Начало работы с Arduino Due. Проекты Arduino для всех

Начало работы с Arduino Due. Проекты Arduino для всех

24.05.2019

Общие сведения

Arduino Nano - это полнофункциональное миниатюрное устройство на базе микроконтроллера ATmega328 (Arduino Nano 3.0) или ATmega168 (Arduino Nano 2.x), адаптированное для использования с макетными платами. По функциональности устройство похоже на Arduino Duemilanove, и отличается от него размерами, отсутствием разъема питания, а также другим типом (Mini-B) USB-кабеля. Arduino Nano разработано и выпускается фирмой Gravitech.

Схема и исходный проект

Связь

Arduino Nano предоставляет ряд возможностей для осуществления связи с компьютером, еще одним Ардуино или другими микроконтроллерами. В ATmega168 и ATmega328 есть приемопередатчик UART, позволяющий осуществлять связь по последовательным интерфейсам посредством цифровых выводов 0 (RX) и 1 (TX). Микросхема FTDI FT232RL обеспечивает связь приемопередатчика с USB-портом компьютера, и при подключении к ПК позволяет Ардуино определяться как виртуальный COM-порт (драйвера FTDI включены в пакет программного обеспечения Ардуино). В пакет программного обеспечения Ардуино также входит специальная программа, позволяющая считывать и отправлять на Ардуино простые текстовые данные. При передаче данных компьютеру через USB на плате будут мигать светодиоды RX и TX. (При последовательной передаче данных посредством выводов 0 и 1 данные светодиоды не задействуются).

ATmega168 и ATmega328 в Arduino Nano выпускается с прошитым загрузчиком, позволяющим загружать в микроконтроллер новые программы без необходимости использования внешнего программатора. Взаимодействие с ним осуществляется по оригинальному протоколу STK500 ( , ).

Автоматический (программный) сброс

Чтобы каждый раз перед загрузкой программы не требовалось нажимать кнопку сброса, Arduino Nano спроектирован таким образом, который позволяет осуществлять его сброс программно с подключенного компьютера. Один из выводов микросхемы FT232RL, участвующий в управлении потоком данных (DTR), соединен с выводом RESET микроконтроллера ATmega168 или ATmega328 через конденсатор номиналом 100 нФ. Когда на линии DTR появляется ноль, вывод RESET также переходит в низкий уровень на время, достаточное для перезагрузки микроконтроллера. Данная особенность используется для того, чтобы можно было прошивать микроконтроллер всего одним нажатием кнопки в среде программирования Ардуино. Такая архитектура позволяет уменьшить таймаут загрузчика, поскольку процесс прошивки всегда синхронизирован со спадом сигнала на линии DTR. Такая архитектура позволяет уменьшить таймаут загрузчика, поскольку процесс прошивки всегда синхронизирован со спадом сигнала на линии DTR.

Однако эта система может приводить и к другим последствиям. При подключении Arduino Nano к компьютерам, работающим на Mac OS X или Linux, его микроконтроллер будет сбрасываться при каждом соединении программного обеспечения с платой. После сброса на Arduino Nano активизируется загрузчик на время около полсекунды. Несмотря на то, что загрузчик запрограммирован игнорировать посторонние данные (т.е. все данные, не касающиеся процесса прошивки новой программы), он может перехватить несколько первых байт данных из посылки, отправляемой плате сразу после установки соединения. Соответственно, если в программе, работающей на Ардуино, предусмотрено получение от компьютера каких-либо настроек или других данных при первом запуске, убедитесь, что программное обеспечение, с которым взаимодействует Ардуино, осуществляет отправку спустя секунду после установки соединения.

Все об ардуино и электронике!

Arduino - торговая марка аппаратно-программных средств для построения простых систем автоматики и робототехники , ориентированная на непрофессиональных пользователей. Программная часть состоит из бесплатной программной оболочки (IDE) для написания программ, их компиляции и программирования аппаратуры. Аппаратная часть представляет собой набор смонтированных печатных плат , продающихся как официальным производителем, так и сторонними производителями. Полностью открытая архитектура системы позволяет свободно копировать или дополнять линейку продукции Arduino.

Название платформы происходит от названия одноимённой рюмочной в Иврее , часто посещавшейся учредителями проекта, а название это в свою очередь было дано в честь короля Италии Ардуина Иврейского .

Arduino может использоваться как для создания автономных объектов автоматики, так и подключаться к программному обеспечению на компьютере через стандартные проводные и беспроводные интерфейсы

В данном материале будет предоставлен пример как использовать несколько датчиков температуры 18b20 + добавлять нужное количество и производить удаленный мониторинг по средствам платы esp8266 nodemcu и приложения blynk. Данный материал будет полезен если нужно снимать удаленно несколько показаний температуры для мониторинга.

Хотите поиграть в видеоигры из детства? Танчики, Контра, Чип и Дэйл, Черепашки Ниндзя… Все эти игры ждут вас! Из данного руководства вы узнаете как просто и быстро собрать и настроить ретро-консоль на базе микрокомпьютера Raspberry Pi и сборки эмуляторов RetroPie.

Интерактивная снежинка соответствующей формы, созданная Ардуино Нано. Используя 17 независимых каналов PWM и сенсорный датчик для включения и эффектов.

Снежинка состоит из 30 светодиодов, сгруппированных в 17 независимых сегментов, которые могут управляться отдельно микроконтроллером Arduino Nano. Каждый блок управляется отдельным пином PWM, и регулирует яркость каждого блока светодиодов и эффекты отдельно.

Данная статья будет полноценной инструкцией для сборки машинки робота на базе кит комплекта 2wd robot на основе вай-фай платы esp8266 и мотор шилда под неё .

Так же в конце будет прошивка под эту плату и настройка приложения для управления нашим роботом через смартфон по средствам вай-фай сети.

Вначале статьи будет изложена теория, ближе к ее середине будет рассмотрена практика, максимально кратко так же расскажем об инструменте, о химии, которая необходима в пайке, о дополнительных инструментах. Для того, чтобы получить действительно качественную пайку, Вам все эти вопросы следует хорошо изучить, где-то узнавать подробности, но мы постараемся объяснить все максимально доступно «на пальцах», так что после прочтения вы гарантированно сможете выполнить поставленные задачи.

На просторах интернета в последнее время стали очень популярны часы на базе ESP8266 Nodemcu и пиксельных матрицах max7219 . Все из за того что данные часы очень просты в сборке, имеют широкий функционал и возможности с обновлением времени, получением различных данных с интернета и вывод на бегущую строку всех этих данных.

Популярная глушилка спаммер на базе платы ESP8266 (nodemcu \WEMOS) получила вторую версию прошивки c исправлением ошибок, улучшением интерфейса и добавлением более широкого функционала. Все это собрал до кучи и решил написать пост. Так же добавил подробный ворклог с упрощенной прошивкой через FLASHER (прошивка в 3 клика)

WIFI часы с метеостанцией на ESP8266 и матричном индикаторе на MAX7219

Очень интересный и простой проект часов с веб интерфейсом на базе платы ESP8266 nodemcu и дисплея MAX7219 . Наверное лучший вариант часов и спаренной погодной станции которая получает данные с интернета!

Дополнительные поля
test 1:

Этот проект сделан на плате WIFI ESP8266 и заточен на управление и мониторинг через приложение BLYNK на вашем смартфоне. Так же в проект можно добавить IP-камеру (или использовать старый смартфон с камерой в виде сервера) для мониторинга в реальном времени через IP Webcam Pro через виджет в приложении BLYNK .Для подачи корма используется шаговый двигатель NEMA17 c шагом в 1.8 градуса - 200 шагов на полный оборот. Двигатель вращает шнек в сантехническомпереходнике, в который из бункера попадает корм.

Давайте начнем с тех возможностей, которые откроются перед вами, если вы обеспечите беспроводной обмен данными между двумя платами Arduino:

  • Удаленное снятие показаний с датчиков температуры, давления, систем сигнализации на основе пироэлектрических датчиков движения и т.п.
  • Беспроводное управление и мониторинг состояния роботов на расстоянии от 50 2000 футов.
  • Беспроводное управление и мониторинг помещений в соседних домах.
  • И т.д. и т.п. В общем, практически все, что требует беспроводных систем управления и мониторинга...

Доброго времени суток!
Уже довольно давно на досуге я занимаюсь всяческими электронными безделушками. Начинал с программирования тинек и мег в IARе, пока не понял что c Arduino дела обстоят намного проще. И вот совсем недавно обнаружил на просторах китайских магазинов копию Arduino DUE по цене чуть дороже небезызвестной Mega2560.

Для тех, кто не знает что это и с чем его едят

Arduino - это электронный конструктор и удобная платформа быстрой разработки электронных устройств для новичков и профессионалов. Платформа пользуется огромной популярностью во всем мире благодаря удобству и простоте языка программирования, а также открытой архитектуре и программному коду. Устройство программируется через USB без использования программаторов.

Arduino позволяет компьютеру выйти за рамки виртуального мира в физический и взаимодействовать с ним. Устройства на базе Arduino могут получать информацию об окружающей среде посредством различных датчиков, а также могут управлять различными исполнительными устройствами.

Микроконтроллер на плате программируется при помощи языка Arduino (основан на языке Wiring) и среды разработки Arduino (основана на среде Processing). Проекты устройств, основанные на Arduino, могут работать самостоятельно, либо же взаимодействовать с программным обеспечением на компьютере (напр.: Flash, Processing, MaxMSP). Платы могут быть собраны пользователем самостоятельно или куплены в сборе. Программное обеспечение доступно для бесплатного скачивания. Исходные чертежи схем (файлы CAD) являются общедоступными, пользователи могут применять их по своему усмотрению.
© arduino.ru


Начинал свое знакомство с arduino я с покупки китайского аналога Mega2560. По началу игрался, подключал дисплеи, датчики, сервомоторы, пока как то раз не понадобилось по работе сделать девайс, считывающий напряжения с токового шунта и терморезистора, преобразующий все это дело в нормальный вид и выводящий на дисплей. Вот тут то и пригодилась ардуина, за 5 минут был написан скетч, подключен дисплей и плата переехала на работу. Конечно получилось из пушки по воробьям, но на тот момент это было самое быстрое решение. Потом я заказал с десяток ProMini по 100 рублей и хотел перенести на одну из них скетч, но как известно, нет ничего более постоянного чем временное и моя лень так и не дала мне этого сделать. Дома же пришлось довольствоваться сторублевыми платами, благо кроме количества выводов, памяти, и отсутствия USB-UART преобразователя они ничем особо от меги и не отличались.

Но выводов стало нехватать и однажды бродя по просторам банггуда я наткнулся на Arduino DUE. Цена ее была чуть выше чем на Mega2560 и я незамедлительно ее купил. Основным отличием ее от других ардуин является то, что внутри у нее 32-х битный ARM микроконтроллер архитектуры Cortex-M3 работающий на частоте 84 МГц.

Посылка добралась за 27 дней, плата была завернута в несколько слоев пупырки и упакована в типичный желтый китайский пакет.

Вид спереди:


Пайка выполнена аккуратно, но если приглядеться, заметны небольшие изъяны шелкографии.
Как видно из фото данная плата обладает двумя разъемами microUSB. Один необходим для программирования, а через второй плата может общаться с внешним миром: читать флешки, эмулировать клавиатуру, мышь (сам пока этого не проверял). Также есть хитрая кнопка erase, нажатие на которую стирает флеш микроконтроллера.

Вид сзади:

Технические характеристики платы (взято с офф. сайта):
Микроконтроллер: AT91SAM3X8E
Рабочее напряжение: 3,3 В
Входное напряжение (рекомендуемое): 7-12 В
Входное напряжение (предельное): 6-20 В
Цифровые Входы/Выходы: 54 (на 12 из которых реализуется выход ШИМ)
Аналоговые входы: 12
Аналоговые выходы: 2 (ЦАП)
Общий выходной постоянный ток на всех входах/выходах: 50 мА
Постоянный ток через вывод 3,3 В: 800 мА
Постоянный ток через вывод 5 В: 800 мА
Флеш-память: 512 КБ доступно всего для пользовательских приложений
ОЗУ: 96 КБ (два банка: 64 КБ и 32 КБ)
Тактовая частота: 84 МГц

Все стандартные интерфейсы, такие как SPI, 1Wire, UART присутствуют.
Более подробно можно почитать

А вот и сам МК покрупнее:

За его программирование отвечает 16-я мега с кварцем на 16 МГц:

А тактируется он внешним кварцем:


Как подсказал комрад Angrim, 84 МГц получаются умножением на 7 исходных 12-ти.

Важной особенностью является то, что в отличие от других плат Arduino, Arduino Due работает от 3,3 В. Максимальное напряжение, которое выдерживают вход/выходы составляет 3,3 В.
В принципе большинство датчиков могут работать от 3,3 вольт, но некоторые шилды работать не будут.
В прочем всегда можно докупить вот такие штуки: благо 5V на плате имеется.

Для написания скетчей и их заливки нужно скачать Arduino 1.5.8 BETA, с поддержкой DUE. Однако стоит отметить что не все библиотеки написанные под другие версии ардуино нормально работают с DUE. У меня библиотека работы с датчиком BMP180 нормально работавшая с мегой, выдавала нереальные данные, пришлось качать библиотеку от Adafruit. Также заметил что не всегда после подачи питания МК начинает исполнение программы, иногда нужно жать reset. Чей это глюк, бета версии IDE или китайской платы я не знаю.

Тесты

Сначала для проверки я залил скетч, опрашивающий датчик BMP180 и записывающий данные с него (давление и температуру) на флешку.


Все заработало, правда, как я писал выше, пришлось использовать библиотеку Adafruit.

Результат

Ну и конечно, как же не воспользоваться встроенным ЦАПом!
Для этого заливаем пример SimpleAudioPlayer, подключаем флешку с залитым waw файлом test.waw, а вывод DAC0 вместе с землей подключаем к усилителю. В моем случае в роли усилителя был портативный динамик, полученный по акции от Pringles. Выводы просто примотал к джеку двумя резисторами по 10 кОм т.к. на прямую динамик жестко перегружался.

Радуемся музыке из колонки!


Звук конечно так себе, все таки 12 бит дают о себе знать, но для ардуины очень даже не плохо!
Теперь в планах прикупить цветной дисплейчик и погонять на нем видео.

Ну и в качестве итога рассмотрим плюсы и минусы данной ардуины
Плюсы:
- Низкая стоимость
- 32 битный контроллер и частота 84 МГц.
- Наличие ЦАП 12 бит 1Msps
- 12 битные АЦП
- Собственный USB

Минусы:
- 3.3V рабочее напряжение (несовместимость с некоторыми шилдами/устройствами)
- Несовместимость с некоторыми библиотеками.
- Иногда после подачи питания нужно нажать reset чтобы программа запустилась

В целом мне понравилось, возможно в дальнейшем вылезут еще какие-нибудь косяки, если что сообщу.

Всем спасибо за внимание!

Планирую купить +59 Добавить в избранное Обзор понравился +51 +107

Arduino Due - это мощная Arduino, основанная на 32-битном ARM-процессореAT91SAM3X8E от Atmel. Он обладает тактовой частотой 84 МГц, а его 32-битная архитектура позволяет выполнять большинство операций на целыми числами в 4 байта за один такт.

Характеристики Arduino Due

  • 96 Кб SRAM (оперативная память)
  • 512 Кб флеш-памяти (для хранения программы)
  • Прямой доступ к памяти (DMA) для задач, активно работающих с данными в памяти
  • 54 цифровых входов/выходов; 12 из них поддерживают ШИМ (PWM)
  • 4 аппаратных последовательных порта (UART)
  • 12 аналоговых входов
  • 2 цифро-аналоговых преобразователя (DAC) для 2 аналоговых выходов
  • 2 шины TWI / I²C
  • SPI-разъём
  • JTAG-разъём
  • Поддержка USB On The Go (USB OTG) для подключения других USB-устройств

Внимание! В отличии от большинства плат Arduino, родным напряжением Arduino Due является 3,3 В, а не 5 В . Соответственно, выходы для логической единицы выдают 3,3 В, а в режиме входа ожидают принимать не более 3,3 В. Подача большего напряжения может повредить процессор! Будьте внимательны при подключении периферии: убедитесь, что она может корректно функционировать в этом диапазоне напряжений.

Контакты Arduino Due

  • Цифровые входы/выходы: контакты 0–53. Работают на напряжении 3,3 В. В режиме выхода могут выдавать ток 3 или 15 мА (в зависимости от контакта); в режиме входа - принимать ток 6 или 9 мА (в зависимости от контакта). К контактам также подключены подтягивающие резисторы по 100 кОм, которые по умолчанию выключены, но могут быть включены программно.
  • Аппаратные последовательные порты (RX/TX): 0/1, 19/18, 17/16, 15/14. Передача данных осуществляется на уровне 3,3 В. Первая пара также соединена с чипом ATmega16U2, отвечающим за подключение через USB к компьютеру.
  • Широтно-имульсная модуляция (ШИМ/PWM): контакты 2–13. Дают возможность выдавать аппаратный шим с разрешением 8 бит (256 градаций).
  • SPI - отдельная группа контактов 2×3. На Arduino Due используется только для общения по SPI-интерфейсу с другими устройствами. Он не может быть использован для программирования контроллера, как на других Arduino. По расположению он в точности совпадает с расположением на , Arduino Mega 2560, Arduino Leonardo, а следовательно даёт возможность работы с платами расширения его использующими, таких как Ethernet Shield.
  • CAN-шина: контакты CANRX и CANTX. Позволяют использовать Arduino Due в автомобильных сетях. Поддержка с программной стороны пока не реализована производителем.
  • Встроенный светодиод: контакт 13 (L). Для простой индикации. В отличии от Arduino Uno и Mega, он поддерживает ШИМ.
  • Шины TWI/I²C: 20(SDA)/21(SCL), SDA1/SCL1. Для общения с периферией по синхронному протоколу, через 2 провода.
  • Аналоговые входы: контакты A0–A11. Принимают сигнал до 3,3 В. Большее напряжение может вывести процессор из строя. Аналоговые входы предоставляют разрешение до 12 бит (4096 градаций), хотя по умолчанию настроены на разрешение в 10 бит для совместимости со скетчами для других моделей Arduino.
  • Цифро-аналоговый преобразователь: контакты DAC1 и DAC2. Позволяют выдавать настоящий аналоговый сигнал с 12-битным разрешением (4096 градации), например, для устройств, связанных с обработкой звука.
  • Сброс процессора: RESET. Позволяет аппаратно перезагружать плату.
  • Входное напряжение: Vin. Выдаёт напряжение, поданное внешним источником, либо может являться входом для внешнего питания.
  • Стабилизированные 5 В: контакт 5V. Позволяет получать ровные 5 В и ток до 800 мА.
  • Стабилизированные 3,3 В: контакт 3.3V. Позволяет получать ровные 3,3 В и ток до 800 мА.
  • Общая земля: GND.
  • Опорное напряжение для плат расширения: IOREF. Платы расширения должны «советоваться» с этим контактом, чтобы правильно определять родное напряжение родительской платы. Arduino Due выдаёт на IOREF 3,3 В.

Память Arduino Due

  • На борту SAM3X - 2 блока по 256 Кб флеш-памяти для хранения программы
  • Загрузчик (bootloader) располагается в отдельной памяти только для чтения и прошит на заводе Atmel
  • Оперативная SRAM-память поделена на 2 банка: 64 и 32 Кб

Любая память доступна для последовательной адресации из программы. Содержимое флеш-памяти (программа) может быть очищено зажатием на несколько секунд кнопки Erase на плате.

Коммуникация

Arduino Due позволяет взаимодействовать с компьютером, другими Arduino, микроконтроллерами и различными устройствами вроде телефонов, планшетов, фотоаппаратов. Для этого плата предоставляет три аппаратных последовательных порта (UART/USART), две шины TWI/I²C, интерфейс SPI и USB-порт.

Один USB-порт (programming) используется для прошивки Arduino Due. Он подключён к чипу ATmega16U2 на плате, который является мостом между USB и аппаратным портом SAM3X, используемым для программирования процессора и связи с компьютером.

Второй USB-порт (native) может использоваться для связи с другими устройствами как в режиме slave (эмуляция мыши, клавиатуры), так и в режиме host (приём данных с фотоаппаратов, управление мышью, клавиатурой, телефоном).

Совместимость

Платформа по своему форм-фактору полностью совпадает с Arduino Mega 2560. Это означает механическую совместимость со всеми платами расширения для Arduino Mega, Arduino Uno, Arduino Leonardo.

Однако, в силу того, что родным является напряжение в 3,3 В, а не 5 В, как на других моделях, стоит обязательно удостоверяться в возможности подключения платы расширения к Arduino Due.

Питание, защита USB и принципы взаимодействия аналогичны другим моделям Arduino.

Габариты Arduino Due

Размер платы составляет 10,16 × 5,3 см (против 6,9 × 5,3 см базовой модели). Гнёзда для внешнего питания и USB выступают на пару миллиметров за обозначенные границы. На плате предусмотрены места для крепления на шурупы или винты. Расстояние между контактами составляет 0,1” (2,54 мм), но в случае 7-го и 8-го контакта - расстояние: 0,16”.

Где купить Arduino

Наборы Arduinoможно купить на официальном сайте и в многочисленных интернет-магазинах.

Наиболее привлекательные цены, постоянные спецпредложения и бесплатная доставка на сайтах китайских магазинов

Что такое цифровая драм-машина или иначе бит-машина слышали наверное все. Совсем другое дело электромеханическая драм-машина, созданая норвежским композитором Koka Nikoladze. В ней звук формируется за счет механического воздействия. Машинка работает под управлением Arduino, который позволяет запрограммировать мелодию для исполнения.

Вы слышали про Arduino и вам хочется поскорее разобраться с ней, чтобы сделать свое устройство, робота или что там еще придумали. Помигать светодиодом вы сможете уже в первый вечер, но на создание более сложного гаджета уйдет куда больше времени. Впереди долгие недели и даже месяцы изучения программирования на C, поиск совместимых библиотек и модулей, костылей и превозмогания трудностей. Как ускорить процесс? Начните с Arduino совместимой платы, которую можно программировать на JavaScript.

Оригинал статьи на английском http://www.bunniestudios.com/blog/?p=2407

На фотографии готовые печатные платы для Leonardo

Самое интересное в лампе - это то, что она реагирует на приближение с помощью самодельного, и вообщем-то очень простого емкостного сенсора. Основной элемент, которого - лист фольги. На данный момент эта сборка лишь прототип, и все электронные компоненты и сенсор (тот самый лист фольги) никаким образом не интегрированы в сам светильник, но сама идея очень интересная.

Arduino, самодельная перчатка с 5-тью зашитыми датчиками изгиба, 5 сервоприводов HITEC HS-81 и механическая рука. Как все это работает можно посмотреть на видео. Arduino cчитывает данные с датчиков изгиба и управляет сервомоторчиками так, чтобы механическая рука повторяла движения кисти человека. Кстати, в первом видео автор использует готовый набор механики руки, который можно купить на ebay, правда без электронных компонентов и приводов. В другом проекте автор сделал подобную руку из подручных материалов.

В этом проекте автор покажет, как можно подключить полноцветную светодиодную матрицу 8x8 к Arduino. Сама матрица имеет 32 входа: 8 анодов, 8 катодов красного цвета, 8 зеленого и 8 синего. При этом для управления матрицей будут задействованы всего 3 выхода на Arduino. Никакой магии тут нет, а есть 4 сдвиговых регистра 74HC595.

Более подробно об использовании 74HC59 с Arduino можно почитать в инструкции Использование сдвигового регистра 74HC595 для увеличения количества выходов .

Один регистр дает нам 8 выходов, так как у нашей матрицы 32 входа, в проекте использована техника каскадирования сдвиговых регистров. Нам понадобится 4 регистра 74HC59, при этом количество подключений к Arduino не изменится и будут задействованы 3 выхода на Arduino. для управления. Питание осуществляется по USB, но можно подключить и автономное.

Съемка быстротекущих процессов, таких как падение капли, взрыв воздушного шарика, - очень непростое дело. Точно подгадать момент, когда нужно нажать на спуск затвора, без специальных устройств практически невозможно. Нет, можно, конечно, сделать сотню попыток, и в какой-то момент удача повернется к тебе. Но можно обойтись и без сотни шариков. Тут на помощь придет Arduino. Ниже описан процесс конструирования автоматического триггера на базе Arduino с реакцией на звук или пересечение луча лазерной указки.

Cтрого говоря, Arduino будет управлять не затвором камеры, а фотовспышкой. К сожалению, задержка реакции камеры на сигнал — в районе 20 миллисекунд, что для человеческого глаза не заметно, но все же дольше, чем можно себе позволить при съемке лопнувшего шарика. Поэтому съемка производится в темной комнате с выдержкой 10 секунд, а вот вспышка срабатывает именно в нужный момент. Так как в комнате практически нет освещения, то всё экспонирование фотографии произойдет именно в момент работы вспышки (около 1 миллисекунды).



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows