространения помехи в обоих выводах фотодиода и входах усилителя достигается компенсация напряжения и тока синфазной помехи. Это позволяет повысить помехозащищенность дымового пожарного извещателя, содержащего фотодиод, и снизить его стоимость за счет отказа от экранирования.

Изобретение может быть использовано также для работы в составе других фотоприборов, например фотометров, конструкция которых предусматривает наличие фотодиода, сигнал которого необходимо усиливать.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Схема усилителя фотодиода, включающая дифференциальный усилитель с источником напряжения питания, снабженным формирователем потенциала, лежащего в интервале потенциалов источника напряжения питания, при этом выводы фотодиода подключены к входам дифференциального усилителя, отличающаяся тем, что первый вход дифференциального усилителя соединен с формирователем потенциала через первый резистор, а второй вход дифференциального усилителя соединен с формирователем потенциала через второй резистор, причем первый и второй резисторы имеют равные значения сопротивления.

2. Схема по п.1, отличающаяся тем, что выводы фотодиода подключены к входам дифференциального усилителя через конденсаторы равной величины, а фотодиод шунтирован резистором с величиной сопротивления из диапазона 100 кОм-10 мОм.

Вспомогательное синусоидальное динамическое воздействие имеет ряд недостатков , таких как:

необходимость применения полосового усилителя, что усложняет схему усилителя фототока (далее по тексту УФТ);

остаточное присутствие второй гармоники на выходе УФТ, несмотря на применение полосовых усилителей;

необходимость съема сигнала на линейных участках синусоиды.

Как видно на рис.1(приложение 1) при появление фазы Саньяка (то есть наличие вращательного движения вокруг чувствительной оси прибора) на выходе интерферометра появляется первая гармоника, на которой сказывается влияние второй, в виде дополнительных парных пиков на максимумах. Хотя на чистоту первой настроены полосовые усилители, полностью отсечь влияние не желательных воздействий не удается.

В альтернативу синусоидальной вспомогательной модуляции можно сопоставить прямоугольную форму модулирующего напряжения, которая имеет ряд дополнительных преимуществ.

Применение прямоугольной формы модуляции позволяет избавится от вредного воздействия второй гармоники. Что несомненно упрощает электрическую схему усилителя фототока, отсутствием потребности и необходимости полосовых усилителей.

При переходе на прямоугольную форму модулирующего напряжения можно уйти в область более низких частот. В данном приборе реализована частота 24 кГц. В приложении приведены графики, анализ которых даст наглядное представление о преимуществах применения прямоугольного динамического воздействия.

При использовании прямоугольной модуляции фаза Саньяка Дцс будет иметь вид функции типа «меандр». Что значительно упрощает усиление и съем сигнала.

Расчет усилителя фототока.

Расчет усилителя фототока произведем исходя из требуемого коэффициента усиления сигнала, который пропорционален измеряемой угловой скорости вращения Щ.

Излучение, испускаемое источником, приходит на фотодиод со значительным ослаблением мощности. Это связанно с оптическими потерями в волоконно-оптическом тракте. Основные потери оптического тракта можно свести в таблицу.

Таблица 3.1

Наименование элемента оптического тракта.

Количество проходов через элемент.

Величина потерь, дб

Деполяризатор.

Ответвитель.

Ответвитель (деление излучения)

Сварка волокна.

Определим сумму потерь.

0,5 + 1·2.+ 7·2+4+3·2+0,3·9=29,2 (дб).

Рассчитаем коэффициент ослабления излучения испускаемого источника при прохождении оптического тракта логарифмическим преобразованием

где косл- коэффициент ослабления излучения оптическим трактом.

Выразив косл через получим

косл =10/10=102,9=794,3.

Зная мощность источника излучения Рист= 2мВт и коэффициент ослабления можно определить мощность принимаемую фотодиодом. Так же необходимо заметить, что фотодиод принимает не весь диапазон мощности, а только его часть (1/4 max). Наглядно в этом убедиться можно проанализировав рис.16. Это связано с тем, что измеряемая фаза Саньяка находится в пределах. Мощность излучения на фотодиоде определим по формуле

Подставляя значения получим

Ток выделяемый фотодиодом равен произведению мощности излучения и коэффициента передачи фотодиода (Кфд= 0,8 А/Вт)

Подставляя значения получим

Нагрузочное сопротивление фотодиода равно Rф = 43·103 (Ом).

Зная сопротивление и силу тока по закону Ома можно определить

Подставляя значения получим

Vmax = 0,5·10-6·43·103 =21,5·103 (B)

Максимальное напряжение сигнала используемое для последующих преобразований должно равняться Vmax = 15 В.

Таким образом зная необходимое напряжение и напряжение на выходе фотодиода можно определить необходимый коэффициент усиления УФТ.

где V max-необходимое напяжение, В;

V фд max- напряжение на выходе фотодиода.

Приняв количество каскадов равное трем, выберем коэффициент усиления каждого каскада Кус=29 для двух и один каскад с регулируемым коэффициентом усиления. Это допущение необходимо потому, что в зависимости от комплектации прибора коэффициент ослабления мощности излучения может меняться.

Выбрав схему усилителя, приведенную на рис.15, найдем номиналы сопротивления. Коэффициент усиления при таком включении равен

Номинал сопротивления R2 выберем равным 43 кОм.

Величина этого сопротивления влияет на ток обратной связи. Таким образом, выразив R1 из (2.20) получим

Подставляя значения

На выходе каждого операционного усилителя поставим фильтр (рис.16), настроный на частоты от 49с-1 и выше.

Постоянная времени равна

Подставляя значение получим

Таким образом

Для того, чтобы не покупать резисторы разных номиналов выберем

Тогда из (3.2.10) выразим

Для надежности работы УФТ емкость продублируем.

Второй каскад усилителя выберем с такой же схемой и номиналами.

После второго каскада установим синхронный детектор работающий по сигналу с синхроимпульсного блока. На входе детектора установим разделяющее сопротивление с номиналом 1500 Ом.

На выходе детектора установим «ключ», который будет удерживать потенциал получения сигнала. Это необходимо для того, чтобы далее схема обработки сигнала работала со стробами длительностью TRC.

Подставляя значения получим

Таким образом номиналы элементов необходимо подбирать исходя из достаточной величины постоянной времени RC.

Так как время обхода контура одним лучом равно ф=5 мкс, то

Зададимся большим сопротивлением R=510 кОм и вычислим величину емкости по

После каждого каскада на опорное напряжение установим фильтр,для того, чтобы работа одного каскада никак не сказывалось на работе другого.

Принятые значение элементов указаны в спецификации на электрическую схему УФТ.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Содержание
  • Введение
    • 1. Принцип взаимодействия усилителя и фотодиода. Преобразование тока фотодиода в напряжение
      • 2. Управление частотным шумом, возникающим при работе усилителя
      • 3. Полоса пропускания усилителя и методы ее регулирования
      • 4. Борьба с помехами, вызванными внешними воздействиями
      • Список используемой литературы
  • Введение
  • Оптические приборы на фотодиодах и фототранзисторах являются одним из перспективных направлений в области измерения параметров быстропротекающих физических и технологических процессов, лежат в основе датчиков уровня освещенности, приближения, дыма и цвета.
  • Рассмотрим свойства фотодиода и основные способы его включения. Как известно, фотодиод обладает односторонней проводимостью при воздействии на него оптического излучения. В фотодиодном режиме p-n-переход смещается обратным напряжением, величина которого зависит от конкретного фотодиода: от единиц до сотен вольт. Недостаток режима в том, что с ростом обратного тока (при увеличении освещения) увеличивается и уровень шумов, тогда как уровень полезного сигнала в целом остается постоянным.
  • В вентильном режиме к диоду не прикладывается напряжение от внешних источников, так как он сам становится источником ЭДС с достаточно большим внутренним сопротивлением. В этом режиме уровень шумов остается постоянным при повышении уровня засветки.
  • Приведенная схема включения фотодиода позволяет изменять положение подстроечного резистора для выбора режима работы диода. Схему можно перевести в вентильный режим, замкнув подвижный контакт резистора на землю. В прямом смещении фотодиод также будет реагировать на свет: для этого нужно сменить его полярность.
  • Постоянное высокоомное сопротивление предназначено для предотвращения случая теплового пробоя диода (из-за подачи слишком большого напряжения). Будучи включенным параллельно с нагрузкой (R н < 5 кОм), оно практически не ослабляет полезный сигнал. Конденсатор избавляет сигнал на выходе от постоянной составляющей, которую нет смысла усиливать при получении импульсного сигнала, так как она меняется в зависимости от фоновой засветки.
  • В качестве нагрузки в схеме с фотодиодом может использоваться каскад усиления с общей базой (рис. 1, а) либо быстродействующий операционный усилитель (рис. 1, б).
  • Рис. 1. Схемы включения фотодиода
  • О применении операционных усилителей, используемых для усиления сигнала фотодиода, и пойдет речь в данной курсовой работе.

Операционный усилитель - это усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, характеризирующийся коэффициентом усиления и высокоомным входным сопротивлением, а также отрицательной обратной связью, не позволяющей усилителю перейти в режим самовозбуждения.

Рис. 2. Принцип введения отрицательной обратной связи

Усиление сигнала фотодиода -- одна из основных областей применения операционных усилителей на полевых транзисторах с p-n-переходом на входах. Существует множество разнообразных схем усилителей, каждую из которых характеризуют:

1. Линейность;

2. Постоянное смещение;

3. Определенный уровень шумов;

4. Полоса пропускания.

Фотодиодные датчики -- это мост между измеряемой физической величиной (светом) и электроникой. При наблюдениях за различными физическими процессами свет играет второстепенную роль по сравнению с температурой и давлением, но не тогда, когда необходимы дистанционные измерения без контакта с исследуемым объектом Перевод статьи по операционным усилителям “Photodiode Monitoring with Op Amps” .

Такие датчики используются в компьютерных томографах, астронавигационном оборудовании, электронных микроскопах с системой обработки сигналов. Фотодиоды не слишком дороги и позволяют создавать массивы из сотен фотодатчиков. Основная задача схемы с фоточувствительным элементом - точное преобразование выходного сигнала фотодиода в линейно зависящий от него усиленный выходной сигнал, чему препятствует противоречие между быстродействием и качеством.

фотодиод напряжение усилитель частотный

1. Принцип взаимодействия усилителя и фотодиода . Преобразование тока фотодиода в напряжение

Существуют два способа получения сигнала от фотодиода: снятие с него напряжения или тока. Для измерения напряжения схема усиления должна иметь достаточное сопротивление по переменному току, чтобы ток, протекающий через ее вход, был минимальным.

Согласно схеме на рис. 3, а), фотодиод включен последовательно со входом усилителя. Цепь обратной связи состоит из резисторов R 1 и R 2 ; она позволяет напряжению на фотодиоде изменяться соизмеримо с напряжением на входе усилителя. В таком случае отношение выходного напряжения к входному будет логарифмическим, так как чувствительность фотодиода изменяется в зависимости от приложенного к нему прямого напряжения.

Рис. 3 . Выходным сигналом фотодиода может быть: а) напряжение; б) ток

Постоянная чувствительность при постоянном приложенном напряжении позволяет сделать вывод о том, что для получения линейной зависимости выходного сигнала от световой энергии разумно использовать измерение тока. Обратная связь операционного усилителя устанавливает нулевую разность напряжений между входами, поэтому падение напряжения на диоде также равно нулю. Это обстоятельство позволяет схеме преобразователя тока в напряжение, показанной на рис. 3, б), обеспечивать входное сопротивление, равное R 1 /K u , где K u -- это коэффициент усиления операционного усилителя с разомкнутой петлей обратной связи. Несмотря на то, что сопротивление R 1 обычно очень велико, результирующее входное сопротивление остается пренебрежимо малым по сравнению с выходным сопротивлением фотодиодов.

Ток диода в схеме преобразователя практически не течет через вход операционного усилителя, целиком направляясь к обратной связи R 1: потому что на выходе усилителя напряжение равняется произведению тока фотодиода на сопротивление R 1 . Для получения наибольшего коэффициента преобразования тока в напряжение это сопротивление должно иметь высокое номинальное значение. Недостатком является то, что оно провоцирует появление значительного температурного дрейфа напряжения (из-за температурной нестабильности входного тока усилителя). Чтобы компенсировать его, обычно к неинвертирующему входу усилителя подключают резистор R 2 с таким же сопротивлением, как у R 1 , и добавляют емкостную развязку для устранения большей части его помех. Недостатком такого способа является падение напряжения на диоде и возникающий в результате него ток утечки, который может оказаться даже больше, чем входные токи усилителя.

Сопротивление резистора обратной связи в преобразователе почти полностью определяет уровень шума и границы полосы пропускания усилителя, а также коэффициент усиления. Шум, вносимый резистором, имеет спектральную плотность и появляется на выходе преобразователя без усиления. Отношение увеличения выходного сигнала к увеличению шума пропорционально квадратному корню из сопротивления R 1 Проектирование и применение операционных усилителей: Дж. Грэм, Дж, Тоби и Л. Хыолсман. . Шум операционного усилителя также влияет на выходной шум, действуя через сопротивление обратной связи и емкость диода.

Источники шума в усилителе представлены на рис. 4 как входной шумовой ток I n и входное шумовое напряжение (на схеме - e n). Шумовой ток протекает через резистор обратной связи, усиливаясь так же, как и ток сигнала. Если выбрать операционный усилитель с входным током порядка пикоампер, то эта составляющая шума будет пренебрежимо мала для используемых значений сопротивления обратной связи.

Рис. 4 . Влияние емкости диода на работу цепи обратной связи в базовой схеме преобразователя Шум операционного усилителя усиливается больше и в более широкой полосе, чем сигнал.

На первый взгляд, входное шумовое напряжение усилителя передается на выход с небольшим усилением. Это справедливо для постоянного тока, когда усиление, равное 1+R 1 /R D , сохраняется на малом уровне благодаря большому сопротивлению диода R D . Емкость диода C D , изменяя работу цепи обратной связи на высоких частотах, усиливает шумовое напряжение. Так как эта емкость и сопротивление обратной связи обычно достаточно велики, эффект может проявляться на довольно низких частотах. Иллюстрация к этому приведена на рис. 4, б).

С помощью вносимого ею полюса усиление устанавливается на уровне 1+C D /C S . Для больших фотодиодов C D может составлять сотни пикофарад, провоцируя возникновение шумового усиления, соответственно, в сотни раз. Это усиление распространяется в область высоких частот и ограничивается полосой пропускания операционного усилителя.

При слишком высоком коэффициенте передачи операционный усилитель самовозбуждается из-за взаимодействия с обратной связью, что приводит к возникновению искажений: выбросам на переходной характеристике, увеличению постоянной времени. Чтобы избежать этого явления, обычно применяют емкостной фильтр, ограничивающий полосу частот.

По мере увеличения сопротивления обратной связи в преобразователе тока в общем шуме сначала доминирует вклад шумового напряжения операционного усилителя, затем вклад резистора обратной связи и, наконец, происходит максимальное усиление на высоких частотах. Такие варианты оптимизации схемы, как использование большого фотодиода, должны рассматриваться с учетом его емкости и ее влияния на выходной шум и общую чувствительность схемы. Большой размер фотодиода фактически может ухудшить общую точность, и добиваться улучшения светочувствительности следует, в первую очередь, оптическими способами, например, встраивая линзу в корпус фотодиода.

2. Управление частотным шумом, возникающим при работе усилителя

Рис. 5 . а) Т-образная конденсаторная схема; б) развязка одним элементом в Т-образной резистивной цепи обратной связи

Другая возможность добавления емкости существует при использовании Т-образной резисторной цепи в обратной схеме, которой обычно заменяют резисторы с очень большим сопротивлением. Последний заменен на рис. 5, б) элементами с более приемлемыми номиналами, но при этом увеличился низкочастотный шум. Эта конфигурация похожа на Т-образную конденсаторную цепь. Здесь R 2 и R 3 ослабляют сигнал на R 1 , поэтому последний со стороны входного узла представляется как резистор с гораздо бoльшим сопротивлением. Здесь не существует удобной возможности компенсации постоянного смещения из-за входных токов. Поэтому на неинвертирующем входе необходим резистор с очень большим сопротивлением.

Одним из положительных свойств ослабляющей цепи обратной связи является возможность использовать конденсаторы приемлемых номиналов. Установка конденсатора параллельно R 2 устраняет ослабление на высоких частотах, сводя сопротивление цепи обратной связи к R 1 .

Уменьшение высокочастотных шумов при шунтировании Т-образной схемы сопровождается их усилением на низких частотах из-за ослабления сигнала обратной связи в цепи. Бороться с этим можно при помощи резисторов с небольшим сопротивлением, так, чтобы этот эффект увеличивался только пропорционально квадратному корню из нового шумового усиления.

Добавление емкости в обратную связь -- это эффективный способ уменьшения шумового усиления, но оно так же эффективно уменьшает полосу пропускания сигнала. Эта полоса и так невелика из-за большого сопротивления обратной связи, и в результате может получиться полоса пропускания не больше 1 кГц. Более рационально решить проблему шумов можно, ограничив полосу усилителя именно в точке неизбежного ограничения полосы сигнала. Тогда высокочастотное усиление, которое усиливает только шумы, будет удалено.

Чтобы получить нужное ограничение полосы с подходящими операционными усилителями, в составном усилителе используются два операционных усилителя, один из которых снабжен цепью управления фазовой компенсацией, как показано на рис. 6, а).

Для управления полосой пропускания в составной схеме к усилителю А 2 добавляется внутренняя обратная связь. На постоянном токе эта обратная связь блокируется С 1 , и общее усиление с разомкнутой обратной связью будет равно произведению этих усилений для каждого усилителя, или, в данном случае, 225 дБ. Спад частотной характеристики этого усиления происходит под действием полюса в усилении усилителя А 1 с разомкнутой связью и отклика интегратора, задаваемого для усилителя А 1 элементами С 1 и R 3 . Так как этот спад вызван действием двух полюсов, он должен быть ограничен перед пересечением кривой шумового усиления, чтобы обеспечить устойчивость. Ноль добавляется включением R 4 . Выше частоты этого нуля вследствие влияния R 4 прекращается интегрирование, и передаточная функция А 2 становится равной коэффициенту усиления инвертирующего усилителя -- R 4 /R 3 . В результате спад усиления становится больше, чем у одиночного усилителя на высоких частотах. В графическом отображении полоса шумового усиления на рис. 6б заметно сузилась, как если бы сократилась полоса пропускания операционного усилителя.

Рис. 6 . а) Уменьшение шумов в схеме составного усилителя; б) сокращение полосы шумов без уменьшения полосы сигнала

Сокращение полосы шумов показано на рис. 6, б) затененной областью. Визуально оно не выглядит существенным из-за логарифмического масштаба. В действительности уменьшение шумов получается весьма значительное, потому что на верхнем частотном участке логарифмического графика представлена бoльшая часть полосы пропускания усилителя. Перемещение точки единичного усиления шумов с 2 МГц до 200 кГц снижает выходной шум А 1 примерно в три раза. Чтобы получить тот же результат при помощи шунтирования обратной связи, придется уменьшить полосу пропускания сигнала в 10 раз. При подходе, показанном на рис. 6, а), эта полоса не изменяется. Усилитель А 2 не добавляет ни шумов, ни постоянного смещения, так как он включен после усилителя с большим усилением А 2 .

Показанная на рис. 6 технология обычно используется при низких уровнях сигнала, когда система особенно чувствительна к шумам. При большом значении сигнала становится важным ограничение скорости нарастания сигнала, но при использовании второго усилителя также можно добиться значительного улучшения ситуации. Ограничение скорости нарастания вызвано ограничением максимального выходного напряжения А 1 и его ослаблением в А 2 . Если максимальный размах напряжения на выходе А1 составляет 12 В и усиление А 2 равно -- 1/10, как показано на рис. 6, то итоговое выходное напряжение ограничено размахом 1,2 В. Для малых сигналов это будет приемлемо, так максимальные практически используемые значения сопротивления обратной связи сами по себе ограничивают выходной размах.

Высокоуровневые сигналы не столь чувствительны к шуму и лучше переносят более прямой подход к фильтрации. Активный фильтр после обычного преобразователя тока в напряжение также устраняет высокочастотный шум. Установка полюса фильтра на границе полосы сигнала приводит к тому, что полоса пропускания системы практически не простирается дальше полосы полезной информации. Такой фильтр не включается в контур обратной связи преобразователя, поэтому входной шум и смещение второго усилителя добавляются к сигналу.

3. Полоса пропускания усилителя и методы ее регулирования

Требования к полосе пропускания являются неотъемлемой частью обсуждения преобразователя тока в напряжение по нескольким причинам. Общий выходной шум увеличивается пропорционально квадратному корню из полосы пропускания системы, потому что охватывается более широкий спектр шумов. Появляется конфликт между оптимальным соотношением сигнал/шум и полосой сигнала.

Последнее ограничение, влияющее на измерение таких величин, -- емкостная связь через воздух вокруг корпуса резистора -- всегда остается. Расширение полосы за пределы, обусловленные такими ограничениями, требует уменьшения сопротивления обратной связи и, следовательно, меньшего усиления преобразователя. Некоторые возможности для восстановления усиления показаны на рис. 7, а). После преобразователя тока в напряжение просто добавляется второй усилитель, который доводит итоговое выходное сопротивление до величины R T = A V R 1 . Таким образом, большое сопротивление уменьшается во столько раз, во сколько раз усиливает усилитель, и во столько же раз увеличивается полоса пропускания.

Рис. 7 . а) Добавление усиления напряжения для увеличения полосы при сохранении общего сопротивления; б) графики зависимости полосы пропускания и входного шума (полоса пропускания увеличивается быстрее, чем шум)

Параметры, влияющие на этот максимум, -- это итоговое R T и полоса единичного усиления второго усилителя, f C . Взаимосвязь факторов, влияющих на выбор оптимальной полосы пропускания, описывается выражением для расчета R 1:

При использовании второго усилителя (А 1) полоса расширяется до 100 кГц от исходных 3 кГц. У него наибольший общий выходной шум, но это происходит, опять-таки, из-за большой полосы пропускания. Если требуется еще бoльшая полоса пропускания, то надо выбирать между более быстрым операционным усилителем, с худшими, как правило, шумовыми параметрами, и уменьшением сопротивления. Для меньшей полосы пропускания на место А 1 требуется поставить усилитель с меньшей полосой единичного усиления, поэтому можно использовать усилитель с малым шумом.

При условии, что допускается ухудшение шума при замене сопротивления на усиление напряжения, достоинства схемы в целом увеличиваются. Если же учитывать полосу пропускания, то это улучшение может компенсировать падение соотношения сигнал/ шум. Ранее упоминалось, что простой преобразователь тока в напряжение больше страдает от излишней полосы пропускания при усилении напряжения шума усилителя, чем при усилении токового сигнала. Эта тенденция устранена в схеме на рис. 7, так как усиление напряжения возрастает, и А 2 начинает фильтровать более высокие частоты. В подтверждение этому шумовые кривые, которые нарастают плавно (в отличие от кривых полосы пропускания) до точки оптимальной полосы пропускания. В этой оптимальной точке полоса пропускания шума совпадает с полосой пропускания сигнала. В результате А теперь работает как выходной активный фильтр, обсуждавшийся ранее.

В некоторых случаях серьезным недостатком приведенной схемы является необходимость использования двух операционных усилителей на каждый фотодатчик: часто сотни датчиков работают в одном массиве. Можно применять и один ОУ для получения того же усиления, но без резисторов с очень большим сопротивлением, если окажется приемлемым некоторое ухудшение полосы пропускания и шумов. Один и тот же ОУ может одновременно выполнять преобразование тока в напряжение и последующее усиление напряжения. Согласно традиционной технике, эта задача решается так, как показано на рис. 8, a), где R 2 необходим для преобразования тока в напряжение, а R 3 и R 4 -- для установки усиления по напряжению. Ток из диода D 1 течет через резистор R 2 , в результате чего на неинвертирующем входе операционного усилителя появляется напряжение сигнала. Однако это напряжение также приложено к фотодиоду, и из-за этого возникает нелинейность, как было описано ранее.

Рис. 8 . Одновременное преобразование тока в напряжение и усиление по напряжению на одном операционном усилителе: a) влияние нежелательного напряжения на диоде; б) устранение влияния при помощи подключения диода между входами операционного усилителя

Вместо этого фотодиод подключается непосредственно между входами операционного усилителя, и тогда на нем поддерживается нулевое напряжение. Как показано на рис. 8, б), резисторы выполняют те же функции, что и в предыдущей схеме, но передаточная функция схемы будет линейной. Ток из фотодиода также течет через R 2 , создавая такое же сигнальное напряжение. Этот ток течет и в цепь обратной связи, но дает меньший эффект из-за меньшего сопротивления резисторов.

Итоговый выходной шум от резистора в базовой схеме увеличивается пропорционально квадратному корню из усиления напряжения. Здесь добавляется небольшая составляющая, возникающая из-за того, что удален операционный усилитель как источник повышения усиления. Однако новый источник включен на рис. 8, б), снова из-за емкости диода, как показано на рис. 9, а). Напряжение шума усилителя действует непосредственно через емкость, порождая шумовой ток, который течет через R 2 . Цепь емкостной обратной связи, состоящая из C D и C ICM , создает шумовое усиление, максимум которого равен 1 + C D / C ICM и которое существует дополнительно к нормальному шумовому усилению неинвертирующего усилителя.

Рис. 9 . а) Схема с емкостью фотодиода, добавляющего обратную связь к схеме на рис. 7б; б) график усиления

Влияние на частотную характеристику изображено на рис. 9б, и оно также вызывает подъем шумового усиления на высоких частотах. Это происходит на более высоких частотах, чем в базовой схеме преобразователя тока в напряжение, потому что применяется меньшее сопротивление, и этот подъем быстрее прекращается из-за спада частотной характеристики операционного усилителя. Для диода с малой емкостью, использованного в обоих примерах схем, он теперь охватывает небольшую область на графике, что, соответственно, уменьшает влияние шума. Для больших диодов, тем не менее, этот эффект тоже присутствует, как показано штриховой линией для емкости около 200 пФ. Часть спектра, охватываемая подъемом, не находится на верхнем краю полосы пропускания усилителя, как это было в базовой схеме. Следовательно, шум операционного усилителя не стал основным источником.

4. Борьба с помехами, вызванными внешними воздействиями

Так как уменьшение шумов, возникающих в схеме, имеет пределы, необходимо рассмотреть и внешние источники шумов. Преобразователь тока в напряжение крайне чувствителен к помехам от электростатических, магнитных и радиочастотных источников. Эти источники требуют внимания при экранировании, заземлении и физическом расположении компонентов Моррисон, Р. Методы заземления и экранирования (2-ое издание, Нью-Йорк, 1986). , иначе их вклад в шум устройства будет основным..

Так как электростатическая связь наиболее часто возникает на частоте питающей сети и тогда одинакова для всех точек схемы, она является естественным «кандидатом» на устранение при помощи подавления синфазного сигнала в операционном усилителе. На этой частоте коэффициент ослабления синфазного сигнала очень велик, но в обычной схеме преобразователя тока в напряжение он не используется. Это следствие несимметричной конфигурации входа вместо дифференциальной, но последнюю вполне можно применять для улучшения подавления шумов, а также уменьшения ошибки по постоянному току.

Усилитель с дифференциальным входом на операционном усилителе очень хорошо подходит для сигнала фотодиода. Так как фотодиод генерирует токовый сигнал, он доступен на обоих выводах этого датчика и может подключаться к обоим входам усилителя, как показано на рис. 10а. Здесь ток диода больше не возвращается по «земле», а подается на неинвертирующий вход усилителя. Тем самым создается второе напряжение сигнала, которое удваивает усиление схемы, когда R 1 = R 2 для компенсации. Для данного значения усиления сопротивления резисторов должны составлять только половину от нормального для аналогичного уменьшения ошибки от входных токов усилителя. Здесь также отсутствует постоянное напряжение на фотодиоде, так как он включен между входами операционного усилителя. А так как напряжение между входами практически равно нулю, то отсутствует и ток утечки фотодиода.

Рис. 10 . Использование коэффициента ослабления синфазного сигнала операционного усилителя: а) подача сигнала на дифференциальный вход; б) ослабление электростатической связи

Для большинства случаев электростатической связи с силовыми проводами на частоте питающей сети описанное емкостное шунтирование дает лишь незначительный эффект. Для лучшего подавления высоких частот надо или добавить конденсатор параллельно R 1 , или же обеспечить постоянный сигнал на входной емкости. Последний вариант освобождает от ограничения полосы пропускания - так же, как и при использовании второго дифференциального подключения. Как показано на рис. 11, фотодиод подключается между входами двух преобразователей тока в напряжение, выходы которых соединены со входами дифференциального усилителя. Ток фотодиода течет через два одинаковых сопротивления, на которые действует одинаковая электростатическая шумовая связь. Ток диода создает дифференциальный сигнал на сопротивлениях, а шумовая связь генерирует синфазный сигнал. При прохождении через блок с усилителем А 3 (выделенного желтой областью) эти сигналы разделяются: сигнал диода проходит на выход, а шумовой сигнал подавляется.

Рис. 1 1 . Усилитель с дифференциальными входами, имеющий широкую полосу усиления (входные синфазные емкости усилителей соединены с виртуальной «землей»)

Неинвертирующие входы обоих преобразователей тока в напряжение заземлены, поэтому на обоих выводах диода устанавливается нулевое напряжение. Кроме того, в такой схеме исключается появление сигнала на синфазных входных емкостях, поэтому увеличивается полоса усиления сигнала и подавления электростатических помех. Неинвертирующие входы не подключаются через высокое сопротивление для коррекции ошибок от входного тока, так как А 1 и А 2 формируют согласованные напряжения на своих выходах. Эти напряжения являются синфазным входным сигналом для конечного блока, и поэтому они подавляются.

Другая функция, которую может выполнять дифференциальная схема на рис. 11, -- это дифференциальное измерение сигналов от двух фотодиодов. Вместо D 1 к входу каждого преобразователя тока в напряжение подключается по отдельному диоду. Эти диоды показаны на рис. 11 штриховыми линиями. Их токи порождают независимые напряжения на выходах A 1 и А 2 , после чего они проходят через дифференциальный усилитель для устранения синфазной составляющей. Оставшееся выходное напряжение пропорционально разности между двумя входными фототоками как мера относительной освещенности. Такой сигнал используется в датчиках положения или слежения за оптической дорожкой в качестве сигнала обратной связи.

Может оказаться, что магнитную шумовую связь труднее устранить, чем электростатическую, но ее влияние также уменьшается при использовании дифференциальных входов. В этом случае возникает связь через взаимную индуктивность, поэтому основной задачей является минимизация размеров петель проводников вместе с экранированием и максимальным разделением источника и приемника помех. Ее влияние не устраняется электростатическим экраном, поэтому первым шагом должно быть подавление помех непосредственно на их источнике. Силовые трансформаторы, которые невозможно удалить на достаточное расстояние, должны иметь экранирование, чтобы бoльшая часть их магнитных полей оставалась внутри трансформатора. Оставшиеся магнитные связи воздействуют через физическую и схемотехническую конфигурации. Резисторы с большим сопротивлением, используемые в трансимпедансных усилителях, чувствительны к этому воздействию, и соединения между этими резисторами и высокоимпедансными входами операционных усилителей должны быть как можно короче. Оставшиеся помехи делаются синфазными за счет согласования формы и размеров проводников, чтобы операционный усилитель мог их подавить. На рис. 10, 11 большое сопротивление разделено между двумя одинаковыми элементами, которые физически монтируются с одинаковой ориентацией и на одинаковом расстоянии относительно источника магнитных помех. Помехи, наведенные на два резистора, в этом случае создают одинаковые сигналы, которые подавляются на выходе усилителя.

Третья разновидность помех -- радиочастотные -- хуже ослабляются усилителями, поэтому основными способами борьбы с ними являются экранирование и фильтрация. Источники радиочастотных помех могут оказаться поблизости от схемы с фотодиодом (например, цифровые схемы, которые наиболее часто присутствуют в системе). На высоких частотах операционные усилители имеют небольшое усиление и слабое подавление синфазных сигналов, и поэтому они не могут подавлять радиочастотные сигналы. Из-за этих ограничений операционных усилителей и ограничения полосы в основной схеме преобразователя тока в напряжение исследуемые сигналы не могут находиться в радиочастотном диапазоне. Для удаления нежелательных сигналов можно использовать фильтрацию, если ее удастся применить на входе усилителя. Фильтрация после усилителя менее эффективна, так как операционный усилитель может работать подобно радиочастотному детектору, отделяющему более низкие частоты от несущей. Дальнейшее уменьшение этих видов шумов можно получить при помощи радиочастотных экранов и «земляных» слоев на печатной плате.

Список используемой литературы

1. Перевод статьи по операционным усилителям “Photodiode Monitoring with Op Amps”, автор -- ведущий специалист фирмы Burr-Brown (Texas Instruments): http://www.kit-e.ru/articles/usil/2009_02_46.php

2. Дж. Грэм, Дж. Тоби и Л. Хьюлсман. Проектирование и применение операционных усилителей: http://www.znvo.kz/books/42-pnpnpn/549-grema.html

3. Хоровиц П., Хилл У. - Искусство схемотехники. Том 1, 3-е издание:

http://publ.lib.ru/ARCHIVES/H/HOROVIC_Paul%27,_HILL_Uinfild

4. Преснухин Л., Воробьев Н., Шишкевич А. - Расчет элементов цифровых устройств: http://www.toroid.ru/presnuhinLN.html

Подобные документы

    Исследование работы интегрального усилителя в различных режимах. Подключение усилителя как повторителя. Измерение входящего и выходящего напряжения. Определение частоты пропускания усилителя. Анализ способов получения большого усиления на высокой частоте.

    лабораторная работа , добавлен 18.06.2015

    Разработка электрической схемы резистивного усилителя. Построение гиперболы рассеивания при статическом режиме. Формула расчета уравнения нагрузочной прямой. Определение параметров тока, полосы пропускания и полосы усиления при динамическом режиме.

    контрольная работа , добавлен 14.05.2014

    Расчет параметров усилителя, на вход которого подается напряжение сигнала с заданной амплитудой от источника с известным внутренним сопротивлением. Определение КПД усилителя с общей параллельной отрицательной обратной связью по току и полного тока.

    задача , добавлен 04.01.2011

    Анализ схемотехнической реализации усилителя. Формирование математической модели параметрического синтеза усилителя. Характеристики коэффициента передачи напряжения. Исследование влияния на частотные характеристики варьируемых параметров усилителя.

    курсовая работа , добавлен 16.09.2017

    Изучение работы усилителей постоянного тока на транзисторах и интегральных микросхемах. Определение коэффициента усиления по напряжению. Амплитудная характеристика усилителя. Зависимость выходного напряжения от напряжения питания сети для усилителя тока.

    лабораторная работа , добавлен 31.08.2013

    Разработка усилителя электрических сигналов, состоящего из каскадов предварительного усилителя. Расчет двухтактного бестрансформаторного усилителя мощности. Определение каскада с ОЭ графоаналитическим методом. Балансные (дифференциальные) усилители.

    курсовая работа , добавлен 09.03.2013

    Определение параметров работы двухкаскадного усилителя тока с непосредственной связью, выполненного на германиевых (Ge) транзисторах структуры n-p-n по заданным показателям. Основные расчеты показателей преобразования напряжения, коэффициентов усиления.

    практическая работа , добавлен 04.01.2011

    Разработка усилителя тока с помощью средств систем автоматизированного проектирования. Моделирование усилителя тока в Multisim. Расчет размеров, размещение радиоэлектронных компонентов на печатной плате, ее трассировка с помощью волнового алгоритма.

    курсовая работа , добавлен 21.10.2015

    Назначение и описание выводов инвертирующего усилителя постоянного тока К140УД8. Рассмотрение справочных параметров и основной схемы включения операционного усилителя. Расчет погрешностей дрейфа напряжения смещения от температуры и входного тока.

    реферат , добавлен 28.05.2012

    Характеристика усилителя как основного узла в устройствах автоматики, телемеханики, вычислительной и информационно-измерительной техники. Принцип работы многокаскадного усилителя с расчетом каждого каскада и построением выходных и входных характеристик.

У меня уже давно копошилась идейка опробовать светодиод в качестве фотосенсора - это ведь тот же полупроводниковый диод, в котором разработчиками приложены все усилия, чтобы максимум света от p-n перехода попадало наружу, а следовательно - и в обратном направлении. А тут товарищу срочно понадобилось отчитаться по продвижению проекта фурье-спектрометра. Ему там надо усиливать и оцифровывать сигнал с фотоприёмника. Конечно, у этих физиков всегда всё очень специальное: и фотосенсор у них там на особую длину волны, и облучателем - лазер. В качестве усилителя они желали иметь только самые наиточнейшие ОУ, да ещё и в схеме с автокалибровкой нуля. Но для первого "кукареку" товарищу сгодился бы самый простенький макет фотоприёмника - чтобы было что подать на вход АЦП. Вобщем это был для меня идеальный повод опробовать разные сочетания светодиодов в купе с классической схемой усиления тока фотодиода на недорогом операционном усилителе со входами на полевых транзисторах с p-n переходом.

Выбор ОУ

Ну да, TL072 чуточку похуже будет... но зато он во много раз дешевле на сегодня! 🙂 Выбор сделан. Вот, собственно, схема усилителя фототока:

Значение R будем подбирать в зависимости от условий. Фильтры по питанию здесь, возможно, не столь необходимы, но для точных измерений и/или шумных и слабых сигналов - всегда хороши.

Первый блин - красный-красный

Первым делом я взял два одинаковых красных светодиода на 1.7В, повышенной яркости. Поставил их нос к носу. Излучатель запитал от своего простенького тестового генератора прямоугольных сигналов . Ток через излучатель был порядка 15мА. Сигнал получился очень слабенький. Чтобы разглядеть что-либо дельное на осциллографе пришлось срочно заземлять основание макетки и скручивать сигнальные проводки.

Значение R было равно 4.7МОм, чтобы хоть что-нибудь можно было увидеть на выходе, что в результате гарантировало очень много шума и много наводок 🙁

Такое я не мог предложить ещё не слишком опытному в электронике товарищу в качестве материала для успешного доклада.

Сладкая парочка

Настоящее чудо случилось, когда я заменил красный излучающий светодиод на нестерпимо яркий зелёный на 3 вольта: размах сигнала увеличился в 100 раз! Такое уже было легко усиливать и нестыдно показывать.

Потом я опробовал ещё несколько различных комбинаций светодиод-излучатель / светодиод-фотоприёмник. ИК пары как-то не впечатлили - все варианты, что были у меня в наличии оказались много хуже зелёно-красной сладкой парочки. Белые и синие светодиоды в качестве излучателей тоже явно проигрывали зелёному в сочетании с любыми из имеющихся у меня кандидатов в фотоприёмники. Зато вот оранжевый светодиод на 1.7В повышенной яркости выдал аж втрое больший сигнал, будучи освеченным тем же зелёненьким, что и в первом успешном опыте. Вот как выглядел сигнал на экране осцила, R=91КОм:

Разгоняемся

Фронты уже заметно завалены. Видны выбросы перерегулирования от петли отрицательной обратной связи. Но всё ещё красивый сигнал, вполне годный для определённого круга приложений.

Рецепт успеха

Если Вам по какой-либо причине понадобилась опто-пара с открытым каналом, а готового фирменного устройства под рукой не оказалось - весьма рекомендую воспользоваться моим только что проверенным рецептом:

  • Яркий 3-х вольтовый зелёный светодиод в качестве излучателя
  • Простенький оранжевый на 1.7В светодиод в качестве фотоприёмник а
  • TL071 или что-либо подобное для усилителя
  • Резистор в цепи обратной связи 1 МОм для начала, потом подбираем
  • Аккуратное экранирование и чистое питание

Будьте щедрыми!

Если Вам эта тема показалась интересной - буду рад комментариям, вопросам, советам.

Подумайте о своих друзьях: может, кому-нибудь из вашего круга в соц-сети эта статья поможет в написании курсовой или продвижении домашнего проекта по робото-строению? Поделитесь ссылкой прямо сейчас!

С ярким приветом 🙂



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows