Лучшие виртуальные машины для Windows: ставьте, если очень хочется посмотреть на другие ОС

Лучшие виртуальные машины для Windows: ставьте, если очень хочется посмотреть на другие ОС

25.07.2019

V irtualBox – программный продукт виртуализации для операционных систем Microsoft Windows, DOS, GNU/Linux, Mac OS X и SUN Solaris/OpenSolaris. Программа была создана компанией Innotek с использованием открытого исходного кода Qemu. Первая публично доступная версия VirtualBox появилась 15 января 2007 года.

В феврале 2008 Innotek был приобретён компанией Sun Microsystems, модель распространения VirtualBox при этом не изменилась.

К ключевым возможностям VirtualBox можно отнести:

    Кроссплатформенность

    Модульность

    Поддержка USB 2.0, когда устройства хост-машины становятся доступными для гостевых ОС

    Встроенный RDP-сервер, а также поддержка клиентских USB-устройств поверх протокола RDP

    Экспериментальная поддержка образов жестких дисков VMDK/VMware

    Поддержка iSCSI

    Поддержка виртуализации аудиоустройств

    Поддержка различных видов сетевого взаимодействия (NAT, Host Networking via Bridged, Internal)

    Поддержка дерева сохраненных состояний виртуальной машины (snapshots), к которым может быть произведен откат из любого состояния гостевой системы

    Поддержка Shared Folders для простого обмена файлами между хостовой и гостевой системами

Поддерживаемые VirtualBox хостовые ОС :

    Windows : Windows XP, all service packs (32-bit), Windows Server 2003 (32-bit), Windows Vista (32-bit and 64-bit)

    Apple Mac OS X (Intel hardware only, all versions of Mac OS X supported)

    Linux : Debian GNU/Linux 3.1 (“sarge”) and 4.0 (“etch”), Fedora Core 4 to 8, Gentoo Linux, Redhat Enterprise Linux 3, 4 and 5, SUSE Linux 9 and 10, openSUSE 10.1, 10.2 and 10.3, Ubuntu 5.10 (“Breezy Badger”), 6.06 (“Dapper Drake”), 6.10 (“Edgy Eft”), 7.04 (“Feisty Fawn”), 7.10 (“Gutsy Gibbon”), Mandriva 2007.1 and 2008.0

Поддерживаемые VirtualBox гостевые ОС :

    Windows NT 4.0 All versions

    Windows 2000 / XP / Server 2003 / Vista All versions

    DOS / Windows 3.x / 95 / 98 / ME

    Linux 2.6 All versions

    Solaris 10, OpenSolaris

    OpenBSD Versions 3.7 and 3.8 are supported

III. Главное окно VirtualBox: элементы интерфейса, основные настройки

    Запустите среду VirtualBox:

Пуск ПрограммыSunxVMVirtualBoxVirtualBox

В левой части окна отображается список установленных виртуальных машин (первоначально он отсутствует). В правой части окна отображаются свойства и характеристики текущей (активной) виртуальной машины. Из главного меню доступны настройки средыVirtualBox.

    Произведите первоначальную настройку среды VirtualBox:

    Файл  Настройки открывает окно, позволяющее указать путь к файлам виртуальных машин (укажите D:\SOS\Machines) и к файлам виртуальных жестких дисков (укажите D:\SOS\VDI), а также указать используемую Host-клавишу (по умолчанию Right Ctrl), язык интерфейса.

    Файл  Менеджер виртуальных жестких дисков открывает окно, позволяющее подключить готовые виртуальные жесткие диски, файлы образов CD/DVD, файлы образов дискет (подключите файлы в каталоге D:\SOS\Image\MS-DOS 6.22\..)

Сегодня виртуализация широко используется практически в любой части ИТ-индустрии - от личных мобильных устройств до мощных вычислительных центров, позволяя решать самые разные задачи. Виртуализация может выступать в разных формах - начиная от виртуализации и эмуляции платформ, заканчивая виртуализацией ресурсов. Но сегодня речь пойдет о нативной аппаратной виртуализации - современные процессоры поддерживают ее с помощью наборов инструкций, таких как Intel VT-x или AMD-V.

Нативная виртуализация - это технология, предоставляющая вычислительные ресурсы, абстрагированные от аппаратного уровня. Если брать, например, сегмент серверов, такое абстрагирование позволяет работать нескольким виртуальным системам на одной аппаратной платформе, а также дает возможность легко переносить виртуальные системы с одного аппаратного сервера на другой - например, при его выходе из строя или модернизации.

До появления аппаратной поддержки виртуализации, все плюсы технологии перекрывали большие потери производительности и низкая скорость работы виртуальной машины в целом. Популярность виртуальных машин стала расти по мере того, как производители аппаратных платформ стали предпринимать активные шаги по снижению издержек на виртуализацию (появление аппаратной поддержки, введение новых инструкций, сокращение таймингов при выполнении инструкций), а производительность процессоров стала достаточной, чтобы «тянуть» виртуальные машины с приемлемой скоростью.

Как уже говорилось выше, один из ключевых факторов для нормальной работы нативной аппаратной виртуализации - поддержка процессором специфических наборов инструкций. Intel представила свой набор инструкций VT-x в 2005 году, еще в рамках архитектуры Netburst, применявшейся в процессорах Pentium 4. AMD разработала свой набор инструкций, AMD-V, и первые процессоры с его поддержкой вышли на рынок в 2006 году. Некоторое время спустя обе компании предложили новые наборы инструкций: Intel EPT (Extended Page Tables) и AMD RVI (Rapid Virtualization Indexing) соответственно. Суть обоих наборов в том, что гостевая ОС получает контроль над виртуализованными страницами памяти напрямую, минуя гипервизор - это снижает нагрузку на него и несколько поднимает скорость виртуальной системы. Для проброса напрямую устройств в гостевую ОС компания Intel разработала набор инструкций Intel VT-d. В арсенале Intel имеются и другие наборы инструкций для виртуализации: Intel VT FlexMigration, Intel VT FlexPriority, VPID, VT Real Mode, VMFUNC.

В новых поколениях процессоров производители не только предлагают новые возможности наборов инструкций виртуализации, но и сокращают тайминги выполнения конкретных инструкций, что позволяет повысить производительность виртуальной системы в целом. Для примера, в процессорах Pentium 4 задержка на выполнение инструкций VMCALL и VMRESUME приближалась к 1500 наносекундам, а в Core 2 Duo (Penryn) она составляла уже менее 500 наносекунд.

Сокращение разрыва в производительности между реальной и виртуальной системой сделало виртуальные машины (ВМ) гораздо более выгодными в использовании, в том числе для решения задач корпоративного уровня. Наиболее очевидными достоинствами являются повышение средней загрузки оборудования (несколько ВМ равномерно используют ресурсы аппаратной платформы, сокращая время простоя), а также запуск устаревшей ОС, которая не удовлетворяет современным требованиям (например, по безопасности), но при этом необходима для запуска и работы уникального ПО (или в силу иных причин). Кстати говоря, столь популярные на сегодня облачные сервисы также имеют в своей основе технологии виртуализации. Суммируем основные преимущества, которые предприятие получает от применения виртуализации. Это:

  • увеличение средней загрузки физического сервера, а, следовательно, и коэффициента использования аппаратуры, что, в свою очередь снижает общую стоимость АО;
  • простота миграции виртуальных серверов с одного физического на другой при апгрейде аппаратного обеспечения;
  • простота восстановления работоспособности виртуального сервера при аппаратном сбое оборудования: виртуальную машину значительно проще перенести на другой физический сервер, чем переносить конфигурацию и ПО с одной физической машины на другую;
  • существенное упрощение перевода пользователей или бизнес-процессов на новые ОС и новое ПО: использование ВМ позволяет делать это по частям и не трогая аппаратные ресурсы; кроме того, в процессе можно легко анализировать и исправлять ошибки, а также оценивать целесообразность внедрения «на лету»;
  • поддержка в бизнес-процессах работы устаревшей ОС, от которой по каким-либо причинам в данный момент времени невозможно отказаться;
  • возможность тестирования тех или иных приложений на ВМ, не требуя дополнительного физического сервера и т. д.
  • другие сферы применения.

Таким образом, целесообразность использования виртуализации на сегодняшний день уже не вызывает вопросов. Технология предоставляет слишком много плюсов с точки зрения организации бизнеса, что заставляет закрывать глаза даже на неизбежные потери производительности системы.

Тем не менее, всегда полезно понимать, о каком именно уровне потерь производительности между реальной и виртуальной системой идет речь. Тем более, что они часто сильно зависят от типа задач и требований ПО к аппаратным ресурсам. Где-то это важно с точки зрения учета ресурсов, где-то - поможет определить, какой уровень производительности реальной системы необходим, чтобы добиться нужного уровня производительности от виртуальной системы. Наконец, есть пограничные типы задач, которые могут решаться с помощью как виртуальных, так и реальных систем - и там вопрос потерь может оказаться решающим фактором.

Методика тестирования

Для тестирования использовался набор тестовых приложений из обычной методики исследования производительности платформ сайт от 2011 года, с некоторыми оговорками. Во-первых, из набора были убраны все игры, т. к. виртуальный графический адаптер с драйвером Oracle обладает слишком слабой производительностью: в большинстве случаев игры даже не запускались. Во-вторых, убраны приложения, которые стабильно не могли завершить тестовый сценарий на одной из конфигураций - это Maya, Paintshop Pro, CorelDraw. По этой причине нельзя сравнивать итоговые рейтинги и суммарный балл производительности нашего тестового стенда с базой протестированных процессоров. Однако сравнение результатов отдельных тестов вполне корректно.

Также нужно учитывать, что в методике используются версии приложений от 2011 года. Они могут не поддерживать новые технологии, оптимизации и наборы инструкций, внедренные после этого времени. При этом наличие такой поддержки в более новых версиях приложений может существенно влиять на производительность этих приложений - и в реальной, и в виртуальной системе.

Тестовый стенд

Для тестирования мы взяли систему с конфигурацией, подходящей на роль как сервера, так и высокопроизводительной рабочей станции. В будущих материалах мы проверим на ней возможности виртуализации с разными хост-системами. Сегодня в качестве хоста используется Windows 7.

  • Процессор: Intel Xeon E3-1245 v3
  • Материнская плата: SuperMicro X10SAE
  • Оперативная память: 4 × Kingston DDR3 ECC PC3-12800 CL11 8 ГБ (KVR16LE11/8)
  • Жесткий диск: Seagate Constellation ES.3 1 ТБ (ST1000NM0033)
  • Операционная система: Windows 7 x64

ПО для виртуализации

В этом материале тестирование проводится с использованием Oracle VM VirtualBox.

Oracle VM VirtualBox - это бесплатная виртуальная машина (ВМ), распространяющаяся по лицензии GNU GPL 2. Она поддерживает обширный список операционных систем: Windows, OS X, Solaris и большое количество Linux-дистрибутивов (Ubuntu, Debian, openSUSE, SUSE Linux Enterprise Server, Fedora, Mandriva, Oracle Linux, Red Hat Enterprise Linux, CentOS). Изначально ВМ разрабатывалась Innotek, которая впоследствии была куплена Sun Microsystems, а в 2010 году - Oracle. ВМ поддерживает проброс USB-устройств в гостевую ОС, обеспечивает доступ в интернет и подключение удаленного рабочего стола. Гостевые ОС могут быть как 32-битными, так и 64-битными. Система поддерживает аппаратное ускорение 2D и 3D, а также PAE/NX, VT-x, AMD-V, Nested Paging. Эмулирует широкий спектр распространенных устройств: чипсет PIIX3 или ICH9, контроллеры IDE PIIX3,PIIX4, ICH6, аудиокарт Sound Blaster 16, AC97 или Intel HD, а также сетевых карт PCnet PCI II (Am 79 C 970 A), PCnet - Fast III (Am 79 C 973), Intel PRO /1000 MT Desktop (82540 EM), Intel PRO /1000 T Server (82543 GC), Intel PRO /1000 MT Server (82545 EM). Поддерживает образы жестких дисков VDI, VMDK, VHD, позволяет создавать общие папки для гостевой и хост-ОС, а также сохранять состояния ВМ.

У Oracle существует более серьезный аналог VM VirtualBox, Oracle VM Server для процессоров х86 и SPARC , базирующийся на гипервизоре Xen. Т. е., это совершенно другой продукт для другого сегмента рынка. Oracle VM Server поддерживает до 160 потоков на физическом сервере и до 128 виртуальных CPU в гостевых ОС, а максимальный объем ОЗУ - 4 ТБ, в то время как VM VirtualBox поддерживает лишь 32 виртуальных CPU для гостевой ОС и 1 ТБ ОЗУ.

Подводя итог, можно охарактеризовать VM VirtualBox как ВМ для домашнего использования и для использования в маленьких фирмах, а простота настройки (по сути установил и всё работает) не требует высокой квалификации у системного администратора (или вообще не требует выделенного системного администратора по причине простоты использования). Продукт же Oracle VM Server предназначен для более крупного бизнеса - он предоставляет и бо́льшую функциональность, и поддержку более мощных серверов, но требует и более высокой квалификации от системного администратора.

Настройки ПО

Для этого тестирования на тестовый стенд с ОС Windows 7 x64 была установлена ВМ Oracle VM VirtualBox, на которую был развернут образ Windows 7 x64 с тестовым пакетом приложений. В следующих материалах мы попробуем, как работают другие хост-ОС и ПО для виртуализации.

Сама виртуальная машина сконфигурирована следующим образом: включена поддержка Nested Paging, VT-x, PAE/NX, 3D- и 2D-ускорение. Для нужд ВМ выделено 24 Гб ОЗУ и 256 Мб под видеопамять.

Сравнение с Intel Core 7-4770k

Для сравнительной оценки общей производительности тестовой платформы на базе Intel Xeon E3-1245 v3 в таблицах также присутствуют результаты процессора Intel Core i7-4770K из . Это позволяет примерно соотнести уровень производительности одного из топовых потребительских процессоров для ПК и серверного процессора Xeon, плюс дает много других интересных возможностей сравнения исходя из разницы в конфигурациях. Правда, тут нужно учитывать, что параметры двух систем немного отличаются, и это оказывает влияние на результаты. Сведем в таблицу характеристики стендов.

Intel Xeon E3-1245 v3 Intel Core i7-4770K
Количество ядер/потоков, шт. 4/8 4/8
Базовая/Boost частота, МГц 3,4/3,8 3,5/3,9
Объем кэша L3, МБ 8 8
Используемая оперативная память в тестовом стенде 4 × Kingston KVR16LE11/8 4 × Corsair Dominator Platinum CMD16GX3M4A2666C10
Количество каналов, шт. 2 2
Частота функционирования, МГц 1600 1333
Тайминги 11-11-11-28 9-9-9-24
ECC да нет
Объем модуля, ГБ 8 4
Суммарный объем, ГБ 32 16
Графическая карта Intel P4600 Palit GeForce GTX 570 1280 МБ

Core i7-4770k имеет рабочие частоты на 100 МГц выше, что может дать ему некоторое преимущество. С оперативной памятью ситуация сложная: с одной стороны, у Core i7-4770k вдвое меньше объем и ниже частота работы, 1333 МГц против 1600; с другой, у платформы Xeon память имеет более высокие тайминги, а также используется коррекция ошибок ECC.

Наконец, в системе Core i7-4770k установлена внешняя видеокарта Palit GeForce GTX 570 1280 МБ. В тестовой методике образца 2011 года лишь несколько приложений могут задействовать ресурсы графической карты, и в этих приложениях следует ожидать существенного превосходства системы с Core i7-4770k. К тому же, внешняя карта не конкурирует с процессором за доступ к ОЗУ, как это делает интегрированная Intel P4600, что тоже должно давать Core i7-4770k определенное преимущество. С другой стороны, в драйверах Р4600 должны присутствовать определенные оптимизации, позволяющие поднять производительность профессиональных приложений. Однако для них наверняка требуется и оптимизация самого ПО, так что в нашем тестировании (напомню, у нас используются версии приложений 2011 года) эти оптимизации, скорее всего, не заработают. А в жизни придется проверять каждый случай отдельно, ибо оптимизация ПО - это очень тонкий процесс.

Конфигурации, участвующие в тестировании

На реальной системе тестовый пакет запускался в двух конфигурациях: с отключенной и включенной технологией Intel Hyperthreading (далее НТ). Это позволяет оценить ее влияние на производительность и реальных, и виртуальных систем - а заодно и понять, где можно использовать младшую модель Intel Xeon этого поколения, у которого НТ нет. Виртуальная машина запускалась в двух конфигурациях: под 4 вычислительных ядра и под 8. В итоге мы получаем следующие конфигурации:

  1. Реальная система без HT (обозначается hw wo/HT)
  2. Реальная система с HT (обозначается hw w/HT)
  3. Виртуальная машина с 4 ядрами на 4-ядерном процессоре без НТ (обозначается vm 4 core wo/HT)
  4. Виртуальная машина с 4 ядрами на 4-ядерном процессоре с НТ (обозначается vm 4 core w/HT)
  5. Виртуальная машина с 8 ядрами на 4-ядерном процессоре с НТ (обозначается VM 8 core)

Для удобства сведем всё в таблицу.

Расчет издержек виртуализации

Важно обратить внимание, что издержки виртуализации измеряются не относительно общего уровня, а в сравнении схожих аппаратных и виртуальных конфигураций.

Величина издержек виртуализации для 8-ядерной ВМ будет считаться относительно Intel Xeon E3-1245 v3 с включенной технологией HT (Real w/HT), а 4-ядерной ВМ - относительно Intel Xeon E3-1245 v3 без HT (Real wo/HT). Издержки экспериментальной конфигурации 4-ядерной ВМ на 8-поточном процессоре будут считаться относительно Intel Xeon E3-1245 v3 без HT.

Также в рамках тестирования будет введен рейтинг производительности, где за 100 баллов принята производительность Intel Xeon E3-1245 v3 без HT .

Приемлемый уровень потерь

Самый интересный вопрос - какой уровень потерь производительности стоит считать допустимым? В теории, уровень в 10-15 процентов представляется нам вполне приемлемым, учитывая те плюсы, которые дает предприятию виртуализация. Особенно учитывая, что повышается средний уровень загрузки оборудования и сокращается время простоя.

На первом этапе мы решили посмотреть, насколько упадет производительность при переходе на виртуальную систему в синтетическом тесте. Для этого мы взяли относительно простой бенчмарк Cinebench R15, который, однако, неплохо определяет уровень производительности центрального процессора в расчетах, связанных с трехмерным моделированием.

Real w/HT VM 8 core Real wo/HT VM 4 core
Single Core 151 132 (−13%) 151 137 (−9%)
Many Core 736 668 (−9%) 557 525 (−6%)

4-поточная конфигурация имеет меньшую производительность, но и потери в процентах у нее также меньше - как в однопоточной нагрузке, так и в многопоточной. Что касается производительности ВМ, то, несмотря на большие потери, 8-ядерная конфигурация оказывается все равно быстрее 4-ядерной. Также можно предположить, что т. к. графический адаптер эмулируется драйвером Oracle, то наличие какой-либо нагрузки на графическую подсистему должно значительно увеличивать издержки для виртуальных систем, т. к. создает дополнительную нагрузку на процессор.

Ну а в целом пока будем ориентироваться на эти цифры - около 10% потери производительности для 8-поточной конфигурации и порядка 6% для 4-поточной.

Исследование производительности

Интерактивная работа в трехмерных пакетах

При интерактивной работе в некоторых приложениях CAD активно используется графическая карта, что будет серьезно влиять и на результаты, и на разницу в производительности между реальной и виртуальной системой.

CAD CreoElements

В режиме интерактивной работы в CAD CreoElements потери при виртуализации составляют внушительные 64%, причем для всех конфигураций. Скорее всего, из-за того, что в реальной системе задействуются ресурсы видеокарты, а в виртуальной нагрузка ложится на центральный процессор через драйвера Oracle.

Интересно отметить, что i7-4770K показывает меньшую производительность, чем Xeon, даже несмотря на использование достаточно мощной дискретной видеокарты. (С. И. - обещанные Intel оптимизации драйверов в серии профессиональных ускорителей P4600/P4700?)

CAD Creoelements Real w/HT hw 4/8 vm 8
Прирост от НТ −4% −5%

Технология HT негативно сказывается на производительности как реальной системы, так и ВМ - 4% и 5% потерь соответственно.

CAD SolidWorks

В SolidWorks картина, в целом, не меняется - издержки переходят все разумные границы, показывая более 80% потери производительности. Правда, в ассиметричной конфигурации (CPU: 4 ядра, 8 потоков; ВМ: 4 ядра) издержки заметно меньше, чем в двух других конфигурациях. Возможно, это объясняется работой фоновых процессов в хост-ОС: т. е. активация НТ удваивает количество возможных потоков до 8, где 4 выделяются ВМ, а 4 остаются в распоряжении хост-ОС.

Десктопный 4770K значительно быстрее Xeon (скорее всего, благодаря тому, что Solidworks умеет задействовать в этом сценарии ресурсы графической карты - С. К.). В целом, огромные издержки обусловлены тем, что SolidWorks требователен к графической подсистеме, а, как уже было выше сказано, виртуальная графическая карта лишь сильнее нагружает процессор.

CAD SolidWorks Real w/HT hw 4/8 vm 8
Прирост от НТ −1% −9%

Активация НТ приводит к снижению производительности - для физического сервера это 1%, а для ВМ - 9%. Что, в целом, подтверждает гипотезу о фоновых процессах - поскольку 8-ядерная ВМ "захватывает" все 8 потоков ЦП, хост-ОС и ВМ начинают конкурировать за ресурсы.

Итог по группе

Издержки виртуализации в данной группе приложений весьма значительны (более 60%), причем в обоих исследованных пакетах. При этом CAD CreoElements имеет меньшие издержки, чем SolidWorks, но последний еще и умеет задействовать ресурсы графической карты, т. е. на реальной системе может получать дополнительные бонусы. Технология HT не приносит пользы на физическом сервере, а на ВМ и вовсе снижает производительность в обоих пакетах. В целом, очень высокие потери производительности не позволяют рекомендовать виртуальные системы для работы с пакетами трехмерного моделирования. Впрочем, стоит еще посмотреть на финальный рендеринг.

Финальный рендеринг трехмерных сцен

Скорость финального рендеринга трехмерных сцен зависит от производительности центрального процессора, так что здесь картина должна получиться более объективной.

Первое, на что стоит обратить внимание: при финальном рендеринге 3Ds Max показывает значительно меньшие издержки виртуализации, чем при интерактивной работе в CAD - 14% для 4-ядерной ВМ и 26% - 8-ядерной. Тем не менее, уровень издержек значительно выше установленных планок 6 и 10 процентов.

В целом, несмотря на достаточно высокие издержки, 8-ядерная ВМ имеет сопоставимый уровень производительности с 4-ядерными 4-поточными процессорами Intel, что весьма неплохо.

3Ds Max Real w/HT hw 4/8 vm 8
Прирост от НТ 26% 9%

Активация HT на реальном железе позволяет сократить время рендеринга на 26% - весьма достойный результат! Что касается НТ на ВМ, то здесь всё скромнее - всего 9% прироста. Тем не менее, прирост есть, и заметный.

Lightwave

Lightwave и вовсе показывает отличный результат: издержки виртуализации находятся на уровне 3% для 4-ядерной ВМ и 6% для 8-ядерной ВМ. Как видите, даже в одной группе приложения, предназначенные, в принципе, для одной и той же задачи, ведут себя по-разному: например, 3Ds Max показывает значительно большие издержки, чем Lightwave.

Десктопный 4770К показывает большую производительность, чем Xeon E3-1245v3. Стоит заметить, что 8-ядерная ВМ практически не уступает 4-ядерному 4-поточному физическому серверу. (Такое впечатление, что Lightwave плохо оптимизирован, поэтому меньше реагирует на любые изменения конфигурации. Что уменьшение производительности при виртуализации, что появление дополнительных ресурсов при активации НТ… на все он реагирует слабее, чем 3DsMax - С. К.).

Lightwave Real w/HT hw 4/8 vm 8
Прирост от НТ 5% 9%

Зато активация HT дает всего 5%-ую прибавку к скорости для реального железа и, что странно, 9%-ую для ВМ.

Итог

При финальном рендеринге трехмерных сцен, задействующем только ресурсы центрального процессора, издержки виртуализации вполне приемлемые, особенно у Lightwave, где потери производительности и вовсе можно охарактеризовать, как незначительные. Активация НТ и в 3Ds Max, и в Lightwave позволила повысить производительность и на физической, и на виртуальной системе.

Упаковка и распаковка

Ключевую роль в производительности архиваторов играет связка процессора и памяти. Также стоит отметить, что разные архиваторы по-разному оптимизированы, т. е. могут по-разному задействовать ресурсы процессора.

7zip pack

Издержки при сжатии данных составляют 12% для любой системы.

Xeon E3-1245v3 и i7-4770K показывают идентичные результаты - при чуть отличающейся частоте и разной памяти. Благодаря высокому приросту от активации НТ, виртуальная система с 8 ядрами обгоняет реальную с четырьмя.

7zip pack Real w/HT hw 4/8 vm 8
Прирост от НТ 25% 25%

Впрочем, прирост скорости сжатия от активации HT установился на 25% как для реального железа, так и для ВМ.

7zip unpack

В силу небольшого по объему тестового архива, результаты ВМ и реального сервера находятся на одном и том же уровне в рамках погрешности, так что реально оценить издержки не представляется возможным

Интересно, можно ли рассматривать 22% как некие “чистые” потери ВМ?

7zip unpack Real w/HT hw 4/8 vm 8
Прирост от НТ 0% 0%

Это касается и оценки эффекта от активации НТ - всё-таки объем тестового задания образца 2011 года слишком мал для современного 4-ядерного процессора.

RAR pack

У RAR издержки заметно выше, так еще и растут для 8-ядерной ВМ. В целом, 25% - все-таки многовато. Но RAR имеет довольно плохую оптимизацию в том числе под многопоточность.

Активация HT приводит к замедлению, но имея в виду посредственную реализацию многопоточности в WinRAR 4.0 это не удивительно.

RAR pack Real w/HT hw 4/8 vm 8
Прирост от НТ −2% −11%

Из-за значительных потерь от активации НТ 8-ядерная ВМ оказывается даже медленнее 4-ядерной.

RAR unpack

Поскольку тестовый архив Методики для современного процессора мал, время выполнения задания слишком мало, чтобы говорить о какой-либо точности. Тем не менее, можно точно сказать, что издержки относительно высоки.

Как видно, разница в процентах внушительная, а в реальности - всего лишь несколько секунд.

RAR unpack Real w/HT hw 4/8 vm 8
Прирост от НТ 0% −5%

Также можно точно сказать, что WinRAR плохо переваривает HT.

Итог

Производительность и издержки в этой группе очень сильно зависят от архиватора, от его оптимизации и способности эффективно использовать доступные ресурсы процессора. Поэтому и сложно давать рекомендации по поводу использования в ВМ - это в большей степени зависит от приложения, а не от типа задач. Тем не менее, 7zip демонстрирует, что уровень издержек при упаковке может быть относительно небольшим, и использовать этот архиватор в виртуальных машинах вполне можно.

Кодирование аудио

Эта группа объединяет в себе несколько аудиокодеков, работающих через оболочку dBpoweramp. Скорость кодирования аудио зависит от производительности процессора и от количества ядер. Этот тест также очень хорошо масштабируется на большее количество ядер, так как многопоточность в приложении реализована путем параллельного запуска кодирования нескольких файлов. Поскольку кодирование с помощью разных кодеков создает практически одинаковую нагрузку на систему и, соответственно, показывает близкие результаты, то мы решили свести все результаты в одну общую таблицу.

Итак, общие издержки виртуализации.

Кодирование аудио - вот идеал с точки зрения издержек виртуализации. Для 4-ядерной ВМ средние издержки составили всего 4%, а для 8-ядерной - 6%.

Real wo/HT VM 4 core wo/HT VM 4 core w/HT Real w/HT VM 8 core 4770K
Apple Результаты 295 283 281 386 362 386
Apple Рейтинг производительности 100 96 95 131 123 131
FLAC Результаты 404 387 383 543 508 551
FLAC Рейтинг производительности 100 96 95 134 126 136
Monkey Audio Результаты 299 288 282 369 348 373
Monkey Audio Рейтинг производительности 100 96 94 123 116 125
MP3 Результаты 185 178 175 243 230 249
MP3 Рейтинг производительности 100 96 95 131 124 135
Nero AAC Результаты 170 163 161 229 212 234
Nero AAC Рейтинг производительности 100 96 95 135 125 138
OGG Vorbis Результаты 128 124 123 167 159 171
Nero AAC Рейтинг производительности 100 97 96 130 124 134

Как видите, хотя реальные результаты для разных кодеков отличаются, но если брать проценты, то они удивительно похожи. Core i7-4770k часто оказывается чуть быстрее (видимо, роль играет более высокая частота). Также интересно отметить, что результаты теста 4-ядерной ВМ на системе с активированным НТ всегда чуть ниже, чем без него. Вероятно, это следствие как раз работы НТ. Но в целом, разница в производительности в 3-5% между реальной и виртуальной системой - это очень хороший показатель.

Отдельно посмотрим, что добавляет активация НТ.

Кодирование аудио Real w/HT hw 4/8 vm 8
Apple 31% 28%
FLAC 34% 31%
Monkey Audio 23% 21%
MP3 31% 29%
Nero AAC 35% 30%
OGG Vorbis 30% 28%

Активация технологии HT позволяет увеличить скорость на 31% на реальном сервере и на 28% на виртуальном. Также один из лучших результатов. Наконец, сводная таблица результатов.

Компиляция

Скорость компиляции также зависит не только от частоты и производительности ядра, но и от их количества.

Производительность серверного Xeon сопоставима с десктопным i7. 8-ядерная ВМ не дотягивает до физической системы с отключенным НТ.

GCC Real w/HT hw 4/8 vm 8
Прирост от НТ 24% 7%

Ощутимый прирост производительности происходит при активации НТ на физическом сервере - 24%, а вот на ВМ увеличение количества ядер позволяет поднять производительность лишь на 7%. Хотя и это тоже неплохо.

Компилятор Intel демонстрирует несколько большее падение производительности при виртуализации, чем GCC - 19% и 33% для 4-ядерной и 8-ядерной ВМ соответственно.

Производительность Xeon сопоставима с i7, а производительность 8-ядерной ВМ - с Xeon wo/HT. И заодно видно, какой внушительный прирост дает активация НТ. Все-таки продукт Intel, так что в том, что его постарались унифицировать под НТ, нет ничего странного. В цифрах это выглядит вот так:

Можно оценить и разницу во времени, которое потребовалось для выполнения задания. Так тоже вполне наглядно.

MSVC Real w/HT hw 4/8 vm 8
Прирост от НТ 29% −26%

Что касается НТ, то ее активация на реальной системе позволяет поднять скорость аж на 29%, тогда как в виртуальной системе наблюдается примерно такое же снижение производительности. Стоит также заметить, что асимметричная конфигурация ВМ с 4 ядрами на 8-поточном процессоре показывает меньшие издержки, чем симметричная, однако на 8-ядерной ВМ виден внушительный рост издержек.

В общем, этот компилятор на ВМ работает со слишком большими потерями производительности.

Итого

GCC демонстрирует приемлемый уровень издержек, ICC - побольше, но с ними еще можно мириться. Компилятор от Microsoft на виртуальных системах работает очень медленно. Зато все участники этой группы демонстрируют хороший прирост производительности при активациии НТ - кроме MSVC в виртуальной системе.

Математические и инженерные расчеты

За исключением MATLAB, данная группа тестов не имеет как таковых многопоточных оптимизаций.

Математические и инженерные расчеты в Maple показывают вполне приемлемый уровень издержек - 11%.

8-ядерная ВМ чуть медленнее, чем четырехядерные. Но в целом результаты виртуальных систем неплохие.

В отличие от предыдущего сценария, 8-ядерная ВМ заметно отстает от 4-хядерных вариантов. Кстати, и 4770к тут медленнее, чем Xeon. Ну и видно, что с активацией НТ все не очень хорошо.

Причем все варианты ВМ показывают схожую производительность, хотя 8-ядерный вариант чуть позади.

Солидная производительность Core i7-4770k объясняется присутствием внешней графической карты.

SolidWorks (CPU) Real w/HT hw 4/8 vm 8
Прирост от НТ 0% −5%

На физический сервере SolidWorks никак не реагирует на активацию НТ, а на ВМ реакция есть, но негативная - 5%-ое снижение производительности.

Итого

Уровень издержек в данной группе зависит от используемого приложения: минимальные у Maple, максимальные у CreoElements. В целом, математические расчеты можно с оговорками рекомендовать к виртуализации.

Растровая графика

В силу слабой оптимизации или по другим причинам, но потери производительности в виртуальных системах у ACDSee огромны.

С такой разницей во времени выполнения тестовых сценариев рекомендовать это приложение для использования на виртуальной машине не поднимется рука.

Взгляд не реальные цифры времени выполнения тоже навевает грусть.

Ну и результаты включения Hyperthreading:

Результаты виртуальных систем неплохие, только не стоит использовать 8-ядерную конфигурацию. Что интересно, 4770К и система с НТ немного отстают от референсной системы, т. е. активация НТ ухудшает ситуацию.

Работать в виртуальной системе более-менее можно, если она 4-хядерная.

Photoshop Real w/HT hw 4/8 vm 8
Прирост от НТ 1% −16%

Активация НТ практически не приносит дивидендов на реальной системе, а производительность ВМ ухудшает аж на 16%.

Итого

Стоит оговориться, что в большинстве приложений речь идет о пакетной обработке файлов. Т. к. время обработки одного файла относительно невелико, существенная часть времени тратится на операции чтения/записи, которые в случае виртуальной системы создают дополнительную нагрузку на процессор и приводят к дополнительным потерям времени (Виртуальный жесткий диск представляет собой образ, хранящийся на физическом жестком диске - а это еще один посредник непосредственно между приложением и железом).

Что же до выводов, то практически все приложения для работы с растровой графикой плохо реагируют на активацию НТ в виртуальных машинах, а ее активация на реальной системе проходит незамеченной. Производительность на 4-хядерной ВМ зависит от приложения: у двух из четырех приложений издержки активации относительно невысоки, и использовать эти приложения в ВМ можно. А вот задавать 8 ядер в настройках не стоит - вместо роста производительности получите существенное ее ухудшение. В целом же, программы для обработки изображений придется пробовать, чтобы индивидуально оценить производительность и ее падение в ВМ. Уровень издержек при переходе на виртуальную платформу для протестированных приложений нам кажется высоковатым.

Векторная графика

Данная группа является однопоточной, поэтому производительность будет зависеть только от производительности единичного ядра.

Illustrator

Примерно та же ситуация, что и в предыдущей группе - более-менее приемлемые издержки для 4-ядерных ВМ и большие потери производительности для 8-ядерной ВМ,

Производительность E3-1245v3 сопоставима с 4770K - хотя последний несколько быстрее за счет 100 дополнительных мегагерц. Что же до общей картины… Падение в процентах выглядит не особо страшным, но в реальности может вылиться в заметные дополнительные потери времени.

Illustrator Real w/HT hw 4/8 vm 8
Прирост от НТ 0% −12%

И та же ситуация с НТ - никакого прироста от активации на реальной системе, заметное падение производительности на виртуальной. Впрочем, причину мы уже описали выше.

Кодирование видео

Нужно учитывать, что первые три участника - это полноценные графические пакеты, т. е. речь идет об интерактивной работе и последющем создании ролика. Тогда как остальные участники - это просто кодировщики.

Expression

С кодированием видео в Expression дело обстоит не очень хорошо - даже на 4-ядерных системах потери производительности под 20%, а у 8-ядерной - практически на треть.

Как видите, мощные процессоры с включенным НТ отстают от версии без него.

Ну и посмотрим, что дает НТ.

Что интересно, в этом пакете Core i7-4770k показывает заметно более высокую производительность, чем на нашей тестовой системе.

Vegas Pro Real w/HT hw 4/8 vm 8
Прирост от НТ 0% −16%

Активация НТ не приносит никаких дивидендов на реальной системе, а на виртуальной показывает 16%-ое снижение производительности.

В общем, Vegas Pro, похоже, существенно менее оптимизирован под работу с современными процессорами и тратит их ресурсы неэффективно. Поэтому Premiere выглядит гораздо симпатичнее с точки зрения перспектив работы в виртуальной среде.

Ну а теперь давайте посмотрим, как ведут себя чистые кодировщики видео.

Итак, х264 демонстрирует в целом терпимые издержки, причем, в кои-то веки 8-ядерная ВМ эффективнее 4-хядерных.

Производительность 8-ядерной ВМ всего лишь на 9% ниже, чем Xeon wo/HT.

Цифры, что называется, говорят сами за себя.

xvid Real w/HT hw 4/8 vm 8
Прирост от НТ −4% −34%

Увы, активация НТ приносит лишь вред. И если на физическом сервере потери незначительны - 4%, то на ВМ они достигают 34%. То есть, и Xvid и ВМ неэффективно оперируют логическими ядрами.

Итого

Итак, у видеоредакторов уровень потерь производительности зависит прежде всего от самого редактора, поэтому пригодность для работы в ВМ стоит оценивать индивидуально. В наших тестах (и для используемых нами версий продуктов) существенно лучше выступил Premiere.

Что же до кодировщиков, то хотя разница между ними есть, но в 4-хядерных ВМ они все показывают довольно неплохие результаты. Что же до использования 8-ядерных виртуальных машин, то тут можно получить как рост, так и серьезное падение производительности. Другой вопрос, что при принятии решения о запуске перекодирования видео на виртуальной машине надо всегда помнить, что современные процессоры и графика обладают широким спектром оптимизаций под этот класс задач (так же, как и ПО), а в ВМ Oracle Virtual Box работа будет осуществляться в программном режиме, т. е. и медленнее, и с большей загрузкой процессора.

Офисное ПО

Chrome в тесте вел себя не совсем адекватно, поэтому относиться к результатам стоит с большой долей скепсиса.

И результаты от активации НТ.

Chrome Real w/HT hw 4/8 vm 8
Прирост от НТ 68% −8%

К данному подтесту в группе не стоит относится серьезно в силу этих обстоятельств.

MS Excel показывает издержки на уровне 15% и 21% для 4-ядерной и 8-ядерной ВМ. В принципе, уровень издержек можно назвать высоким. Хотя на практике пользователь вряд ли будет замечать замедление работы, разве что в каких-то очень сложных расчетах. У 8-ядерной системы издержки традиционно выше.

Тестовое задание для Excel занимает много времени, что позволяет наглядно продемонстрировать разницу во времени на его выполнение. Как видите, виртуальная система будет выполнять его на 2 минуты дольше.

И отдельно издержки от НТ:

За счет высокой эффективности НТ, 8-ядерной ВМ удается опередить физический сервер на базе Xeon wo/HT. Что интересно, 4770К показывает заметно более высокий результат.Посмотреть таблицу с результатами

VM 4 core w/HT Real w/HT VM 8 core 4770K Результаты 0:44 0:49 0:49 0:44 0:51 0:43 Рейтинг производительности 100 90 90 100 86 102

В силу небольшого времени выполнения тестового пакета, а следовательно, высокой погрешности, судить об эффективности НТ сложно.

Активация НТ приводит к 14%-му снижению производительности на ВМ.

Итого

Самое главное, что стоит иметь ввиду - в большинстве случаев производительности современных систем будет хватать для всех офисных задач, скорее всего даже с запасом. А раз уровень производительности достаточный, то пользователя не будет интересовать, какие там издержки.

Java

Данный тестовый пакет интересен тем, что Java по сути является виртуальной машиной, а, следовательно, запуск Java на Oracle VM VirtualBox означает запуск виртуальной машины на виртуальной машине, что подразумевает двойное абстрагирование от аппаратного обеспечения. Именно поэтому стоит ожидать адекватных издержек - все основные потери производительности произошли на уровне переноса программного кода на Java.

Издержки 8-ядерной ВМ установились на 8%, а 4-ядерной - 5%.

За счет высокой эффективности НТ и невысоких издержек 8-ядерная ВМ показывает на 6% большую производительность, чем Xeon wo/HT. Прирост от НТ на реальном железе составил 16%, а на ВМ - 12%.

Java Real w/HT hw 4/8 vm 8
Прирост от НТ 15% 12%

Смотря на результаты Java, можно предположить, что виртуализация различных фреймворков и программ, написанных на языках программирования с трансляцией в свой байт-код, не будет иметь высоких издержек, так как все основные издержки "заложены" в них самих. То есть, повсеместное использование языков программирования с псевдокодом не такое уж и плохое явление, особенно для виртуальных машин.

Воспроизведение видео

Этот раздел следует рассматривать просто как иллюстрацию - т. к. на реальных системах используется DXVA, т. е. аппаратное ускорение - соответственно, нагрузка на процессор минимальна. В отличие от ситуации с ВМ, где все расчеты производятся программно. В итоговый балл он также не включен.

Напомню, здесь значение таблиц - это уровень загрузки процессора. Почему он бывает больше 100% - можно почитать в методике.

MPCHC (DXVA)

Это хорошая иллюстрация эффективности средств аппаратного ускорения, и при воспроизведении видео все очевидно. Но стоит помнить, что на современных системах примерно тех же результатов можно достичь и с помощью других оптимизаций - того же Qsync для работы с видео, СUDA для графических расчетов и т. д.

MPCHC (software)

А вот в софтверном режиме разница между физическим сервером и виртуальным невелика - 4%. Де-факто, издержки производительности незначительны.

VLC (DXVA)

Что интересно, в VLC загрузка процессора для ВМ существенно ниже, чем в MPC HC.

VLC (software)

В софт-режиме разницы между реальным железом и ВМ снова практически нет. Активация DXVA в виртуальной системе приводит лишь к дополнительной работе для процессора.

Многозадачное окружение

Издержки в многозадачном окружении составили 32% и 25% для 8-ядерной и 4-ядерной ВМ соответственно. 4-ядерная ВМ очень сильно провалилась, там издержки аж 67%. Почему такое происходит - сложно сказать (напомню, речь идет о стабильном результате при нескольких запусках).

И что происходит при активации НТ

Multitasking Real w/HT hw 4/8 vm 8
Прирост от НТ 14% 3%

Технология НТ в многозадачном окружении приносит свои плоды для реальной системы - 14% прироста, а вот ВМ всё значительно хуже - 3%.

Тестирование многозадачности - довольно тонкий процесс, на который влияет множество факторов. Поэтому делать однозначные выводы со сторпроцентной уверенностью сложно. Например, чем можно объяснить громадное падение производительности четырехядерной ВМ при активации НТ? Какими-то специфическими особенностями взаимодействия хост-ОС и ВМ? Или используемые в тесте приложения сильно теряют в производительности (а примеры выше мы видели) и в совокупности дают такой результат? Кстати, если последнее утверждение верно, то это хорошо показывает, что совокупные издержки от использования ВМ могут оказаться очень высокими.

Наконец, обратите внимание на производительность Core i7-4770k, который в этом тесте очень сильно отстал от нашего тестового стенда, хотя в отдельных задачах никаких провалов не допускал. В чем тут дело? Вероятно, причина падения производительности - своп из-за недостатка оперативной памяти, который проявляется только при запуске нескольких «тяжелых» приложений одновременно. Впрочем, не будем исключать и другие причины.

Средний балл

Это, конечно, средняя температура по больнице, но все же…

Среднеарифметические издержки виртуализации по всем тестам составили 17% и 24% для 4-ядерной и 8-ядерной ВМ соответственно.

Прирост от НТ составил 12% для физического сервера и 0% для ВМ.

И на этой мажорной ноте давайте переходить к выводам.

Выводы

На мой взгляд (С. К.) анализировать производительность и потери производительности для отдельных групп или приложений не стоит: в мире ПО все слишком изменчиво. Но можно отметить определенные тенденции.

Вывод первый: Hyperthreading не всегда помогает даже на реальной системе - иногда его активация приводит к некоторому снижению производительности. С виртуальными системами ситуация еще сложнее: 8-ядерная ВМ зачастую проигрывает по производительности 4-ядерной. Т. е. использовать связку «4 ядра + НТ на реальном процессоре» и 8-ядерная ВМ можно лишь для тех задач, где вы точно знаете, что результат такого решения будет в плюс, а не в минус. Впрочем, тут нужно помнить, что задача НТ была именно в том, чтобы улучшить производительность в многозадачном окружении и (как и у ВМ), стабилизировать нагрузку на процессор. Поэтому система в целом от активации НТ должна выигрывать всегда - особенно серверная.

Вывод второй: издержки при переходе на виртуальную машину зависят скорее не от типа задач, а от конкретного приложения. Более того, и эффективность использования того или иного приложения в виртуальной машине (ВМ), видимо, определяется тем, насколько его алгоритмы «ложатся» на особенности ВМ. Например, мы не можем точно определить, является ли большое падение производительности при работе с изображениями в ВМ следствием того, что этот класс задач вообще плохо «виртуализируется», или следствием того, что существующие приложения просто используют устаревшие алгоритмы, которые не оптимизируются, потому что на современных быстрых процессорах все и так хорошо работает.

Причем у меня есть серьезные подозрения, что этот тезис можно отнести ко всем приложениям, где издержки высоки - просто эти приложения плохо оптимизированы. Т. е. они и ресурсы реальных систем используют неэффективно, просто высокий уровень производительности современных процессоров позволяет не забивать себе этим голову. Этот тезис можно отнести к профессиональным приложениям для работы с трехмерной графикой, научным расчетам и некоторым другим отдельным приложениям.

В каких-то группах виртуализация дает относительно небольшие издержки - в первую очередь в глаза бросаются аудио- и видеокодирование. Как правило, речь идет о простой и стабильной нагрузке, связанной именно с вычислениями. Это подводит нас к следующему выводу.

Вывод третий: Сейчас основные проблемы у виртуальных машины начинаются тогда, когда реальная система может задействовать аппаратные оптимизации. В распоряжении реальной системы много разных технологий оптимизации: DXVA, OpenCL, QSync и других - которые позволяют снять нагрузку с центрального процессора и ускорить выполнение задачи. В виртуальной системе Virtual Box таких возможностей нет. Впрочем, набор инструкций VT-d позволяет пробрасывать PCI-устройства в виртуальную среду. Например, я (С. К.) видел профессиональное решение НР с видеоадаптерами Nvidia Grid 2, вычислительные ресурсы которых могут виртуализироваться. В общем, ситуация зависит от самой виртуальной машины, устройств, драйверов, систем и пр. Поэтому к этому вопросу мы еще обязательно вернемся.

Наконец, пару слов стоит сказать вот о какой вещи (хотя основные выводы мы прибережем до конца всех тестирований). Стоит ли высчитывать процент падения производительности, и на его основе решать, какие задачи подлежат виртуализации, а какие нет? Например, 20-процентное падение скорости работы - это много или мало?

С. К. На мой взгляд, так ставить вопрос не стоит и вот почему.Принятие решения о том, использовать или нет виртуальные системы, лежит в области организации бизнеса, а не в области технических аспектов. А плюсы с точки зрения бизнеса могут перевесить даже 50%-ное падение производительности. Но даже если посмотреть на отдельные и вроде бы ресурсоемкие задачи, то все не так очевидно. Например, перекодировка видеоролика или расчет трехмерной модели идет 30 минут, а на виртуальной - за 50. Казалось бы, вывод очевиден - использование реальной системы оптимальнее! Однако если сцена считается на рабочей станции пользователя, то это время он не может работать. А если ее можно сбросить на сервер и заниматься следующей (причем ее подготовка займет гарантированно больше 50 минут), то в целом эффективность работы вырастет. А если еще на сервере обсчитывается несколько сцен - пусть даже подряд и медленно - то все равно с точки зрения бизнеса (и при должном распраллеливании задач) выигрыш очевиден.

С. И. С другой стороны, очень часто сервер подбирается под определенный уровень производительности в целом или в определенных приложениях, и при этом в условиях очень ограниченного бюджета. Т. е. взять вариант помощнее и подороже «про запас» не получится. В этих условиях переход на виртуальную системы (и выбор ПО с высокими издержками) может привести к тому, что в результате сервер просто не будет справляться с высокими нагрузками и с возложенными на него задачами.

На этом мы завершаем это исследование производительности виртуальной системы с ОС Windows и Oracle VM VirtualBox. В следующем материале мы рассмотрим, насколько изменится производительность Windows 7 в ВМ, если в качестве хост-ОС выступает Linux.

Виртуальные машины [Несколько компьютеров в одном] Гультяев Алексей Константинович

Системные требования

Системные требования

Минимальные требования, которым должны отвечать технические характеристики хост-компьютера, предназначенного для установки Virtual PC 2004, существенно зависят от номенклатуры гостевых ОС, устанавливаемых на виртуальные машины. Это и понятно - ведь гостевой ОС требуются практически те же ресурсы, которые использует ОС данного типа при работе в «реальном» режиме. Однако и для работы самого приложения Virtual PC необходимы определенные вычислительные ресурсы.

Процессор с архитектурой х86 (AMD Athlon/Duron, Intel Celeron, Intel Pentium II, Intel Pentium III, Intel Pentium 4), тактовой частотой не менее 400 МГц (рекомендуемая частота - 1 ГГц и выше) и кэшем второго уровня (L2 cache). Virtual PC поддерживает также процессоры AMD Opteron, но только при использовании 32-разрядной хостовой ОС. Возможен запуск Virtual PC в многопроцессорных системах, однако при этом будет все равно только один процессор.

Видеоадаптер Super VGA с разрешением не ниже 800?600.

В качестве хостовой ОС может использоваться Windows XP Professional, Windows 2000 Professional или Windows XP Tablet PC Edition.

Минимально необходимая емкость оперативной памяти и объем свободного пространства на жестком диске зависят от используемой хостовой ОС, соответствующие сведения приведены в табл. 2.1.

Таблица 2.1. Требования к емкости оперативной памяти и свободному пространству на жестком диске

Тип хостовой ОС Емкость ОП, Мбайт Дисковое пространство, Гбайт
Windows XP Professional 128 2
Windows 2000 Professional 96 2
Windows XP Tablet PC Edition 128 2

Для каждой из гостевых ОС следует учитывать ее собственные требования к емкости ОП и дисковому пространству (табл. 2.2).

Таблица 2.2. Требования к емкости оперативной памяти и свободному пространству на жестком диске для гостевых ОС

Тип гостевой ОС Емкость ОП, Мбайт Дисковое пространство, Гбайт
Windows XP Professional 128 2
Windows XP Home Edition 128 2
Windows 2000 Professional 96 2
Windows NT Workstation 4,0, Service Pack 6 или выше 64 1
Windows Millennium Edition 96 2
Windows 98 64 0,5
Windows 95 32 0,5
MS-DOS 6.22 32 0,05
Windows XP Tablet PC Edition 128 2
OS/2 Warp 4 OS/2 Fixpack 15, OS/2 Warp Convenience Pack 1, and OS/2 Warp Convenience Pack 2 64 0,5

Если вы планируете запускать одновременно несколько ВМ с различными ОС то их требования к емкости ОП должны, разумеется, суммироваться.

Необходимая конфигурация хост-компьютера должна быть обеспечена до установки Virtual PC. Например, если планируется установить и качестве гостевых ОС Windows 2000 Professional и Windows 98, то для их совместной работы необходимо иметь 160 Мбайт оперативной памяти в дополнение к потребностям самого приложения Virtual PC и хостовой ОС.

Virtual PC поддерживает работу с двумя последовательными (СОМ) и одним параллельным (LPT) портами для каждой гостевой ОС. Работа с USB-устройствами в среде гостевой ОС невозможна. Тем не менее для гостевой ОС можно обеспечить доступ к сервисам, предоставляемым USB-устройством, подключенным к физическому порту хост-компьютера. Например, вы можете создавать в среде гостевой ОС разделяемую (общую) папку и копировать в нее файлы с накопителя Flash Drive, подключенного к USB-порту хост-компьютера.

Из книги Модель зрелости процессов разработки программного обеспечения автора Паулк Марк

Отнесенные к ПО системные требования Установленные для ПО системные требования обычно называются в СММ «установленными требованиями». Они представляют собой подгруппу системных требований, которые необходимо реализовать в программных компонентах системы.

Из книги Fedora 8 Руководство пользователя автора Колисниченко Денис Николаевич

1.1.1. Системные требования Fedora 8 можно установить на любой современный (и не очень) компьютер. Основное требование - это 256 Мбайт (можно и больше!) оперативной памяти и как минимум 3 Гбайт свободного места на жестком диске.Если у вас меньше 256 Мбайт оперативной памяти, то вы вес

Из книги Эффективное делопроизводство автора Пташинский Владимир Сергеевич

Системные требования Для пользования данной программой существуют следующие системные требования. ПК с процессором Intel Pentium 200 или выше. Операционная система Microsoft Windows XP/2000, Windows 98SE/ME (для работы с русским интерфейсом операционная система должна поддерживать

Из книги Windows Vista. Мультимедийный курс автора Мединов Олег

Системные требования Перед установкой необходимо ознакомиться со списком требований Windows Vista к оборудованию. Минимальная конфигурация аппаратных средств, необходимых для установки Windows Vista, следующая. Современный процессор Intel или AMD. Для комфортной работы

Из книги Установка и настройка Windows XP. Легкий старт автора Донцов Дмитрий

Системные требования (официальные) Рассмотрим, какое аппаратное обеспечение нужно иметь для работы системы Windows XP. Процессор с частотой не ниже 233 МГц (рекомендуется от 300 МГц и выше). 128 Мбайт оперативной памяти (при 64 Мбайт быстродействие может быть

Из книги Виртуальные машины [Несколько компьютеров в одном] автора Гультяев Алексей Константинович

Системные требования Минимальные требования, которым должны отвечать технические характеристики хост-компьютера, предназначенного для установки VMware, зависят от номенклатуры гостевых ОС для виртуальных машин.Для работы же собственно VMware Workstation необходимы следующие

Из книги Настройка Windows 7 своими руками. Как сделать, чтобы работать было легко и удобно автора Гладкий Алексей Анатольевич

Системные требования Для работы Parallels Workstation необходимы следующие вычислительные ресурсы:? процессор с архитектурой х86 (AMD Duron или Intel Pentium II) и тактовой частотой от 400 МГц (рекомендуемая частота - не менее 1,5 ГГц); если используемый процессор поддерживает режим

Из книги Самоучитель Skype. Бесплатная связь через Интернет автора Яковлева Е. С.

Системные требования Для успешной эксплуатации операционной системы Windows 7 компьютер должен отвечать следующим минимальным требованиям: Тактовая частота процессора – 1 ГГц. Он может быть как 32–разрядным (х86), так и 64–разрядным (х64). Объем оперативной памяти – 1 Гб

Из книги Бесплатные разговоры через Интернет автора Фрузоров Сергей

Системные требования Для успешной работы в программе Skype понадобятся следующие технические компоненты:? персональный компьютер с операционной системой Windows 2000 или XP (использование Windows 2000 требует установки DirectX 9.0 для видеоданных);? соединение с Интернетом

Из книги Первые шаги с Windows 7. Руководство для начинающих автора Колисниченко Денис Н.

Минимальные системные требования Radmin - довольно скромная программа, если речь идет о требованиях к аппаратной части компьютера. Ее можно запускать даже на машине с 386 процессором, имеющей 8 Мбайт оперативной памяти. Другими словами, если вы смогли установить на

Из книги Домашний компьютер автора Кравцов Роман

Системные требования при работе с VNC Как и Radmin, программа VNC предъявляет незначительные требования к компьютеру, на котором она работает:? нужно, чтобы на нем была установлена графическая карта, пригодная для работы в Windows (драйверы старых графических карт имели

Из книги Firebird РУКОВОДСТВО РАЗРАБОТЧИКА БАЗ ДАННЫХ автора Борри Хелен

2.2. Системные требования Когда появилась Windows Vista, ее часто ругали за слишком высокие системные требования. Так оно и было. Вспоминаю по себе: тогда у меня был компьютер с 768 Мбайт оперативной памяти. Я все же установил на него Vista, но производительность оставляла желать

Из книги Установка, настройка и восстановление Windows 7 на 100% автора Ватаманюк Александр Иванович

Системные требования к компьютеру Каждое программное обеспечение предъявляет свои требования к оборудованию, обеспечивающему его нормальную работу. Можно, конечно, ухитриться использовать компьютеры и с более скромными возможностями, но в этом случае вы лишь

Из книги автора

Системные требования Если у вас, к примеру, кассетный видеомагнитофон, вы никогда не купите к нему DVD диск, потому что знаете – магнитофон ваш «питается» только кассетами и диски попросту не «переваривает». Точно так же дело обстоит и с играми для вашего компьютера.

Из книги автора

Системные требования Память на сервере (все платформы) Оценка памяти сервера включает множество факторов.* Работа сервера Firebird. Сервер Firebird осуществляет эффективное использование ресурсов сервера. Суперсервер (Superserver) после старта использует приблизительно 2 Мбайта

Из книги автора

1.4. Системные требования Как и любой другой программный продукт, операционная система Windows 7 для своей установки и безотказной работы выдвигает определенные требования к мощности компьютера. В табл. 1.2 приведен список требований к системным ресурсам.Таблица 1.2. Системные

Страшно подумать, что могло бы случиться с оперативной системой,если туда попадет вирус. А ОС в VirtualBox ничего не грозит! Ни какой вирус или другая бяка, не сможет добраться до основной системы из только что установленной подозрительной программки, что бы вы не делали, чем бы не занималась, состояние гостевой ОС можно вернуть в рабочее состояние всего лишь несколькими нажатиями клавиш – для этого будет достаточно выбрать заранее сделанный снимок здоровой системы.

Начало в статьях:

Виртуальная машина. Настройки виртуальной машины.

Пришло время и к настройкам самой виртуальной машины. В левом верхнем углу нажмите на значок "Настроить" .

Откроется дополнительное окно с настройками. Вы увидите в первом окне название вашей системы, тип и версию.

Во вкладке "Дополнительно" нужно указать место для хранения снимков системы, которые вы будете делать.
Указать параметры буфера обмена, как он будет взаимодействовать с основной системой.
Включить или выключить мини тулбар о состоянии системы, подключенных устройствах и его расположение (по умолчанию он находится внизу экрана).

В меню "Система" во вкладке "Материнская плата" будет указан размер уже установленной вами оперативной памяти.
Также здесь можно установить порядок устройств загрузки. Установите первым устройство то, откуда будет устанавливаться операционная система.
В дополнительных настройках можно оставить все как есть. Если что, пояснение к каждому пункту отображается внизу окна.

Во вкладке "Процессор" указывается сколько процессоров доступно и сколько будет задействовано в виртуальной машине. Если вы устанавливаете ОС 32(86), то должен быть 1 процессор, если же 64, то 2 процессора и больше, все зависит от возможностей вашего компьютера.
Пункт "Предел загрузки ЦПУ" устанавливает максимальный размер для нагрузки основного процессора. Я всегда устанавливаю 75% и этого вполне достаточно.
Установите галочку в пункте "Дополнительные возможности" -> "Включить "PAE/NX" таким образом гостевая система сможет напрямую работать с процессором.

Пункт меню "Дисплей" , вкладка "Видео" - здесь устанавливается графический размер памяти для видео карты виртуальной машины. Сколько устанавливать решать вам. Если вы собираетесь играть в ней в серьезные игры, то конечно графика должна быть высокой.
"Количество мониторов" - показывает сколько мониторов доступно и на скольких мониторах вы хотите установить отображение виртуальной машины.
"Дополнительные возможности" позволяют указать, будет ли задействована в системе 2D и 3D графика.

В пункте меню "Носители" устанавливается количество виртуальных и реальных подключаемых CD/DVD носителей и жестких дисков.
Во внутреннем окне "Носители информации" выберите "контроллер IDE" , появятся два значка для добавления дисков, жесткого и CD/DVD или виртуального.

Выберите нужный и установите как пустой (см. скриншот). Далее здесь же, справа увидите "Привод", где нужно установить его параметры и указать нахождение, будет это образ диска, или виртуальный привод, или реальный привод. Ниже для скорости работы и разрешения работать напрямую можно установить соответствующие галочки в пункты.

Обязательно установите первичный IDE привод с устанавливаемой оперативной системой.

Пункт меню "Аудио" . Рабочие настройки всегда уже установлены по умолчанию, но если вы хотите их изменить, задействовать другое звуковое устройство присутствующее на вашем компьютере или совсем выключить звук, сделайте соответствующие установки.

Следующий пункт "Сеть" . В последних версиях VirtualBox все настройки взаимодействия с сетевой картой уже настроены по умолчанию и вполне работоспособны, в отличие от первых версий программы, где все приходилось настраивать вручную предварительно облазив весь интернет в поисках подсказки.
Если у вас установлена еще сетевая карта и вы работает с двумя провайдера, или может у вас домашняя сеть, то конечно здесь все это можно настроить. Все подробности в другой статье.

В пункте "USB" ни чего можно не трогать, если вы конечно не хотите подключить дополнительное устройство. А флэшками можно будет манипулировать прямо из виртуальной машины, выбрав меню "Устройства" , пункт "USB" и выбирайте, какую нужно подключить флэшку. Внимание! Если вы переключите флэшку в гостевую систему, то в реальной системе она отображаться не будет и произойдет обратное после выключения ее из гостевой.

И последний пункт меню "Общие папки" . Здесь вы можете добавлять или удалять общие папки для реальной и гостевой ОС. Они подключаются в виртуальной машине в виде сетевого диска, так что при подключении сразу же установите галочку в пункт "Авто-подключение" . И также можете выбрать, как папка будет работать с файлами в этом сетевом диске, с полным доступом к управлению или "Только для чтения" .

Теперь виртуальная машина настроена. Можно смело запускать ее и устанавливать гостевую операционную систему.

Виртуальная машина, для своей стабильной работы, нуждается в наличии достаточного количества выделяемых ей системных ресурсов. Это, в первую очередь, касается задействования свободной оперативной, графической памяти и, соответственно, ресурсов центрального процессора.

На персональном компьютере с устаревшими комплектующими вы, конечно же, сможете запустить саму виртуальную машину, но установленные в ней операционные системы будут работать очень медленно или вообще не будут запускаться.

На среднем по мощности ПК эмулируемые операционные системы могут функционировать относительно стабильно, а при грамотной настройке параметров ВМ, можно выжать максимум производительности. Комфортная работа важнее всего, не так ли?

Нижеследующие несколько советов помогут это сделать, не зависимо от того, какую систему виртуализации вы выбрали. Это могут быть наиболее популярные и достаточно функциональные , VMware или, например, менее распространенные в среде обычных пользователей — Virtual PC, Parallels и т.д.

Давайте посмотрим, что мы сможем сделать для повышения производительности. Приступим?!

ВИРТУАЛЬНАЯ МАШИНА

Создайте диск с фиксацией размера вместо динамического . При создании ВМ вы можете выбрать два типа виртуальных дисков, фиксированный или динамический. По умолчанию используется последний из упомянутых выше и как преимущество, занимает мало места сразу при его создании. Как недостаток, растет во время использования и работает медленнее фиксированного.

Установите инструменты своей виртуальной машины . После установки операционки, первое, что вам нужно сделать, это инсталлировать Дополнения гостевой ОС, которые помогают работать оборудованию быстрее. Необходимый пункт находится в меню «Устройства» гостевой операционной системы VirtualBox. Для завершения установки следуйте инструкциям на экране.

Добавьте исключения в вашем антивирусе . Любая может проверять файлы вашей ВМ при каждом доступе, снижая при этом производительность. Это бесполезное сканирование, вирусов она не обнаружит. Чтобы ускорить процесс, вы можете добавить весь каталог виртуальной машины в список исключений антивируса.

Побеспокойтесь о включении Intel VT-x/AMD-V . VT-x и AMD-V — специальные процессорные инструменты, которые улучшают виртуализацию. Могут активироваться автоматически, а могут и вручную. Возможно, вам придется зайти в БИОС вашего компьютера и включить параметр самостоятельно. Также стоит убедиться в том, что он включен и в настройках VirtualBox.

Выделите больший объем оперативной памяти . Виртуальные машины прожорливы, вследствие чего, рекомендуется выделять им не менее 2 Гигабайт ОЗУ. Можно и больше, но желательно не менее одной трети от доступной.

Выделите больше ядер центрального процессора. ЦП вашего компьютера выполняет громадную работу по запуску ВМ, а также ее программного обеспечения. Поэтому, чем больше ядер она будет использовать, тем лучше будет работать. Их можно назначить в окне настроек.

Добавьте видеопамяти . Настройка некоторых параметров видео также может повысить скорость. Например, включение функции 2D или 3D-ускорения позволит вам использовать некоторые приложения с более разумной скоростью.

Используйте по возможности твердотельный диск . SSD — является одним из лучших мест для размещения систем виртуализации.

Приостановка вместо выключения . Когда вы закончите работу, вы сможете сохранить состояние машины, а не полностью выключать ее и при следующем запуске гостевая операционная система возобновит работу с того места, где вы остановились, вместо старта с нуля.

Повышение производительности внутри . Ваша виртуальная ОС может быть настроена так же, как и основная операционная система. Сократите количество фоновых приложений, а также программ в . Используйте инструмент «Оптимизация дисков» (дефрагментация) и т.д. На этом всё!

Просмотрите список всех компьютерных советов в . Ждем вашего участия в нашей группе в ФБ.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows