¡ — Гвайд по системам водяного охлаждения (СВО). Водяное охлаждение для компьютера

¡ — Гвайд по системам водяного охлаждения (СВО). Водяное охлаждение для компьютера

27.09.2019
5 апреля 2017

Приветствую, дорогой читатель!

Если ты только недавно узнал о или слышал о них ранее и хотел бы установить себе, но не знал, с чего начать, тогда эта статья именно для тебя. В ней мы расскажем о самых базовых понятиях, основных компонентах СВО, а также нюансах, которые будут сопутствовать выбору тех или иных комплектующих.

Итак, полный набор компонентом кастомной системы водяного охлаждения состоит из:

Рассмотрим их подробнее.

РАДИАТОРЫ

Существует очень много различных типов радиаторов , отличающихся по размеру, структуре, материалу изготовления, но в целом они все очень похожи - и выполняют одну и ту же функцию - рассеивание тепла .

Изготавливаются радиаторы из двух материалов - алюминия и меди . Медные дороже алюминиевых, и они, безусловно, лучше . Но и алюминиевые от них не сильно отстают в качестве рассеивания тепла, поэтому не всегда большие финансовые затраты оправданы. Если твой бюджет ограничен и ты не гонишься за каждым градусом охлаждения или у тебя два и больше радиатора толщиной 45мм, рассчитаных на 3 кулера, то вполне можешь выбирать алюминиевый варианты . При этом учти, что самые именитые компании, в основном, производят только медные варианты. Если все же решишься брать медный , то один из вариантов - изделия от компании Alphacool , которая располагает наверное самым широким ассортиментом медных радиаторов среди всех производителей, специализирующихся на компонентах СВО.

С материалами разобрались, теперь время поговорить об основных технических параметров любого радиатора - размере и FPI .

Чем больше габариты радиатора , тем больше ребер присутствует в его конструкции. А это значит, что увеличивается площадь для рассеивания тепла и продуктивность работы радиатора возрастает. В большинстве случаев более габаритные радиаторы требуют менее мощных вентиляторов, но чтобы делать окончательные выводы, нужно учитывать FPI .

Параметр FPI характеризует количество ребер радиатора на один дюйм (плотность), что также влияет на общую площадь рассеивания тепла. Через радиаторы с высоким FPI труднее прогонять воздух, а это значит, что они требуют более мощных вентиляторов. Но если радиатор достаточно большой и в нем есть большое количество плотно расположенных ребер, то данный нюанс не столь важен, так как в данном случае большую часть времени работы СВО вентиляторы могут вообще не понадобиться. За примером далеко ходить не нужно - мой рабочий компьютер в начале рабочего дня вообще не запускает вентиляторы примерно 2 часа, так как этому способствует температура жидкости , которая циркулирует по контуру системы.

ВОДОБЛОКИ

Данный элемент СВО выпускается для каждого компонента ПК , так или иначе подверженного нагреванию во время работы. Самыми распространенными являются водоблоки для и . Основное различие всех водоблоков между собой заключается в основных технических параметрах: типе канальной системы , способе подачи жидкости , а также материале основания .

Если ты не планируешь бороться за каждую долю градуса, то вполне можешь покупать недорогие , но проверенные, китайские водоблоки - СВО с ними будет охлаждать гораздо продуктивнее любого воздушного кулера. К примеру, можно обратить внимание на модели от компании Bykski , обзоры и тесты которых ты можешь найти у нас на сайте. Если же тебе нужна максимальная производительность и красивый внешний вид, тогда предпочтительнее выбрать что-то похожее на новую модель водоблока от Alphacool , которого также есть на нашем сайте.

ПОМПА

Данный компонент системы водяного охлаждения является, по сути, ее сердцем. То есть, жизненно важным для работы элементом.

Основные характеристики помпы при выборе - это производительность , измеряемая в литрах за час , ну и шум. Зачастую, чем производительнее помпа, тем громче она работает. В конструкции некоторых помп присутствует PWM-разъем , позволяющий управлять скоростью работы мотора , тем самым регулируя производительность и, соответственно, шум.

При минимальной конфигурации СВО (один водоблок на процессоре) и небольшом бюджете тебе с головой хватит любой помпы с заявленной производительностью около 200 л/час . Ведь даже , в которых помпа работает на 100 л/час, вполне справляются со своей задачей. Если же ты гонишься за производительность и при этом хочешь максимально тихой работы, тогда самый приемлемый выбор - помпа D5 , но нужно учесть ее относительно высокую стоимость. Производителем заявляется, что ее средний показатель работы - около 450 л/час , по факту, в контуре средней конфигурации (водоблок на процессоре и ещё один на видеокарте) она выдает уверенных 200 л/час. Популярность двигателя D5 подкреплена тем фактом, что каждый именитый производитель выпускает свой вариант данной помпы, комплектются ее своим топом (крышкой), который привносит в дизайн индивидуальность, но при этом двигатель один и тот же - и работает он тихо, надежно и производительно.

РЕЗЕРВУАРЫ

Резервуар тоже является обязательным элементом СВО . Если посмотреть на вышеупомянутые необслуживаемые СВО, то у них нет резервуара, но в их случае система является герметичной и полностью заполнена жидкостью , то есть там нет воздуха. В кастомных же СВО резервуар служит для предотвращения возникновения воздуха в контуре, отслеживания уровня охлаждающей жидкости и удобного залива этой самой жидкости в контур.

Производятся резервуары, в основном, из акрила или стекла . Стеклянные дороже, но они более качественные. К примеру, акриловый резервуар может треснуть, если при его монтаже применить силу больше той, что следует, и сильно закрутить его конструктивные элементы.

Если ты не планируешь делать моддинг проект, то тебе хватит даже самого маленького акрилового резервуара , так как основные функции он сможет обеспечить. Единственное отличие маленького от большого заключается в том, что в маленький чаще нужно заливать охлаждающую жидкость.

ФИТИНГИ

Та маленькая , но очень важная часть, без которой бы не смогла полноценно функционировать ни одна система водяного охлаждения . Фитингов существует очень много и отличаются они по дизайну, типу совместимых шлангов, материалу и т.д. Самыми распространёнными являются фитинги для трубок 10/13 , то есть с внутренним диаметром 10 мм и внешним 13 мм. Есть фитинги с гайкой (компрессионные), а есть классические фитинги-елочки (штуцеры), на которые шланг просто надевается и зажимается скобой. В целом, по фитингам, особых нюансов нет. Просто выбирай нужный по дизайну, типу шланга, ну и материалу.

Разновидностью фитингов являются адаптеры , которые позволяют сделать контур СВО более красивым и избавить его от "вермишели" из трубок. Ведь трубки имеют большой радиус изгиба и если нужен небольшой переход между неудобно расположенными друг к другу компонентами СВО, то адаптеры - это хорошее решение.

ШЛАНГИ

Также очень важная часть системы жидкостного охлаждения. Позволяет соединить все компоненты СВО воедино . Различаются шланги исполнением , материалом , диаметром , расцветкой . Как было указано выше, наибольшее распространение обрели шланги с диаметром 10/13 .

Что касается материала, то шланги изготавливаются, в основном, из ПВХ или силикона . ПВХ-варианты дешевле, но у них радиус изгиба больше и они со временем мутнеют . Соответственно, при использовании силиконовых шлангов у тебя есть больше возможностей сделать эстетически красивый контур , что важно в различных моддинг проектах.

ОХЛАЖДАЮЩАЯ ЖИДКОСТЬ

Она является теплоносителем в контуре СВО . То есть она переносит тепло от горячих элементов (водоблоков) к элементам, которые тепло рассеивают (радиаторам). В контуре лучше всего использовать специальную профильную жидкость , но может подойти даже дистиллированная вода, которая лучше переносит тепло за счет отсутствия химических добавок, хотя она и нуждается в более частой замене .

Теперь ты знаешь основную информацию , которая позволит тебе определиться с комплектацией твоей первой системы водяного охлаждения . А если хочешь узнать еще больше, тогда можешь ознакомиться с тестами и обзорами на нашем сайте и YouTube-канале , а также мы постоянно открыты для твоих вопросов.

С видео версией данного руководства ты можешь ознакомиться ниже.

Введение

Ещё несколько лет назад водяное охлаждение считалось экстримом в мире моддинга. Системы обычно состояли из самостоятельно собранных пользователем блоков с редкими алюминиевыми деталями. Сегодня же, в 2005 году, водяное охлаждение стало весьма ценной и доступной, хотя всё ещё экзотической технологией. С помощью компаний вроде Koolance, Danger Den и Swiftech массовое производство компонентов систем водяного охлаждения открыло дверь даже для не слишком опытных моддеров.

Для водяного охлаждения существует две основные сферы применения: бесшумные компьютеры и экстремальный "разгон". Любителям бесшумных ПК водяное охлаждение позволяет избавиться от громких вентиляторов, в то же время, обеспечивая превосходный отвод тепла. Петля водяного охлаждения проходит через самые горячие участки ПК (CPU, GPU) и передаёт тепло на теплообменник. В результате компоненты не так сильно нагреваются, что создаёт неплохой потенциал для "разгона".

Проектируем общий вид системы

Перед тем, как начать выбирать компоненты, следует спроектировать вашу систему. Главное, что нужно продумать, - как разместить все компоненты внутри вашего корпуса.

Ниже мы привели список компонентов, которые используются в типичной системе водяного охлаждения.

  • Головки охлаждения: передают тепло от системных компонентов жидкости.
  • Насос: заставляет жидкость циркулировать по трубкам.
  • Теплообменник: рассеивает в воздух тепло, полученное от жидкости.
  • Вентилятор и кожух: помогают продувать воздух через теплообменник.
  • Резервуар: нужен для заполнения системы жидкостью и удаления из неё пузырьков.
  • Трубки: по ним течёт жидкость.

Будь ваша система полностью заключена в корпус (здесь "средняя башня" не подойдёт) или вы будете использовать внешний теплообменник, вы должны всё предварительно продумать. Водяное охлаждение - это не тот проект, который можно дорабатывать по ходу. Если вы что-то упустите, то во время сборки системы потратите намного больше времени и денег.

Головки охлаждения

Выбор нужных головок охлаждения обычно не представляет труда. Всё попросту упирается в деньги. Посетите несколько сайтов, предлагающих головки охлаждения, и решите, какая из них лучше всего вам подойдёт. Обратите внимание, из какого материала изготовлена головка (обычно медь) и подойдёт ли она для диаметра ваших трубок. Некоторые сайты продают головки, изготовленные из серебра, а не из меди. Несмотря на очевидный шик, реальные преимущества серебра перед медью ничтожны, так что мы не рекомендуем их покупать, даже если вы можете себе это позволить.

Если вы планируете охлаждать видеокарту, то неплохо будет взять две головки, чтобы охлаждать и GPU, и видеопамять. Большие головки, охлаждающие оба компонента, обычно трудно устанавливать, да и высота чипов на каждой карте разная. Кроме того, неправильный монтаж такой головки может привести к катастрофическим результатам. В большинстве случаев лучше всего купить головку для GPU, а к памяти прикрепить обычные радиаторы.

Купить головки охлаждения вы можете на следующих сайтах.

Насос

При выборе насоса следует учитывать несколько факторов. Для простоты мы будем рассматривать только линейные насосы, а не погружные.

Сначала нужно решить, будете ли вы питать насос от блока питания компьютера (12 В) или от розетки (220 В). Что касается производительности, то никакой разницы между двумя указанными способами нет. Преимущество 12-В насоса в том, что вы никогда не забудете его включить, так как он запускается вместе с компьютером. Недостатком будет то, что подобные насосы стоят несколько дороже сетевых вариантов. В принципе, если насос питается от сети, то для него тоже можно установить выключатель, который будет автоматически его запускать при старте компьютера. Некоторые пользователи таких насосов вообще никогда их не выключают, чтобы случайно не забыть включить насос.

При выборе насоса следует обращать внимание на такие параметры, как гидростатический напор, уровень шума, надёжность и скорость потока. Гидростатический напор очень важен - насос с большой скоростью потока, но маленьким напором не сможет прокачать жидкость через радиатор и головки охлаждения. Уровень шума насосов бывает разный, однако они редко работают громче, чем вентилятор теплообменника. Не забудьте установить прокладку между насосом и корпусом (в комплект поставки некоторых насосов прокладки уже входят). Тогда вибрация насоса не будет передаваться на корпус.

На следующих сайтах вы можете ознакомиться с популярными решениями.

Во всех системах водяного охлаждения необходимо отводить тепло от жидкости. Наиболее распространённый способ отвода тепла заключается в использовании теплообменника/радиатора. Он представляет собой змеевик, снабжённый большим количеством металлических рёбер и размещающийся снаружи или внутри корпуса компьютера. Через теплообменник пропускается жидкость, которая передаёт тепло рёбрам, а они, в свою очередь, окружающему воздуху. Конечно, существуют и более изощрённые технологии, но для большинства систем одного радиатора будет более чем достаточно.

Поскольку водяное охлаждение компьютера во многом напоминает радиатор автомобиля, вряд ли вас удивит, что самый дешёвый и наиболее эффективный способ конструкции теплообменника копирует систему охлаждения автомобиля. Однако использовать стандартный автомобильный радиатор будет практически невозможно из-за его большого размера и требований по потоку. Вместо этого энтузиасты зачастую берут так называемую сердцевину подогревателя (heater core). Наиболее популярные сердцевины для водяного охлаждения берут от 1984 Chevrolet Chevette и 1977 Pontiac Bonneville, из-за их хорошего соответствия корпусам "полная башня". Сердцевина Chevette имеет подходящую площадь поверхности для одного 120-мм вентилятора, а Bonneville достаточно большая, чтобы вместить два вентилятора. Сердцевины можно купить в любом автомагазине за $20-$30.

Перед тем, как устанавливать упомянутые сердцевины подогревателя в компьютер, необходимо сделать небольшие модификации. Нужно обрезать трубки, идущие от сердцевины, и заменить их нужными трубками. Кроме того, тщательно вычистите сердцевину подогревателя, так как в комплекте поставки она обычно бывает не такой чистой.

Для эффективного охлаждения теплообменника часто забывают о кожухе, который, по сути, является прослойкой между вентиляторами и радиатором. Стандартные вентиляторы корпуса отличаются "мёртвым пятном" в центре, поэтому кожух необходим для создания ровного воздушного потока вдоль рёбер.

Кожух очень просто сконструировать: его можно сделать из картона, листа металла или другого подручного материала. Один из самых удобных кожухов для сердцевины подогревателя Bonneville 77 можно сделать из контейнера для еды. Возьмите CD, обведите его на контейнере и вырежьте. В итоге вы получите два отверстия, идеально подходящие для 120-мм вентиляторов. Затем прикрепите вентиляторы к кожуху с помощью винтов, после чего подсоедините кожух к радиатору скотчем. Если будете вырезать свой кожух, делайте его толщиной не менее двух сантиметров: чем больше расстояние между вентиляторами и поверхностью радиатора, тем лучше.

Ниже приведены самые распространённые решения для теплообменника.

  • Сердцевина подогревателя
  • Black Ice

Резервуар, трубки и жидкость

Существует три способа заполнения системы водяного охлаждения. Всё зависит от размеров корпуса и от количества работы, которую вы готовы тратить на обслуживание вашей системы.

Первый метод состоит в использовании резервуара - простого контейнера с входным и выходным патрубками, а также с крышкой для заливки жидкости. Резервуар обладает несколькими преимуществами, самое важное из которых - лёгкий способ заполнения системы. Кроме того, размещение резервуара перед входным патрубком насоса гарантирует постоянную подачу жидкости в насос. Однако резервуар не понижает температуру жидкости: большое её количество означает, что она дольше будет достигать теплового баланса.

Простой и недорогой способ заполнения системы заключается в использовании T-line. При этом в водяной цикл размещается T-разветвитель, обычно перед насосом, от которого выходит трубка. Она работает в качестве небольшого резервуара, который можно наполнять с помощью воронки. Многие моддеры используют T-line не только из-за низкой цены, но также из-за того, что для этого требуется меньше пространства, чем для резервуара.

Наконец, вы можете использовать закрытый цикл, но при этом нужен погружной насос. Достаточно просто разместить насос в большом резервуаре с жидкостью и включить его. Когда система будет заполнена жидкостью, следует подключить входной патрубок насоса к трубке. Такое решение выглядит наиболее элегантным, но его труднее обслуживать.

В принципе, покупать специальные трубки на сайтах вовсе необязательно. Подойдут любые, лишь бы они имели правильный внутренний диаметр (ID), а патрубки - правильный внешний диаметр (OD).

Если будете покупать на сайтах моддеров, то там чаще всего встречаются трубки Clearflex-60 и Tygon. Основное отличие заключается в том, что трубки Tygon сертифицированы для лабораторного использования и обычно стоят чуть дороже.

Кроме того, не забывайте купить достаточное число креплений для трубок. Они бывают разных типов, берите те, которыми вам будет удобнее пользоваться.

Кроме того, к дистиллированной воде можно добавить хладагент. Опять же, вовсе необязательно покупать его на сайтах моддеров. Можно взять автомобильный хладагент. Следуйте указаниям на бутыли и создайте правильную смесь для вашей системы. Есть несколько причин использовать хладагент. Самая важная - предотвратить электрохимическую коррозию. Кроме того, хладагент предотвратит рост водорослей, да и краситель упростит обнаружение утечек.

Заключение и общие советы

Водяное охлаждение сегодня уже не такое сложное и опасное. Следуйте нашим советам, и вы не только сможете улучшить охлаждение вашей системы, но и получите немало удовольствия от работы своими руками. Конечно же, правильно собранная и должным образом украшенная система водяного охлаждения привлечёт внимание друзей на игровой вечеринке..

Ниже мы привели советы, которые будут не лишними во время сборки.

  • Семь раз отмерь, один отрежь.
  • Избегайте перегибов и 90-градусных углов трубок. Чем меньше трубок и изгибов, тем легче работать насосу. И всегда соединяйте входной патрубок насоса прямой трубкой, без перегибов.
  • Порядок головок охлаждения в цикле не слишком сильно влияет на температуру жидкости.
  • Лучше, если вентиляторы будут выдувать воздух из радиатора, а не вдувать. Такой подход тише, да и более эффективен (если, конечно, использовать кожух).
  • Пусть водяной цикл проработает пару часов без компьютера - тогда вы сможете обнаружить утечки. Лучше всего, если вы обмотаете все сочленения салфетками или газетной бумагой - тогда вы предотвратите попадание жидкости на компоненты системы.

Радиаторы и кулеры – об этом даже писать не так интересно, потому что все это давно есть в любом компьютере и этим никого не удивишь. Жидкий азот и всякие там системы с фазовым переходом – еще одна крайность, шансы встречи с которой в хозяйстве обычного человека почти нулевые. А вот «водянка»… в вопросе охлаждения компьютера это как золотая середина – необычно, но доступно; почти не шумит, но в то же время охладить может что угодно. Справедливости ради, СВО (система водяного охлаждения) правильней называть СЖО (система жидкостного охлаждения), ведь, по сути, залить внутрь можно что угодно. Но, забегая вперед, я использовал обычную воду, так что орудовать больше буду именно термином СВО.

Совсем недавно я достаточно подробно писал про сборку нового системного блока. Получившийся стенд выглядел следующим образом:

Вдумчивое изучение списка говорит о том, что тепловыделение некоторых устройств не просто высокое, а ОЧЕНЬ высокое. И если подключить все как есть, то внутри даже самого просторного корпуса будет как минимум жарко; а как показывает практика, будет еще и очень шумно.

Напомню, что корпусом, в который собирается компьютер, является пусть и не очень практичный (хотя с каждым разом я убеждаюсь в обратном), но очень презентабельный Thermaltake Level 10 – у него есть минусы, но за один только внешний вид ему можно очень многое простить.

На этом этапе материнская плата была установлена в корпус, в нее поставлена видеокарта – предварительно в самый верхний PCI-слот.

Установка радиатора/помпы/резервуара

Один из самых интересных этапов работы, на который у нас ушло больше всего времени (если бы мы сразу пошли по легкому пути, то управились бы за полчаса, но сперва мы перепробовали все сложные варианты, из-за которых все работы суммарно растянулись на 2 дня (конечно же, далеко неполных).

Система водяного охлаждения очень похожа на ту, что применяется в автомобилях, просто немного побольше – там тоже есть радиатор (чаще всего не один), кулер, охлаждающая жидкость и т.д. Но у автомобиля есть одно преимущество – солидный встречный поток холодного воздуха, который играет ключевую роль в охлаждении системы во время движения.

В случае с компьютером, отводить тепло приходится тем воздухом, который есть в комнате. Соответственно, чем больше размеры радиатора и количество кулеров, тем лучше. А так как хочется минимум шума, то эффективное охлаждение будет достигаться в основном за счет поверхности радиатора.

А суть проблемы заключалась в следующем. В скайпе мы предварительно сошлись на мнении «повесим сзади радиатора на 2-3 секции – его более чем хватит!», но как только мы взглянули на корпус, оказалось, что все не так-то просто. Во-первых, для трехсекционного радиатора там действительно было маловато места (если крепить радиатор на то отверстие, куда предполагается установка выдувного кулера корпуса), а во-вторых, даже если бы и хватило, то никак не получилось бы открыть сам корпус – мешалась бы «дверь» системного отсека:)

В общем, вариантов установки радиатора в корпус Thermaltake Level 10 мы насчитали минимум четыре – все они возможны, на каждый потребовалось бы разное количество времени и у каждого были бы свои плюсы и минусы. Начну с тех, что мы рассматривали, но которые нам не подошли:

1. Установка радиатора на задней (от пользователя) боковой стороне, то есть на съемной дверце.
Плюсы:
+ Возможность горизонтальной и вертикальной установки любого радиатора, хоть на 3-4 кулера
+ Размеры корпуса особо не увеличились бы

Минусы:
- Пришлось бы сверлить в дверце от 4 до 6-8 отверстий
- Снимать дверцу было бы очень неудобно
- При горизонтальном расположении потребовался бы радиатор с нестандартным расположением отверстия для залива жидкости
- При вертикальном расположении шланги были бы очень длинными и с большим изгибом
- Корпус будет стоять слева от меня (на подоконнике), а теплый воздух от кулеров в лицо мне не нужен:)

2. Установка радиатора сверху, на «кожухе» отсека блока питания. Плюсы и минусы идентичны

3. Установка двухсекционного радиатора внутри системного отсека

Плюсы:
+ Простота решения
+ Внешне не было бы никаких изменений
+ Дверца системного отсека открывалась бы без проблем

Минусы:
- Подошел бы только 2-секционный радиатор (этого мало для железа конфига)
- В таком случае браться холодному воздуху было бы не откуда, а гонять туда-сюда теплый воздух не хотелось.
- Были бы сложности по «расстановке» помпы и резервуара
- Даже если использовать сверхтонкие кулеры, перекрывались бы все SATA-разъемы (если бы они выводились на пользователя, а не вбок, то этой проблемы бы не было)

В общем, все эти варианты мы в той или иной степени попробовали – потратили много времени на поиски нужных компонентов, их примерку и т.д.

Самым последним вариантом оказалось достаточно необычное решение – может быть не самое на первый взгляд красивое, но действительно практичное. Это установка радиатора на задней стороне корпуса через специальный регулируемый переходник с механизмом типа «ножницы» .

Плюсы:
+ Ничего не пришлось сверлить
+ Возможность повесить ЛЮБОЙ радиатор
+ Отличная продуваемость
+ Не перекрывался доступ к разъемам материнской платы
+ Минимальная длина шлангов, минимум изгибов
+ Конструкция съемная и транспортабельна

Минусы:
- Не самый презентабельный внешний вид:)
- Открыть дверь системного отсека теперь не так просто
- Достаточно дорогой переходник

Почему мы пришли к этому варианту в последнюю очередь? Потому что во время поисков для предыдущих трех вариантов, совершенно случайно нашли переходник, про который все забыли, а в в интернет магазине его не было) Глядя на единственный (последний) экземпляр монтажной рамки Koolance Radiator Mounting Bracket , я подумал «И чего только не придумают!». Суть в следующем – в отверстия для крепления к корпусу заднего выдувного кулера вставляются 4 «конусных гвоздя», на которые вешается специальная рамка.

Конструкция этой рамки такова, что ее длинна может изменяться путем подкручивания фиксаторов, а снимается она смешением двух частей ее корпуса (чтобы отверстия разжались и ее можно было снять с «гвоздиков») – вот я загнул!) Гораздо проще понять все по фото.

Рамка металлическая и очень прочная – в этом я убедился, когда мы на пробу повесили 3-секционный (на 3 кулера) радиатор. Ничего не болтается и не качается, все висит намертво, но в «разжатом» случае дверь вполне себе открывалась – такой вариант меня полностью устраивал!

Радиаторов на выбор было огромное количество – черные, белые, красные… В этом вопросе меня больше всего удивил 4-секционный TFC Monsta , способный отвести до 2600Вт тепла (это, видимо, SLI из четырех 480ых)! Но мы люди гораздо проще, поэтому решили остановиться на том радиаторе, который примеряли - Swiftech MCR320-DRIVE . Его преимущество в том, что он объединяет в себе сразу три компонента – радиатор (MCR320 QP Radiator для трех 120мм кулеров), резервуар для жидкости и помпу высокого давления (MCP350 Pump , полный аналог «обычной» помпы Laing DDC ). По сути, с такой железякой для СВО потребуется докупить только водоблоки, шланги и прочие мелочи, что у нас уже было. Помпа работает от 12В (от 8 до 13.2), издавая шум 24~26 dBA. Максимальное создаваемое давление составляет 1.5бар, что примерно равно 1.5 «атмфосферам».

Для радиатора было три кулера-претендента – Noctua , Be Quiet и Scythe . В итоге остановились на индонезийских (с японскими корнями) Scythe Gentle Typhoon (120мм, 1450 об/мин, 21 dBA) – эти вертушки не первый день пользуются большим спросом у многих пользователей. Они ооочень тихие, а качество балансировки подшипников просто удивляет – кулер будет неестественно долго крутиться даже от самого легкого прикосновения. Срок службы составляет 100000 часов при 30°C (или 60000 часов при 60 °C), чего хватит для морального устаревания данного системника.

Обзор этих «тайфунов» был на ФЦентре – советую почитать . Поверх кулеров были поставлены защитные решетки, чтобы ребенок не засунул в вентиляторы чего-нибудь жизненно необходимого.

Примеряем получившуюся конструкцию к системному блоку – выглядит очень необычно) Но зато смотрите, как удобно – чтобы залезть внутрь корпуса (или снять систему охлаждения), достаточно нажать одну «кнопку» и вся конструкция, фактически, уже отсоединена. Сжимаем монтажную рамку и имеем полный доступ к внутренностям – там более чем просторно, ведь мы туда ничего не громоздили. Может быть я описал не самый удобный вариант, но… если учесть, что после сборки компьютера лазить внутрь практически не придется, а хорошее охлаждение гораздо важнее, то я считаю наше решение правильным.

Конструкция в сборе весит 2.25 килограмма, а с жидкостью и фитингами, наверное, все 3 – забегая вперед, даже такой вес рамке от Koolance оказался по силам, за что ей респекты и уважухи:)

Финишная прямая

Дело осталось за малым – установить все компоненты, «обвязать водой» и протестировать получившийся компьютер. Все началось с установки фитингов – красивые такие железки (в виде «ёлочек»), которые через специальные прокладки (и иногда, когда резьба фитинга очень длинная, через специальные спэйсеры) устанавливаются в соответствующее отверстие водоблока или резервуара – для затягивания мы использовали небольшой разводной ключ, но тут тоже важно не перестараться.

Помимо фитингов, в два отверстия водоблока видеокарты были установлены специальные заглушки:

После этого мы продумали маршрут, по которому будет идти вода. Правило простое – от менее нагретого к более. Соответственно, «выход» радиатора соединяется сперва с водоблоком материнской платы, из него выход на процессор, затем в видеокарту и уже потом обратно на вход в радиатор, остужаться. Так как вода одна на всех, то температура всех компонентов в результате будет примерно одинаковой – именно из этих соображений делают многоконтурные системы и именно по этой причине не имеет смысла подключать к одному контуру еще и всякие там жесткие диски, оперативку и т.д.

Роль шланга досталась красному Feser Tube (ПВХ, рабочая температура от -30 до +70°C, давление на разрыв 10МПа), для нарезки которого использовался специальный хищный инструмент.

Ровно отрезать шланг – может быть и не так сложно, но очень важно! Почти на все шланги были надеты специальные пружины против изгибов и изломов шланга (минимальный радиус петли шланга становится равным ~3.5см).

На каждый шланг (с обеих сторон) в области фитинга нужно установить по «хомуту» – мы использовали красивые Koolance Hose Clamp . Устанавливаются они с помощью обычных плоскогубцев (с грубой мужской силой), поэтому нужно действовать аккуратно, чтобы случайно не задеть чего-нибудь.

Пришло время поработать над соединением «внутреннего мира» с «внешним». Для того, чтобы иметь возможность снять радиатор-резервуар-помпу (например, для открытия корпуса или для транспортировки), мы поставили на трубки так называемые «быстросъемы» (быстросъемные клапаны), принцип действия которых до безобразия прост.

Когда мы поворачиваем соединение (как у BNC-коннекторов), отверстие в трубке закрывается-открывается, благодаря чему разобрать «водянку» можно меньше чем за минуту, без всяких луж и прочих последствий. Еще парочка дорогих, но прекрасно выглядящих железяк:

Расходы

5110 - Водоблок EK FB RE3 Nickel на материнскую плату
3660 - Водоблок EK-FC480 GTX Nickel+Plexi на видеокарту
1065 - Бэкплэйт EK-FC480 GTX Backplate Nickel на видеокарту
2999 - Водоблок Enzotech Stealth на процессор
9430 - Помпа/радиатор/резервуар Swiftech MCR320-DRIVE
2610 - Два быстросъемных клапана Release Coupling
4000 - Переходник Koolance Radiator Mounting Bracket
1325 - Три кулера Scythe Gentle Typhoon (120мм) для радиатора
290 - Четыре фитинга EK-10mm High Flow Fitting
430 - Термопаста Arctic-Cooling-MX-3
400 - Девять зажимов для шлангов Koolance Hose Clamp
365 - Жидкость Nanoxia HyperZero
355 - Шланг Feser Tube

Столь высокая цена в данном случае вызвана тем, что использовались fullcover-водоблоки для ОЧЕНЬ горячих железок, все тепло от которых нужно рассеивать соответствующим радиатором. Для более простых систем подобные решения просто не понадобятся, так же можно обойтись и без декоративных накладок и всяких быстросъемных клапанов – в таких случаях можно запросто уложиться и в половину стоимости. Цена среднестатистической «водянки» составляет 12-15 тысяч рублей, что в 4-5 раз превышает стоимость действительно хорошего процессорного кулера.

Включение и работа

После того, как все компоненты системы были соединены, подошло время к «leak-тесту» (тест на протечку) – в радиатор была залита охлаждающая жидкость (дважды дистиллированная вода Nanoxia HyperZero красного цвета, с антикоррозийными и антибиологическими присадками) – в контур вошло порядка 500 мл.


Парень в хабрамайке заправляет радиатор)

Т.к. нельзя исключать вероятность того, что к компонентам компьютера что-то было подсоединено не так, было решено отдельно проверить работу самой системы водяного охлаждения. Для этого все провода (от кулеров и от помпы) были подсоединены, а в 24-пиновый разъем блока питания вставлена скрепка – для «холостого хода». На всякий случай внизу мы положили салфеток, чтобы малейшую течь было легче обнаружить.

Нажатие кнопки и… все как задумывалось) Честно сказать, до этого мне приходилось видеть водянки (помимо интернетов) только на различных выставках и конкурсах, где было очень шумно; поэтому я подсознательно готовился к «журчанию ручья», но уровень шума приятно удивил – по большей части было слышно только работу помпы. Первоначально присутствовали «шипящие» звуки – из-за пузырьков воздуха, находящихся внутри контура (их было видно в некоторых местах шлангов). Для решения этой проблемы была открыта пробка резервуара-радиатора – от циркуляции потока воздух постепенно вышел и система стала работать еще тише. После долива жидкости пробка была закрыта и компьютер поработал еще минут 10. Шума от кулера блока питания и от трех на радиаторе не было слышно вообще, хотя их воздушные потоки давали о себе знать.

Убедившись в том, что система полностью работоспособна, мы решили окончательно собрать тестовый стенд. Подключение проводов заняло не больше минуты – гораздо дольше искали монитор и провод для его подключения, т.к. все работали на ноутбуках;) Фраза «Reboot and select proper boot device or insert boot media in selected boot device and press a key» стала бальзамом на душу – мы вставили один из «рабочих» SSD-дисков (с Windows 7 на борту) - хорошо, что новый комп принял такой вариант. Для полного счастья только обновили драйвера для чипсета и установили драйвера для видеокарты.

Запускаем диагностического монстра Everest , где на одной из вкладок находим показания датчиков температуры: 30°C были справедливы для всех компонентов системы – CPU, GPU и материнской платы – что ж, очень приятные цифры. Равенство цифр вызвало предположение о том, что охлаждение в режиме простоя ограничено комнатной температурой, ведь ниже нее температуры в обычной водянке быть не может. В любом случае гораздо интересней посмотреть, какая ситуация будет при нагрузке.

15 минут «офисной работы» и температура видеокарты поднялась до 35°C.

Начинаем с проверки CPU, для чего используем программу OCCT 3.1.0 – спустя достаточно продолжительное время в режиме 100% нагрузки, максимальная температура процессора составила 38°C, а температура ядер 49-55°C соответственно. Температура материнской платы составляла 31°C, северного моста - 38°C, южного - 39°C. Кстати, это очень примечательно, что у всех четырех ядер процессора была практически равная температура – судя по всему, это заслуга именно водяного блока, который отводит тепло равномерно со всей поверхности крышки процессора. 50+ градусов для 4-ядерного Intel Core i7-930 с TDP в 130Вт – на такой результат едва способен хоть один стоковый воздушный кулер. А если и способен, то шум от его работы при этом вряд ли кому-то понравится (интернет гласит о температуре данного процессора в 65-70 градусов с кулером Cooler Master V10 – тот, что с элементом Пельтье).

Видеокарту по привычке прогревали программой FurMark 1.8.2 (в простонародье «бублик») – вряд ли на скорую руку можно было придумать что-то более ресурсоемкое и информативное.

Помимо «Эвереста» так же была установлена программа EVGA Precision 2.0 . На максимально доступном разрешении (с максимальным сглаживаниями) был запущен стресс-тест с ведением лога температуры – уже минуты через 3 температура видеокарты устоялась на отметке в 52 градуса! 52 градуса в нагрузке для топовой (на данный момент) видеокарты NVIDIA GTX 480 на архитектуре Fermi – это не просто здорово, это замечательно!)

Для сравнения, температура видеокарты в нагрузке со штатным кулером может доходить до 100 градусов, а с хорошим нереференсным – до 70-80.

В общем, температурный режим в полном порядке – в нагрузке кулеры выдувают из радиатора практически холодный воздух, а сам радиатор еле теплый. Не буду говорить в этой статье про разгонный потенциал, скажу лишь, что он есть. Но гораздо приятней совсем другое - система работает практически бесшумно!

The end

Можно долго рассуждать о получившемся результате, но он мне понравился, как и всем тем, кто его уже успел посмотреть. Как ни крути, а в корпусе Thermaltake Level 10 мне удалось собрать более чем производительный конфиг, который еще долгое время будет актуальным. Более того, почти без проблем «встала» полноценная система водяного охлаждения, которая помимо хорошего охлаждения начинки дает +5 к внешнему виду. Говоря о температурном режиме, можно смело говорить и о солидном потенциале для разгона – сейчас даже в нагрузке система охлаждения работает далеко не на пределе возможностей.

Я забыл написать про еще один важный плюс – интересность. Пожалуй, это самое интересное, что мне приходилось делать с железками – ни одна сборка компьютера не приносила столько удовольствия! Одно дело, когда ты собираешь обычные «бездушные» компики, совсем другое дело – когда понимаешь всю ответственность и подходишь к делу со всей душой. Такая работа занимает далеко не 5 минут – все это время ты ощущаешь себя ребенком, играющим во взрослый конструктор. А еще инженером-технологом-конструктором-сантехником-дизайнером, да просто гиком… в общем, интересность сильно повышенная!

Система водяного охлаждения для компьютера позволяет наиболее эффективно устранить проблему сильного нагрева центрального процессора.

Такое приспособление не имеет строго определенной структуры. Оно может варьироваться и состоять из различных структур сразу.

Суть системы жидкостного охлаждения

Во всех случаях жидкостная система охлаждения компьютера состоит из комбинации следующих типов схем:

  • Схема с параллельным подключением узлов, которые подвергаются охлаждению (параллельная схема работы). Достоинства такой структуры: простая реализация схемы, легко просчитываемые характеристики узлов, которые необходимо охладить;
  • Последовательная структурная схема – все охлаждаемые компоненты подключены между собой параллельно. Преимущества такой схемы заключаются в том, что охлаждение каждого из узлов происходит эффективнее.
    Недостаток: достаточно сложно направить к определённому узлу достаточное количество хладагента;
  • Комбинированные схемы. Они более сложные, так как содержат в себе сразу несколько элементов как с параллельным, так и с последовательным подключением.

Составляющие элементы

Чтобы охлаждение центрального процессора происходило быстро и эффективно, каждый куллер должен иметь следующие элементы:

  1. Теплообменник – данный элемент нагревается, вбирая в себя тепло центрального процессора. Перед новым использованием следует дождаться полного охлаждения теплообменника;
  2. Помпа для воды – резервуар для хранения жидкости;
  3. Несколько трубопроводов ;
  4. Переходники между узлами и трубопроводами ;
  5. Бачок для расширения – предназначен для того, чтобы обеспечить необходимое место для расширяющегося в процессе нагревания теплообменника;
  6. Наполняющий систему теплоноситель – элемент, который наполняет всю структуру жидкостью: дистиллированной водой или специализированной жидкостью для СВО;
  7. Ватерблоки – теплосъемники для тех элементов, которые выделяют тепло.

Примечание! Жидкостная система охлаждения малошумная по сравнению с вентиляторами. Некоторый шум все же присутствует, так как его коэффициент не может быть нулевым.

Лучшие системы водяного охлаждения для компьютера

Основное назначение систем охлаждения ПК – обеспечение бесперебойной и стабильной работы самого компьютера и создание нормальных условий для его пользователя, что подразумевает минимум шума во время эксплуатации.

Эти устройства отводят тепло от таких элементов, как процессор и блок питания, предотвращая их перегрев и последующий выход из строя.

Существует 2 варианта системы охлаждения – пассивное и активное. Второй тип, в свою очередь, делится на воздушное, подходящее для обычных ПК и водяное, которое требуется для систем с очень мощными или разогнанными процессорами.

Жидкостное охлаждение отличается небольшими габаритами, невысоким уровнем создаваемого шума и высокой эффективностью отвода тепла, благодаря чему пользуется большой популярностью.

Для выбора такой системы следует учесть некоторые нюансы, включая:

  • Стоимость;
  • Совместимость с процессорами или видеокартами;
  • Параметры охлаждения.

Ниже приведен список самых популярных систем водяного охлаждения с популярного интернет-каталога Яндекс-маркет.

Список популярных систем водяного охлаждения с market.yandex.ru/catalog/55321 .

Оригинальная на вид СВО DeepCool Captain 240 оборудована двумя фирменными чёрно-красными вентиляторами с насечками на лопастях. Крыльчатка каждого способна вращаться со скоростью до 2200 об/мин, создавая шум не более 39 дБ.

При этом на системе есть разветвитель, позволяющий установить дополнительно ещё 2 вентилятора. Срок службы, который гарантируется производителем, составляет около 120 тысяч часов.

Вес системы, подходящей для процессоров и AMD и Intel, равен 1,183 кг.

Примерная стоимость устройства – от 5500 руб.

Сравнительно новую систему охлаждения видеокарт Liquid Freezer 240, появившуюся в продаже в конце прошлого года, можно назвать универсальной, так как подходит она для большинства современных процессоров, создавая во время работы уровень шума не более 30 дБ.

Скорость вращения лопастей каждого из 4 вентиляторов – до 1350 об/мин, масса системы – 1,224 кг. Главным достоинством является снижение температуры процессора на 40–50 градусов, а недостатком – лишь громоздкие размеры.

Покупка такого гаджета обойдётся в 6000 руб.

Эффективная система охлаждения всего системного блока Nepton 140XL отличается увеличенными размерами радиатора и шлангов, а также последовательным, а не параллельным расположением двух вентиляторов.

Благодаря наличию 140-миллиметрового вентилятора JetFlo, обширной площади контакта жидкости с теплосъёмником и высокому качеству обработки последнего она охлаждает достаточно мощные процессоры, включая даже те, которые были разогнаны для увеличения производительности.

При этом эксплуатационный срок устройства, совместимого с процессорами типа Intel (S775, S1150, S1356, S2011) и AMD (AM2, AM3, FM2), достигает 160 тысяч часов. Максимальная скорость вращения лопастей – 2000 об/мин, масса составляет 1,323 кг, а шум при работе не превышает 39 дБ.

Приобрести такую систему в сети можно по цене от 6200 руб.

Систему Maelstrom 240T, предназначенную для процессоров Intel 1150–1156, S1356/1366 и S2011, а также AMD FM2, AM2 и AM3, отличает синяя подсветка вентиляторов, позволяющая не только охлаждать компьютер, но и сделать его моддинг.

Срок службы устройства – в переделах 120 тысяч часов, вес – 1100 г, создаваемый уровень шума – до 34 дБ.

Купить устройство в Интернете можно за 4400–4800 руб.

Универсальную и достаточно простую в компоновке систему Corsair H100i GTX используют для охлаждения большинства выпускающихся в течение последних нескольких лет процессоров AMD и Intel.

Вес оборудования в сборе составляет 900 г, уровень шума – около 38 дБ, а сила вращения вентиляторов – до 2435 об/мин.

Средняя стоимость карты составляет в сети около 10 тыс. руб.

Особенностью использования системы Cooler Master Seidon 120V является возможность устанавливать её как внутри, так и снаружи корпуса. При этом вентиляторы, вращающиеся со скоростью до 2400 об/мин, работают очень тихо – с уровнем шума до 27 дБ.

Совместимость устройства – современные процессоры Intel и AMD (до LGA1150 и Socket AM3, соответственно). Система весит всего 958 г и способна проработать 160 тыс. часов.

Приобретение возможно по цене от 3600 руб.

Система охлаждения своими руками

Систему охлаждения процессора можно приобрести уже в готовом виде. Однако из-за довольно высокой стоимости устройства и не всегда достаточной эффективности предлагаемых моделей, допускается сделать её самостоятельно и в домашних условиях.

Получившаяся система будет не такой привлекательной на вид, но вполне эффективной в действии.

Для самостоятельного изготовления системы следует сделать:

  • Ватерблок;
  • Радиатор;
  • Помпу.

Повторить конструкцию большинства СВО, выпускаемых серийно, вряд ли удастся. Однако, немного разбираясь в компьютерах и термодинамике, можно попробовать сделать что-то похожее если не на вид, то хотя бы по принципу действия.

Изготовление ватерблока

Главную деталь системы, на которую приходится максимум выделяемого процессором тепла, изготовить сложнее всего.

Для начала выбирается материал устройства – обычно это листовая медь. Затем следует определиться с габаритами – как правило, для охлаждения достаточно блока 7х7 см с толщиной около 5 мм.

Геометрическая форма устройства принимается такой, чтобы находящаяся внутри жидкость максимально эффективно омывала все элементы охлаждаемой конструкции.

В качестве основания ватерблока можно выбрать, например, медную пластину, а рабочую структуру изготовить из тонкостенных медных трубок. Количество трубок на примере принято равным 32 шт.

Сборка осуществляется с использованием припоя и электропечи, нагретой до температуры 200 градусов. После этого приступают к изготовлению следующей детали – радиатора.

Радиатор

Чаще всего это приспособление выбирают уже готовым, а не изготавливают дома. Найти и приобрести такой радиатор можно либо в компьютерном магазине, либо в автомобильном салоне.

Однако существует возможность и самостоятельно создать необходимый элемент СВО из следующих предметов:

  • 4 медных трубок диаметром 0,3 см и длиной 17 см;
  • 18 метров медного обмоточного провода (d = 1,2 мм);
  • Любого листового металла толщиной около 4 мм.

Трубки обрабатываются припоем, из металла изготавливается оправка шириной в 4–5 см и длиной до 20 см. В ней сверлятся отверстия, куда заводится проволока. Теперь провод наматывается вокруг обмотки.

Процесс повторяют три раза, получив столько же одинаковых спиралей.

Сборку спиралей и трубок начинают, сначала изготовив рамку. Затем натягивают на неё проволоку. Заключительным этапом является соединение рамки с входным и выходным коллекторами системы. В результате получается деталь следующего вида:

Помпа и другие детали

В качестве помпы допускается брать аналогичное устройство, предназначенное для аквариумов. Достаточно будет прибора производительностью 300–400 л/мин.

Его комплектуют расширительным бачком (плотно закрывающейся пластиковой ёмкостью) и шлангом из ПВХ с проходными патрубками из обрезков металлических (медных) трубок.

Сборка

Перед тем, как собирать и устанавливать систему, следует удалить заводское устройство, установленное на процессоре. Теперь необходимо:

  • Закрепить ватерблок сверху охлаждаемой детали, для чего используют прижимную планку;
  • Заправить систему дистиллированной водой;
  • Закрепить на внутренней поверхности крышки компьютера радиатор (напротив отверстий). Если вентиляционных отверстий нет, их следует проделать самостоятельно.

Завершающим этапом должно стать закрепление сначала вентилятора на процессоре (поверх ватерблока). И, наконец, необходимо обеспечить питание для помпы путём установки её рабочего реле внутри блока питания.

В результате получается собственноручно изготовленная система водяного охлаждения, достаточно эффективно снижающая температуру процессора на 25–35 градусов. При этом экономятся средства, которые могли бы пойти на покупку недешёвого оборудования.

Тематичсекие видеоролики:

Как установить систему водяного охлаждения на ЦП Corsair H100i

Система водяного охлаждения для компьютера - Подробное описание

Система водяного охлаждения своими руками

Систему водяного охлаждения для вашего компьютера можно собрать своими руками. Водяное охлаждение - СВО поможет вам собрать бесшумную и стабильную систему для любых целей. Будь то игровой компьютер или рабочий.

Как правильно организовать охлаждение в игровом компьютере

Применение даже самых эффективных кулеров может оказаться бесполезным, если в компьютерном корпусе плохо продумана система вентиляции воздуха. Следовательно, правильная установка вентиляторов и комплектующих является обязательным требованием при сборке системного блока. Исследуем этот вопрос на примере одного производительного игрового ПК

⇣ Содержание

Эта статья является продолжением серии ознакомительных материалов по сборке системных блоков. Если помните, в прошлом году вышла пошаговая инструкция « », в которой подробно описаны все основные моменты по созданию и проверке ПК. Однако, как это часто бывает, при сборке системного блока важную роль играют нюансы. В частности, правильная установка вентиляторов в корпусе увеличит эффективность работы всех систем охлаждения, а также уменьшит нагрев основных компонентов компьютера. Именно этот вопрос и рассмотрен в статье далее.

Предупреждаю сразу, что эксперимент проводился на базе одной типовой сборки с использованием материнской платы ATX и корпуса форм-фактора Midi-Tower. Представленный в статье вариант считается наиболее распространенным, хотя все мы прекрасно знаем, что компьютеры бывают разными, а потому системы с одинаковым уровнем быстродействия могут быть собраны десятками (если не сотнями) различных способов. Именно поэтому приведенные результаты актуальны исключительно для рассмотренной конфигурации. Судите сами: компьютерные корпусы даже в рамках одного форм-фактора имеют разные объем и количество посадочных мест под установку вентиляторов, а видеокарты даже с использованием одного и того же GPU собраны на печатных платах разной длины и оснащены кулерами с разным числом теплотрубок и вентиляторов. И все же определенные выводы наш небольшой эксперимент сделать вполне позволит.

Важной «деталью» системного блока стал центральный процессор Core i7-8700K. Подробный обзор этого шестиядерника находится , поэтому не буду лишний раз повторяться. Отмечу только, что охлаждение флагмана для платформы LGA1151-v2 является непростой задачей даже для самых эффективных кулеров и систем жидкостного охлаждения.

В систему было установлено 16 Гбайт оперативной памяти стандарта DDR4-2666. Операционная система Windows 10 была записана на твердотельный накопитель Western Digital WDS100T1B0A. С обзором этого SSD вы можете познакомиться .

MSI GeForce GTX 1080 Ti GAMING X TRIO

Видеокарта MSI GeForce GTX 1080 Ti GAMING X TRIO, как видно из названия, оснащена кулером TRI-FROZR с тремя вентиляторами TORX 2.0. По данным производителя, эти крыльчатки создают на 22 % более мощный воздушный поток, оставаясь при этом практически бесшумными. Низкая громкость, как говорится на официальном сайте MSI, обеспечивается в том числе и за счет использования двухрядных подшипников. Отмечу, что радиатор системы охлаждения , а его ребра выполнены в виде волн. По данным производителя, такая конструкция увеличивает общую площадь рассеивания на 10 %. Радиатор соприкасается в том числе и с элементами подсистемы питания. Чипы памяти MSI GeForce GTX 1080 Ti GAMING X TRIO дополнительно охлаждаются специальной пластиной.

Вентиляторы ускорителя начинают вращаться только в тот момент, когда температура чипа достигает 60 градусов Цельсия. На открытом стенде максимальная температура GPU составила всего 67 градусов Цельсия. При этом вентиляторы системы охлаждения раскручивались максимум на 47 % — это примерно 1250 оборотов в минуту. Реальная частота GPU в режиме по умолчанию стабильно держалась на уровне 1962 МГц. Как видите, MSI GeForce GTX 1080 Ti GAMING X TRIO имеет приличный фабричный разгон.

Адаптер оснащен массивным бекплейтом, увеличивающим жесткость конструкции. Задняя сторона видеокарты имеет L-образную полосу со встроенной светодиодной подсветкой Mystic Light. Пользователь при помощи одноименного приложения может отдельно настроить три зоны свечения. К тому же вентиляторы обрамлены двумя рядами симметричных огней в форме драконьих когтей.

Согласно техническим характеристикам, MSI GeForce GTX 1080 Ti GAMING X TRIO имеет три режима работы: Silent Mode — 1480 (1582) МГц по ядру и 11016 МГц по памяти; Gaming Mode — 1544 (1657) по ядру и 11016 МГц по памяти; OC Mode — 1569 (1683) МГц по ядру и 11124 МГц по памяти. По умолчанию у видеокарты активирован игровой режим.

С уровнем производительности референсной GeForce GTX 1080 Ti вы можете познакомиться . А еще на нашем сайте выходил MSI GeForce GTX 1080 Ti Lightning Z. Этот графический адаптер тоже оснащен системой охлаждения TRI-FROZR.

В основе сборки лежит материнская плата MSI Z370 GAMING M5 форм-фактора ATX. Это слегка видоизмененная версия платы MSI Z270 GAMING M5, которой вышел на нашем сайте прошлой весной. Устройство отлично подойдет для разгоняемых K-процессоров Coffee Lake, так как конвертер питания с цифровым управлением Digitall Power состоит из пяти двойных фаз, реализованных по схеме 4+1. Четыре канала отвечают непосредственно за работу CPU, еще один — за встроенную графику.

Все компоненты цепей питания соответствуют стандарту Military Class 6 — это касается как дросселей с титановым сердечником, так и конденсаторов Dark CAP с не менее чем десятилетним сроком службы, а также энергоэффективных катушек Dark Choke. А еще слоты DIMM для установки оперативной памяти и PEG-порты для установки видеокарт облачены в металлизированный корпус Steel Armor, а также имеют дополнительные точки пайки на обратной стороне платы. Для ОЗУ применена дополнительная изоляция дорожек, а каждый канал памяти разведен в своем слое текстолита, что, по заявлению производителя, позволяет добиться более «чистого» сигнала и увеличить стабильность разгона модулей DDR4.

Из полезного отмечу наличие сразу двух разъемов формата M.2, которые поддерживают установку накопителей PCI Express и SATA 6 Гбит/с. В верхний порт можно установить SSD длиной до 110 мм, в нижний — до 80 мм. Второй порт дополнительно оснащен металлическим радиатором M.2 Shield, который контактирует с накопителем при помощи термопрокладки.

За проводное соединение в MSI Z370 GAMING M5 отвечает гигабитный контроллер Killer E2500, а за звук — чип Realtek 1220. Звуковой тракт Audio Boost 4 получил конденсаторы Chemi-Con, спаренный усилитель для наушников с сопротивлением до 600 Ом, фронтальный выделенный аудиовыход и позолоченные аудиоразъемы. Все компоненты звуковой зоны изолированы от остальных элементов платы токонепроводящей полосой с подсветкой.

Подсветка материнской платы Mystic Light поддерживает 16,8 млн цветов и работает в 17 режимах. К материнской плате можно подключить RGB-ленту, соответствующий 4-пиновый разъем распаян в нижней части платы. Кстати, в комплекте с устройством идет 800-мм удлинитель со сплиттером для подключения дополнительной светодиодной ленты.

Плата оснащена шестью 4-контактными разъемами для подключения вентиляторов. Общее количество подобрано оптимально, расположение — тоже. Порт PUMP_FAN, распаянный рядом с DIMM, поддерживает подключение крыльчаток или помпы с током силой до 2 А. Расположение опять же весьма удачное, так как к этому коннектору просто подключить помпу и от необслуживаемой СЖО, и от кастомной системы, собранной вручную. Система ловко управляет в том числе «карлсонами» с 3-контактным коннектором. Частота регулируется как по количеству оборотов в минуту, так и по напряжению. Есть возможность полной остановки вентиляторов.

Наконец, отмечу еще две очень полезные «фишки» MSI Z370 GAMING M5. Первая — это наличие индикатора POST-сигналов. Вторая — блок светодиодов EZ Debug LED, расположенный рядом с разъемом PUMP_FAN. Он наглядно демонстрирует, на каком этапе происходит загрузка системы: на стадии инициализации процессора, оперативной памяти, видеокарты или накопителя.

Выбор на Thermaltake Core X31 пал неслучайно. Перед вами Tower-корпус, который соответствует всем современным тенденциям. Блок питания устанавливается снизу и изолируется металлической шторкой. Присутствует корзина для установки трех накопителей форм-факторов 2,5’’ и 3,5’’, однако HDD и SSD можно закрепить на заградительной стенке. Есть корзина для двух 5,25-дюймовых устройств. Без них в корпус можно установить девять 120-мм или 140-мм вентиляторов. Как видите, Thermaltake Core X31 позволяет полностью кастомизировать систему. Например, на базе этого корпуса вполне реально собрать ПК с двумя 360-мм радиаторами СЖО.

Устройство оказалось очень просторным. За шасси полно места для прокладки кабелей. Даже при небрежной сборке боковая крышка легко закроется. Пространство под железо позволяет использовать процессорные кулеры высотой до 180 мм, видеокарты длиной до 420 мм и блоки питания длиной до 220 мм.

Днище и передняя панель оснащены пылесборными фильтрами. Верхняя крышка снабжена сетчатым ковриком, который тоже ограничивает попадание пыли внутрь и облегчает установку корпусных вентиляторов и систем водяного охлаждения.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows