Введение в динамическое программирование. Метод динамического программирования

Введение в динамическое программирование. Метод динамического программирования

25.06.2019

Применение динамического программирования для моделирования процессов принятия решений

1.2 Метод динамического программирования и его основные этапы

В основе метода динамического программирования лежит принцип оптимальности, впервые сформулированный в 1953 г. американским математиком Р. Э. Беллманом: каково бы ни было состояние системы (S) в результате какого-либо числа шагов, на ближайшем шаге нужно выбирать управление так, чтобы оно в совокупности с оптимальным управлением на всех последующих шагах приводило к оптимальному выигрышу на всех оставшихся шагах, включая выигрыш на данном шаге. При решении задачи на каждом шаге выбирается управление, которое должно привести к оптимальному выигрышу. Если считать все шаги независимыми, тогда оптимальным управлением будет то управление, которое обеспечит максимальный выигрыш именно на данном шаге.

Метод динамического программирования включает три основных этапа:

Предварительный этап.

Этап условной оптимизации.

Этап безусловной оптимизации.

Предварительный этап проводится с целью уменьшения вычислительной работы на последующем этапе решения и, по существу, заключается в нахождении всех допустимых значение управлений и фазовых переменных. Иными словами, на данном этапе отбрасываются все заведомо неподходящие, нереализуемые значения фазовых и управляющих переменных. Проводится предварительный этап в естественном порядке от первого шага к последнему: i = 1, 2, … , N, а опираются соответствующие расчеты на уровне процесса

Этап условной оптимизации. На данном этапе решения задачи, называемом условной оптимизацией, определяются функция Беллмана и оптимальные управления для всех возможных состояний на каждом шаге, начиная с последнего в соответствии с алгоритмом обратной прогонки. На последнем, n-м шаге, оптимальное управление - определяется функцией Беллмана (1.1):

Этот максимум (или минимум) определяется по всем возможным для k и S значениям переменной управления X.

Безусловная оптимизация. После того, как функция Беллмана и соответствующие оптимальные управления найдены для всех шагов с n-го по первый, осуществляется третий этап решения задачи, называемый безусловной оптимизацией. Пользуясь тем, что на первом шаге (k = 1) состояние системы известно - это ее начальное состояние, можно найти оптимальный результат за все n шагов и оптимальное управление на первом шаге которое этот результат доставляет. После применения этого управления система перейдет в другое состояние, зная которое, можно, пользуясь результатами условной оптимизации, найти оптимальное управление на втором шаге, и так далее до последнего n-го шага. Вычислительную схему динамического программирования можно строить на сетевых моделях, а также по алгоритмам прямой прогонки (от начала) и обратной прогонки (от конца к началу).

Порядок расчетов в методе динамического программирования может быть проиллюстрирован схемой (табл. 1.1), в которой точками обозначены состояния системы.

Таблица 1.1

Порядок расчетов в методе динамического программирования

Виды математических моделей, используемых в экономике

Общая задача оптимизации, чтобы ее можно было описать моделью ДП должна удовлетворять следующим условиям: 1. Задача может интерпретироваться как n-шаговый процесс управления...

Динамическое программирование

Задача о выборе наиболее экономного маршрута доставки груза. На данной сети дорог имеется несколько маршрутов, по которым можно доставлять груз из пункта 1 в пункт 10 (рис. 1)...

Использование метода динамического программирования для решения экономических задач

Динамическое программирование - метод оптимизации, приспособленный к операциям, в которых процесс принятия решений может быть разбит на отдельные этапы (шаги). Такие операции называют многошаговыми...

Классификация математических моделей, используемых в экономике и менеджменте

Общая задача оптимизации, чтобы ее можно было описать моделью ДП должна удовлетворять следующим условиям: Задача может интерпретироваться как n-шаговый процесс управления...

Классификация экономико-математических методов и моделей

Рассматривается управляемая система, которая под влиянием управления переходит из начального состояния в конечное состояние. Предположим, что процесс управления системой можно разбить на n шагов. Пусть - состояния системы после 1-го, 2-го, …...

Планирование производства и управления инвестиционными ресурсами

Динамическое программирование - методы и модели оптимизации, когда процесс принятия оптимального решения может быть разбит на этапы (шаги)...

Динамическое программирование представляет собой математический аппарат, который подходит к решению некоторого класса задач путем их разложения на части, небольшие и менее сложные задачи...

Применение динамического программирования для моделирования процессов принятия решений

Применение динамического программирования для моделирования процессов принятия решений

Распределение инвестиций между предприятиями: "Малышок", "Ронда", "Товиус", "Сластёна", "Читек"

Динамическое программирование представляет собой математический аппарат, разработанный для эффективного решения некоторого класса задач математического программирования...

Распределение средств между предприятиями: ОАО "Весёлый молочник", ОАО "Нижнекамская пищевая компания", ООО "Сэлдом", ООО "СтойКом", ОАО "Счастье"

Динамическое программирование (ДП) - метод оптимизации, приспособленный к операциям, в которых процесс принятия решения может быть разбит на этапы (шаги). Такие операции называются многошаговыми. Начало развития ДП относится к 50-м годам XX в...

Трендовые и корреляционные модели

Делим динамический ряд 1 на количество частей, равное количеству неизвестных коэффициентов выравнивающей функции...

Экономические модели зависимости величины активов, подверженных кредитному риску, от пассивов, прибыли (убытков), ВВП

На первом этапе необходимо построить уравнение парной линейной регрессии. Эмпирическое уравнение парной линейной регрессии имеет следующий вид: (1) где Y - объясняемая переменная, X - объясняющая переменная, е - случайная величина (ошибка)...

Динамическое программирование (иначе «динамическое планирование») есть особый метод оптимизации решений, специально приспособленный к так называемым «многошаговым» (пли «многоэтапным») операциям.

Представим себе некоторую операцию Ơ, распадающуюся на ряд последовательных «шагов» или «этапов»,- например, деятельность отрасли промышленности в течение ряда хозяйственных лет; или же преодоление группой самолетов нескольких полос противовоздушной обороны; или же последовательность тестов, применяемых при контроле аппаратуры. Некоторые операции (подобно выше приведенным) расчленяются на шаги естественно; в некоторых членение приходится вводить искусственно - скажем, процесс наведения ракеты на цель можно условно разбить на этапы, каждый из которых занимает какое-то время .

Итак, рассмотрим операцию Ơ , состоящую из Т Шагов (этапов). Пусть эффективность операции характеризуется каким-то показателем W , который мы для краткости будем в этой главе называть «выигрышем». Предположим, что выигрыш W за всю операцию складывается из выигрышей на отдельных шагах:

Где Wi - выигрыш на I -м шаге.

Если W обладает таким свойством, то его называют «аддитивным критерием».

Операция О, о которой идет речь, представляет собой управляемый процесс, т. е. мы можем выбирать какие-то параметры, влияющие на его ход и исход, причем на каждом шаге выбирается какое-то решение, от которого зависит выигрыш на данном шаге и выигрыш за операцию в целом. Будем называть это решение «шаговым управлением». Совокупность всех шаговых управлений представляет собой управление операцией в целом. Обозначим его буквой Х, а шаговые управления - буквами Х1, х2, …, Xm :

X = (X 1 , X 2 , …, Xm ). (12.2)

Следует иметь в виду, что Х1, х2, …., Xm в общем случае - не числа, а, может быть, векторы, функции и т. д.

Требуется найти такое управление Х, при котором выигрыш W обращается в максимум:

То управление Х*, при котором этот максимум достигается, будем называть оптимальным управлением. Оно состоит из совокупности оптимальных шаговых управлений:

Х* = (). (12.4)

Тот максимальный выигрыш, который достигается при этом управлении, мы будем обозначать W* :

W* = {W (х) }. (12.5)

Формула (12.5) читается так: величина W * есть максимум из всех W { X } при разных управлениях Х (максимум берется по всем управлениям Х, возможным в данных условиях). Иногда это последнее оговаривается в формуле и пишут:

Рассмотрим несколько примеров многошаговых операций и для каждого из них поясним, что понимается под «управлением» и каков «выигрыш» (показатель эффективности) W.

1. Планируется деятельность группы промышленных предприятий П1, П2, …, ПK на период Т хозяйственных лет (M -летку). В начале периода на развитие группы выделены какие-то средства М, которые должны быть как-то распределены между предприятиями. В процессе работы предприятия, вложенные в него средства частично расходуются (амортизируются), а частично сохраняются и снова могут быть перераспределены. Каждое предприятие за год приносит доход, зависящий от того, сколько средств в него вложено. В начале каждого хозяйственного года имеющиеся в наличии средства перераспределяются между предприятиями. Ставится вопрос: какое количество средств в начале каждого года нужно выделять каждому предприятию, чтобы суммарный доход за Т лет был максимальным?

Выигрыш W (суммарный доход) представляет собой сумму доходов на отдельных шагах (годах):

И, значит, обладает свойством аддитивности.

Управление X I на I -м шаге состоит в том, что в начале I -го года предприятиям выделяются какие-то средства Х I 1 , х I 2 , …, х Ik (первый индекс - номер шага, второй - номер предприятия). Таким образом, шаговое управление есть вектор с K составляющими:

Xi = (Xi 1 , Xi 2 , …, Xik ). (12.7)

Разумеется, величины Wi в формуле (12.6) зависят от количества вложенных в предприятия средств.

Управление Х всей операцией состоит из совокупности всех шаговых управлений:

X = (X 1 , X 2 , …, Xm ). (12.8)

Требуется найти такое распределение средств по предприятиям и по годам (оптимальное управление X * ), при котором величина W обращается в максимум.

В этом примере шаговые управления были векторами; в последующих примерах они будут проще и выражаться просто числами.

2. Космическая ракета состоит из Т ступеней, а процесс ее вывода на орбиту - из M этапов, в конце каждого из которых очередная ступень сбрасывается. На все ступени (без учета «полезного» веса кабины) выделен какой-то общий вес:

G = G 1 + G 2 + … + Gm ,

Где Gi - вес I -й ступени.

В результате I -го этапа (сгорания и сбрасывания 1-й ступени) ракета получает приращение скорости , зависящее от веса данной ступени и суммарного веса всех оставшихся плюс вес кабины. Спрашивается, как нужно распределить вес G между ступенями, чтобы скорость ракеты V при ее выводе на орбиту была максимальна?

В данном случае показатель эффективности (выигрыш) будет

V = (12.9)

Где - выигрыш (приращение скорости) на I -м шаге. Управление Х представляет собой совокупность весов всех ступеней Gi :

Х = (Gi , Gi , …, Gm ).

Оптимальным управлением Х* будет то распределение весов по ступеням, при котором скорость V максимальна. В этом примере шаговое управление - одно число, а именно, вес данной ступени.

3. Владелец автомашины эксплуатирует ее в течение Т лет. В начале каждого года он может принять одно из трех решений:

1) продать машину и заменить ее новой;

2) ремонтировать ее и продолжать эксплуатацию;

3) продолжать эксплуатацию без ремонта.

Шаговое управление - выбор одного из этих трех решений. Непосредственно числами они не выражаются, но можно приписать первому численное значение 1, второму 2, третьему 3. Какие нужно принять решения по годам (т. е. как чередовать управления 1, 2, 3), чтобы суммарные расходы на эксплуатацию, ремонт и приобретение новых машин были минимальны?

Показатель эффективности (в данном случае это не «выигрыш», а «проигрыш», но это неважно) равен

W = (12.10)

Где Wi - расходы в I -м году. Величину W требуется обратить в минимум.

X = (3, 3, 2, 2, 2, 1, 3, …),

Что означает: первые два года эксплуатировать машину без ремонта, последующие три года ее ремонтировать, в начале шестого года продать, купить новую, затем снова эксплуатировать без ремонта и т. д. Любое управление представляет собой вектор (совокупность чисел):

Х = (J 1 , J 2 , …; Jm ), (12.11)

Где каждое из чисел J 1 , J 2 , …, Jm имеет одно из трех значений: 1, 2 или 3. Нужно выбрать совокупность чисел (12.11), при которой величина (12.10) минимальна.

4. Прокладывается участок железнодорожного пути между пунктами А и В (рис. 12.1). Местность пересеченная, включает лесистые зоны, холмы, болота, реку, через которую надо строить мост. Требуется так провести дорогу из А и В, чтобы суммарные затраты на сооружение участка были минимальны.

В этой задаче, в отлично от трех предыдущих, нет естественного членения на шаги: его приходится вводить искусственно, для чего, например, можно отрезок АВ разделить на Т частей, провести через точки деления прямые, перпендикулярные АВ, и считать за «шаг» переход с одной такой прямой на другую. Если провести их достаточно близко друг от друга, то можно считать на каждом шаге участок пути прямолинейным. Шаговое управление на г-м шаге представляет собой угол , который составляет участок пути с прямой АВ. Управление всей операцией состоит из совокупности шаговых управлений:

Х = ().

Требуется выбрать такое (оптимальное) управление Х *, при котором суммарные затраты па сооружение всех участков минимальны:

W = => Min. (12.12)

Итак, мы рассмотрели несколько примеров многошаговых задач исследования операций. А теперь поговорим о том, как можно решать подобного рода задачи?

Любую многошаговую задачу можно решать по-разному: либо искать сразу все элементы решения на всех M шагах, либо же строить оптимальное управление шаг за шагом, па каждом этапе расчета оптимизируя только один шаг. Обычно второй способ оптимизации оказывается проще, чем первый, особенно при большом числе шагов.

Такая идея постепенной, пошаговой оптимизации и лежит в основе метода динамического программирования. Оптимизация одного шага, как правило, проще оптимизации всего процесса: лучше, оказывается, много раз решить сравнительно простую задачу, чем один раз - сложную.

С первого взгляда идея может показаться довольно тривиальной. В самом деле, чего казалось бы, проще:

Если трудно оптимизировать операцию в целом, разбить ее на ряд шагов. Каждый такой шаг будет отдельной, маленькой операцией, оптимизировать которую уже нетрудно. Надо выбрать на этом шаге такое управление, чтобы эффективность этого шага была максимальна. Не так ли?

Нет, вовсе не так! Принцип динамического программирования отнюдь не предполагает, что каждый шаг оптимизируется отдельно, независимо от других. Напротив, шаговое управление должно выбираться дальновидно, с учетом всех его последствий в будущем. Что толку, если мы выберем на данном шаге управление, при котором эффективность этого шага максимальна, если этот шаг лишит нас возможности хорошо выиграть на последующих шагах?

Пусть, например, планируется работа группы промышленных предприятий, из которых часть занята выпуском предметов потребления, а остальные производят для них машины. Задача операции - получить за Т лет максимальный объем выпуска предметов потребления. Допустим, планируются капиталовложения на первый год. Исходя из узких интересов этого шага (года), мы должны были бы все наличные средства вложить в производство предметов потребления. Но правильно ли будет такое решение с точки зрения эффективности операции в целом? Очевидно, нет. Это решение - расточительное, недальновидное. Имея в виду будущее, надо выделить какую-то долю средств и на производство машин. От этого объем продукции за первый год, конечно, снизится, зато будут созданы условия для его увеличения в последующие годы.

Еще пример. Допустим, что в задаче 4 (прокладка железнодорожного пути из А в В ) мы прельстимся идеей сразу же устремиться по самому легкому (дешевому) направлению. Что толку от экономии на первом шаге, если в дальнейшем он заведет нас (буквально или фигурально) в «болото»?

Значит, Планируя многошаговую операцию, надо выбирать управление на каждом шаге с учетом всех его будущих последствий на еще предстоящих шагах. Управление на I -м шаге выбирается не так, чтобы выигрыш именно на данном шаге был максимален, а так, чтобы была максимальна сумма выигрышей на всех оставшихся до конца шагах плюс данный.

Однако из этого правила есть исключение. Среди всех шагов есть один, который может планироваться попросту, без оглядки на будущее. Какой это шаг? Очевидно, последний! Этот шаг, единственный из всех, можно планировать так, чтобы он сам, как таковой, принес наибольшую выгоду.

Поэтому процесс динамического программирования обычно разворачивается от конца к началу: прежде всего, планируется последний, M -й шаг. А как его спланировать, если мы не знаем, чем кончился предпоследний? Т. е. не знаем условий, в которых мы приступаем к последнему шагу?

Вот тут-то и начинается самое главное. Планируя последний шаг, нужно сделать разные предположения о том, чем кончился предпоследний, (т — 1)-й шаг, и для каждого из этих предположений найти условное оптимальное управление на M -м шаге («условное» потому, что оно выбирается исходя из условия, что предпоследний шаг кончился так-то и так-то).

Предположим, что мы это сделали, и для каждого из возможных исходов предпоследнего шага знаем условное оптимальное управление и соответствующий ему условный оптимальный выигрыш на M -м шаге. Отлично! Теперь мы можем оптимизировать управление на предпоследнем, (т- 1)-м шаге. Снова сделаем все возможные предположения о том, чем кончился предыдущий, (M — 2)-й шаг, и для каждого из этих предположений найдем такое управление на (M 1)-м шаге, при котором выигрыш за последние два шага (из которых M -й уже оптимизирован!) максимален. Так мы найдем для каждого исхода (M — 2)- шага условное оптимальное управление на (т — 1)-м шаге и условный оптимальный выигрыш на двух последних шагах. Далее, «пятясь назад», оптимизируем управление на (M — 2)-м шаге и т. д., пока не дойдем до первого.

Предположим, что все условные оптимальные управления и условные оптимальные выигрыши за весь «хвост» процесса (на всех шагах, начиная от данного и до конца) нам известны. Это значит: мы знаем, что надо делать, как управлять на данном шаге и что мы за это получим на «хвосте», в каком бы состоянии ни был процесс к началу шага. Теперь мы можем построить уже не условно оптимальное, а просто оптимальное управление Х* и найти не условно оптимальный, а просто оптимальный выигрыш W *.

В самом деле, пусть мы знаем, в каком состоянии S 0 была управляемая система (объект управления S ) в начале первого шага. Тогда мы можем выбрать оптимальное управление на первом шаге. Применив его, мы изменим, состояние системы на некоторое новое ; в этом состоянии мы подошли ко второму шагу. Тогда нам тоже известно условное оптимальное управление , которое к концу второго шага переводит систему в состояние , и т. д. Что касается оптимального выигрыша W* за всю операцию, то он нам уже известен: ведь именно на основе его максимальности мы выбирали управленце на первом шаге.

Таким образом, в процессе оптимизации управления методом динамического программирования многошаговый процесс «проходится» дважды: первый раз - от конца к началу, в результате чего находятся условные оптимальные управления и условные оптимальные выигрыши за оставшийся «хвост» процесса; второй раз - от начала к концу, когда нам остается только «прочитать» уже готовые рекомендации и найти безусловное оптимальное управление Х*, состоящее из оптимальных шаговых управлений

Первый этап - условной оптимизации - несравненно сложнее и длительнее второго. Второй этап почти не требует дополнительных вычислений.

Автор не льстит себя надеждой, что из такого описания метода динамического программирования читатель, не встречавшийся с ним до сих пор, поймет по-настоящему его идею. Истинное понимание возникает при рассмотрении конкретных примеров, к которым мы и перейдем.

РЕФЕРАТ

«Методы динамического

программирования».

ВВЕДЕНИЕ

В наше время наука уделяет все большое внимание вопросам организации и управления, это приводит к необходимости анализа сложных целенаправленных процессов под углом зрения их структуры и организации. Потребности практики вызвали к жизни специальные методы, которые удобно объединять под названием «исследование операций». Под этим термином понимается применение математических, количественных методов для обоснования решений во всех областях целенаправленной человеческой деятельности.

Целью исследования операций является выявление наилучшего способа действия при решении той или иной задачи. Главная роль при этом отводится математическому моделированию. Для построения математической модели необходимо иметь строгое представление о цели функционирования исследуемой системы и располагать информацией об ограничениях, которые определяют область допустимых значений. Цель и ограничения должны быть представлены в виде функций.

В моделях исследования операций переменные, от которых зависят ограничения и целевая функция, могут быть дискретными (чаще всего целочисленными) и континуальными (непрерывными). В свою очередь, ограничения и целевая функция делятся на линейные и нелинейные. Существуют различные методы решения данных моделей, наиболее известными и эффективными из них являются методы линейного программирования, когда целевая функция и все ограничения линейные. Для решения математических моделей других типов предназначены методы динамического программирования, целочисленного программирования, нелинейного программирования, многокритериальной оптимизации и методы сетевых моделей.

Практически все методы исследования операций порождают вычислительные алгоритмы, которые являются итерационными по своей природе. Это подразумевает, что задача решается последовательно (итерационно), когда на каждом шаге (итерации) получаем решение, постепенно сходящиеся к оптимальному решению.

Итерационная природа алгоритмов обычно приводит к объемным однотипным вычислениям. В этом и заключается причина того, что эти алгоритмы разрабатываются, в основном, для реализации с помощью вычислительной техники.

    ОСНОВНЫЕ ПОНЯТИЯ И ОБОЗНАЧЕНИЯ ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ

Динамическое программирование – это математический метод поиска оптимального управления, специально приспособленный к многошаговым процессам. Рассмотрим пример такого процесса.

Пусть планируется деятельность группы предприятий на N лет. Здесь шагом является один год. В начале 1-го года на развитие предприятий выделяются средства, которые должны быть как-то распределены между этими предприятиями. В процессе их функционирования выделенные средства частично расходуются. Каждое предприятие за год приносит некоторый доход, зависящий от вложенных средств. В начале года имеющиеся средства могут перераспределяться между предприятиями: каждому из них выделяется какая-то доля средств.

Ставится вопрос: как в начале каждого года распределять имеющиеся средства между предприятиями, чтобы суммарный доход от всех предприятий за N лет был максимальным?

Перед нами типичная задача динамического программирования, в которой рассматривается управляемый процесс – функционирование группы предприятий. Управление процессом состоит в распределении (и перераспределении) средств. Управляющим воздействием (УВ) является выделение каких-то средств каждому из предприятий в начале года.

УВ на каждом шаге должно выбираться с учетом всех его последствий в будущем. УВ должно быть дальновидным, с учетом перспективы. Нет смысла выбирать на рассматриваемом шаге наилучшее УВ, если в дальнейшем это помешает получить наилучшие результаты других шагов. УВ на каждом шаге надо выбирать “ c заглядыванием в будущее”, иначе возможны серьезные ошибки.

Действительно, предположим, что в рассмотренной группе предприятий одни заняты выпуском предметов потребления, а другие производят для этого машины. Причем целью является получение за N лет максимального объема выпуска предметов потребления. Пусть планируются капиталовложения на первый год. Исходя их узких интересов данного шага (года), мы должны были бы все средства вложить в производство предметов потребления, пустить имеющиеся машины на полную мощность и добиться к концу года максимального объема продукции. Но правильным ли будет такое решение в целом? Очевидно, нет. Имея в виду будущее, необходимо выделить какую-то долю средств и на производство машин. При этом объем продукции за первый год, естественно, снизится, зато будут созданы условия, позволяющие увеличивать ее производство в последующие годы.

В формализме решения задач методом динамического программирования будут использоваться следующие обозначения:

N – число шагов.

вектор, описывающий состояние системы на k -м шаге.

начальное состояние, т. е. c остояние на 1-м шаге.

конечное состояние, т. е. cостояние на последнем шаге.

X k – область допустимых состояний на k -ом шаге.

вектор УВ на k -ом шаге, обеспечивающий переход системы из состояния x k -1 в состояние x k .

U k – область допустимых УВ на k -ом шаге.

W k – величина выигрыша, полученного в результате реализации k -го шага.

S – общий выигрыш за N шагов.

вектор оптимальной стратегии управления или ОУВ за N шагов.

S k +1 ( ) – максимальный выигрыш, получаемый при переходе из любого состояния в конечное состояние при оптимальной стратегии управления начиная с (k +1)-го шага.

S 1 ( ) – максимальный выигрыш, получаемый за N шагов при переходе системы из начального состояния в конечное при реализации оптимальной стратегии управления . Очевидно, что S = S 1 ( ), если –фиксировано.

Метод динамического программирования опирается на условие отсутствия последействия и условие аддитивности целевой функции.

Условие отсутствия последействия . Состояние , в которое перешла система за один k -й шаг, зависит от состояния и выбранного УВ и не зависит от того, каким образом система пришла в состояние , то есть

Аналогично, величина выигрыша W k зависит от состояния и выбранного УВ , то есть

Условие аддитивности целевой функции. Общий выигрыш за N шагов вычисляется по формуле

Определение. Оптимальной стратегией управления называется совокупность УВ , то есть , в результате реализации которых система за N шагов переходит из начального состояния в конечное и при этом общий выигрыш S принимает наибольшее значение.

Условие отсутствия последействия позволяет сформулировать принцип оптимальности Белмана.

Принцип оптимальности.

Каково бы ни было допустимое состояние системы перед очередным i -м шагом, надо выбрать допустимое УВ на этом шаге так, чтобы выигрыш W i на i -м шаге плюс оптимальный выигрыш на всех последующих шагах был максимальным.

В качестве примера постановки задачи оптимального управления продолжим рассмотрение задачи управления финансированием группы предприятий. Пусть в начале i -го года группе предприятий выделяются соответственно средства: совокупность этих значений можно считать управлением на i -м шаге, то есть . Управление процессом в целом представляет собой совокупность всех шаговых управлений, то есть .

Управление может быть хорошим или плохим, эффективным или неэффективным. Эффективность управления оценивается показателем S . Возникает вопрос: как выбрать шаговые управления , чтобы величина S обратилась в максимум?

Поставленная задача является задачей оптимального управления, а управление, при котором показатель S достигает максимума, называется оптимальным. Оптимальное управление многошаговым процессом состоит из совокупности оптимальных шаговых управлений:

Таким образом, перед нами стоит задача: определить оптимальное управление на каждом шаге (i=1,2,... N) и, значит, оптимальное управление всем процессом .

    ИДЕИ МЕТОДА ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ

Мы отметили, что планируя многошаговый процесс, необходимо выбирать УВ на каждом шаге с учетом его будущих последствий на еще предстоящих шагах. Однако, из этого правила есть исключение. Среди всех шагов существует один, который может планироваться без "заглядывания в будущее". Какой это шаг? Очевидно, последний - после него других шагов нет. Этот шаг, единственный из всех, можно планировать так, чтобы он как таковой принес наибольшую выгоду. Спланировав оптимально этот последний шаг, можно к нему пристраивать предпоследний, к предпоследнему - предпредпоследний и т.д.

Поэтому процесс динамического программирования на 1-м этапе разворачивается от конца к началу, то есть раньше всех планируется последний,

N -й шаг. А как его спланировать, если мы не знаем, чем кончился предпоследний? Очевидно, нужно сделать все возможные предположения о том, чем кончился предпоследний, ( N - 1)-й шаг, и для каждого из них найти такое управление, при котором выигрыш (доход) на последнем шаге был бы максимален. Решив эту задачу, мы найдем условно оптимальное управление (УОУ) на N -м шаге, т.е. управление, которое надо применить, если (N - 1)-й шаг закончился определенным образом.

Предположим, что эта процедура выполнена, то есть для каждого исхода ( N - 1)-го шага мы знаем УОУ на N- м шаге и соответствующий ему условно оптимальный выигрыш (УОВ). Теперь мы можем оптимизировать управление на предпоследнем, (N - 1)-м шаге. Сделаем все возможные предположения о том, чем кончился предпредпоследний, то есть ( N - 2)-й шаг, и для каждого из этих предположений найдем такое управление на (N - 1)-м шаге, чтобы выигрыш за последние два шага (из которых последний уже оптимизирован) был максимален. Далее оптимизируется управление на (N - 2)-м шаге, и т.д.

Одним словом, на каждом шаге ищется такое управление, которое обеспечивает оптимальное продолжение процесса относительно достигнутого в данный момент состояния. Этот принцип выбора управления, называется принципом оптимальности. Самоуправление, обеспечивающее оптимальное продолжение процесса относительно заданного состояния, называется УОУ на данном шаге.

Теперь предположим, что УОУ на каждом шаге нам известно: мы знаем, что делать дальше, в каком бы состоянии ни был процесс к началу каждого шага. Тогда мы можем найти уже не "условное", а действительно оптимальное управление на каждом шаге. |

Действительно, пусть нам известно начальное состояние процесса. Теперь мы уже знаем, что делать на первом шаге: надо применить УОУ, найденное для первого шага и начального состояния. В результате этого управления после первого шага система перейдет в другое состояние; но для этого состояния мы знаем УОУ и т.д. Таким образом, мы найдем оптимальное управление процессом, приводящее к максимально возможному выигрышу.

Таким образом, в процессе оптимизации управления методом динамического программирования многошаговый процесс "проходится" дважды:

- первый раз - от конца к началу, в результате чего находятся УОУ на каждом шаге и оптимальный выигрыш (тоже условный) на всех шагах, начиная с данного и до конца процесса;

    второй раз - от начала к концу, в результате чего находятся оптимальные управления на всех шагах процесса.

Можно сказать, что процедура построения оптимального управления

методом динамического программирования распадается на две стадии:

Предварительную;

Окончательную.

На предварительной стадии для каждого шага определяется УОУ, зависящее от состояния системы (достигнутого в результате предыдущих шагов), и условно оптимальный выигрыш на всех оставшихся шагах, начиная с данного, также зависящий от состояния. На окончательной стадии определяется (безусловное) оптимальное управление для каждого шага. Предварительная (условная) оптимизация производится по шагам в обратном порядке: от последнего шага к первому; окончательная (безусловная) оптимизация - также по шагам, но в естественном порядке: от первого шага к последнему. Из двух стадий оптимизации несравненно более важной и трудоемкой является первая. После окончания первой стадии выполнение второй трудности не представляет: остается только "прочесть" рекомендации, уже заготовленные на первой стадии.

    Примеры задач динамического программирования

Большинство методов исследования операций связано в первую очередь с задачами вполне определенного содержания. Классический аппарат математики оказался малопригодным для решения многих задач оптимизации, включающих большое число переменных и/или ограничений в виде неравенств. Несомненна привлекательность идеи разбиения задачи большой размерности на подзадачи меньшей размерности, включающие всего несколько переменных, и последующего решения общей задачи по частям.

Именно на этой идее основан метод динамического программирования.

Динамическое программирование (ДП) представляет собой математический метод, заслуга создания и развития которого принадлежит прежде всего Беллману. Метод можно использовать для решения весьма широкого круга задач, включая задачи распределения ресурсов, замены и управления запасами, задачи о загрузке. Характерным для динамического программирования является подход к решению задачи по этапам, с каждым из которых ассоциирована одна управляемая переменная. Набор рекуррентных вычислительных процедур, связывающих различные этапы, обеспечивает получение допустимого оптимального решения задачи в целом при достижении последнего этапа.

Происхождение названия динамическое программирование , вероятно, связано с использованием методов ДП в задачах принятия решений через фиксированные промежутки времени (например, в задачах управления запасами). Однако методы ДП успешно применяются также для решения задач, в которых фактор времени не учитывается. По этой причине более удачным представляется термин многоэтапное программирование, отражающий пошаговый характер процесса решения задачи.

Фундаментальным принципом, положенным в основу теории ДП, является принцип оптимальности. По существу, он определяет порядок поэтапного решения допускающей декомпозицию задачи (это более приемлемый путь, чем непосредственное решение задачи в исходной постановке) с помощью рекуррентных вычислительных процедур.

Динамическое программирование позволяет осуществлять оптимальное планирование управляемых процессов. Под «управляемыми» понимаются процессы, на ход которых мы можем в той или другой степени влиять.

Пусть предполагается к осуществлению некоторое мероприятие или серия мероприятий («операция»), преследующая определенную цель. Спрашивается: как нужно организовать (спланировать) операцию для того, чтобы она была наиболее эффективной? Для того, чтобы поставленная задача приобрела количественный, математический характер, необходимо ввести в рассмотрение некоторый численный критерий W , которым мы будем характеризовать качество, успешность, эффективность операции. Критерий эффективности в каждом конкретном случаи выбирается исходя из целевой направленности операции и задачи исследования (какой элемент управления оптимизируется и для чего).

Сформулируем общий принцип, лежащий в основе решения всех задач динамического программирования («принцип оптимальности»):

«Каково бы ни было состояние системы S перед очередным шагом, надо выбрать управление на этом шаге так, чтобы выигрыш на данном шаге плюс оптимальный выигрыш на всех последующих шагах был максимальным».

Динамическое программирование – это поэтапное планирование многошагового процесса, при котором на каждом этапе оптимизируется только один шаг. Управление на каждом шаге должно выбираться с учетом всех его последствий в будущем.

При постановке задач динамического программирования следует руководствоваться следующими принципами:

    Выбрать параметры (фазовые координаты), характеризующие состояние S управляемой системы перед каждым шагом.

    Расчленить операцию на этапы (шаги).

    Выяснить набор шаговых управлений xi для каждого шага и налагаемые на них ограничения.

    Определить какой выигрыш приносит на i-ом шаге управление xi, если перед этим система была в состоянии S, т.е. записать «функцию выигрыша»:

    Определить, как изменяется состояние S системы S под влиянием управление xi на i-ом шаге: оно переходит в новое состояние

. (1.1)

    Записать основное рекуррентное уравнение динамического программирования, выражающее условный оптимальный выигрыш W i ( S ) (начиная с i -го шага и до конца) через уже известную функцию W i +1 ( S ):

. (1.2)

Этому выигрышу соответствует условное оптимальное управление на i -м шаге x i ( S ) (причем в уже известную функцию W i +1 ( S ) надо вместо S подставить измененное состояние

Заметим, что если состояние системы в начальный момент известно (а это обычно бывает так), то на первом шаге варьировать состояние системы не нужно - прямо находим оптимальный выигрыш для данного начального состояния S 0 . Это и есть оптимальный выигрыш за всю операцию

Данные этапы рассматривались для аддитивных задач, в которых выигрыш за всю операцию равен сумме выигрышей на отдельных шагах. Метод динамического программирования применим также и к задачам с так называемым «мультипликативным» критерием, имеющим вид произведения:

(если только выигрыши w i положительны). Эти задачи решаются точно так же, как задачи с аддитивным критерием, с той единственной разницей, что в основном уравнении (1.2) вместо знака «плюс» ставится знак «умножения»:

3.1. Задача планирования рабочей силы

При выполнении некоторых проектов число рабочих, необходимых для выполнения какого-либо проекта, регулируется путем их найма и увольнения. Поскольку как наем, так и увольнение рабочих связано с дополнительными затратами, необходимо определить, каким образом должна регулироваться численность рабочих в период реализации проекта.

Предположим, что проект будет выполняться в течение n недель и минимальная потребность в рабочей силе на протяжении i -й недели составит b i рабочих. При идеальных условиях хотелось бы на протяжении i -й недели иметь в точности b i рабочих. Однако в зависимости от стоимостных показателей может быть более выгодным отклонение численности рабочей силы как в одну, так и в другую сторону от минимальных потребностей.

Если x i i -й недели, то возможны затраты двух видов: 1) С 1 ( x i - b i )-затраты, связанные с необходимостью содержать избыток x i - b i рабочей силы и 2) С 2 ( x i - x i -1 )-затраты, связанные с необходимостью дополнительного найма (x i - x i -1 ) рабочих.

Элементы модели динамического программирования определяются следующим образом:

    Этап і представляется порядковым номером недели і , і =1,2,… n .

    Вариантами решения на і -ом этапе являются значения x i – количество работающих на протяжении і- й недели.

    Состоянием на і-м этапе является x i -1 – количество работающих на протяжении (і- 1) –й недели (этапа).

Рекуррентное уравнение динамического программирования представляется в виде:

где

Вычисления начинаются с этапа n при x n = b n и заканчиваются на этапе 1.

3.2. Задача замены оборудования

Чем дольше механизм эксплуатируется, тем выше затраты на его обслуживание и ниже его производительность. Когда срок эксплуатации механизма достигает определенного уровня, может оказаться более выгодной его замена. Задача замены оборудования, таким образом, сводится к определению оптимального срока эксплуатации механизма.

Предположим, что мы занимаемся заменой механизмов на протяжении n лет. В начале каждого года принимается решение либо об эксплуатации механизма еще один год, либо о замене его новым.

Обозначим через r ( t ) и c ( t ) прибыль от эксплуатации t -летнего механизма на протяжении года и затраты на его обслуживание за этот же период. Далее пусть s ( t ) – стоимость продажи механизма, который эксплуатировался t лет. Стоимость приобретения нового механизма остается неизменной на протяжении всех лет и равна l .

Элементы модели динамического программирования таковы:

    Этап і представляется порядковым номером года і, і=1,2,... n .

    Вариантами решения на і -м этапе (т.е. для і -ого года) являются альтернативы: продолжить эксплуатацию или заменить механизм в начале і- ого года.

    Состоянием на і -м этапе является срок эксплуатации t (возраст) механизма к началу і -ого года.

Пусть f i ( t )-максимальная прибыль, получаемая за годы от і до n при условии, что в начале і- ого года имеется механизм t -летнего возраста.

Рекуррентное уравнение имеет следующий вид:

(1)-если эксплуатировать механизм,

(2)-если заменить механизм.

3.3. Задача инвестирования

Предположим, что в начале каждого из следующих n лет необходимо сделать инвестиции P 1 , P 2 ,…, P n соответственно. Вы имеете возможность вложить капитал в два банка: первый банк выплачивает годовой сложный процент r 1 , а второй - r 2 . Для поощрения депозитов оба банка выплачивают новым инвесторам премии в виде процента от вложенной суммы.

Премиальные меняются от года к году, и для і -ого года равны q i 1 и q i 2 в первом и втором банках соответственно. Они выплачиваются к концу года, на протяжении которого сделан вклад, и могут быть инвестированы в один из двух банков на следующий год. Это значит, что лишь указанные проценты и новые деньги могут быть инвестированы в один из двух банков. Размещенный в банке вклад должен находиться там до конца рассматриваемого периода. -1) -го года.

Пусть f i (x i )- оптимальная сумма инвестиций для интервала от і-го до n -го года при условии, что в начале і-го года имеется денежная сумма x i n -й год являются частью накопленной денежной суммы от инвестиций, в выражения для s n добавлены q n 1 и q n 2 .

Итак, в данном случае рекуррентное уравнение для обратной прогонки в алгоритме динамического программирования имеет вид

где x i +1 выражается через x i в соответствии с приведенной выше формулой, а f n +1 (x n +1 )=0.

4. Общая структура динамического программирования

Отыскание оптимальной стратегии принятия набора последовательных решений, в большинстве случаях, производится следующим образом: сначала осуществляется выбор последнего во времени решения, затем при движении в направлении, обратном течению времени, выбираются все остальные решения вплоть до исходного.

Для реализации такого метода необходимо выяснить все ситуации, в которых может происходить выбор последнего решения. Обычно условия, в которых принимается решение, называют «состоянием» системы. Состояние системы – это описание системы, позволяющее, учитывая будущие решения, предсказать ее поведение. Нет необходимости выяснять, как возникло то ил иное состояние или каковы были предшествующие решения. Это позволяет последовательно выбирать всего по одному решению в каждый момент времени. Независимо от того, отыскивают оптимальные решения с помощью табличного метода и последующего поиска или аналитическим путем, обычно быстрее и выгоднее производить выбор по одному решению в один момент времени, переходя затем к следующему моменту и т.д. К сожалению, таким методом можно исследовать не все процессы принятия решений. Необходимым условием применения метода динамического программирования является аддитивность цен всех решений, а также независимость будущих результатов от предыстории того или иного состояния.

Если число решений очень велико, то можно построить относительные оценки состояний так, чтобы оценки, отвечающие каждой паре последовательных решений, отличались друг от друга на постоянную величину, представляющую собой средний «доход» на решение. Также можно выполнять дисконтирование доходов от будущих решений. Необходимость в этом иногда появляется в том случае, когда решение принимаются редко, скажем раз в году. Тогда уже не нужно рассматривать последовательно 1,2,3…решения, чтобы достичь решения с большим номером. Вместо этого можно непосредственно оперировать функциональным уравнением, что, как правило, дает существенную выгоду с точки зрения сокращения объема вычислений.

ЗАКЛЮЧЕНИЕ

Можно выделить, по крайней мере, четыре аспекта применения динамических методов в решении практических проблем.

1. Совершенствование системы экономической информации. Динамические методы позволяют упорядочить систему экономической информации, выявлять недостатки в имеющейся информации и вырабатывать требования для подготовки новой информации или ее корректировки. Разработка и применение экономико-математических моделей указывают пути совершенствования экономической информации, ориентированной на решение определенной системы задач планирования и управления. Прогресс в информационном обеспечении планирования и управления опирается на бурно развивающиеся технические и программные средства информатики.

2. Интенсификация и повышение точности экономических расчетов. Формализация экономических задач и применение ЭВМ многократно ускоряют типовые, массовые расчеты, повышают точность и сокращают трудоемкость, позволяют проводить многовариантные экономические обоснования сложных мероприятий, недоступные при господстве "ручной" технологии.

3. Углубление количественного анализа экономических проблем. Благодаря применению метода динамического программирования значительно усиливаются возможности конкретного количественного анализа, изучение многих факторов, оказывающих влияние на экономические процессы, количественная оценка последствий изменения условий развития экономических объектов и т.п.

Сфера практического применения данных методов ограничивается возможностями и эффективностью формализации экономических проблем и ситуаций, а также состоянием информационного, математического, технического обеспечения используемых моделей. Стремление во что бы то ни стало, применить математическую модель может не дать хороших результатов из-за отсутствия хотя бы некоторых необходимых условий.

В соответствии с современными научными представлениями системы разработки и принятия хозяйственных решений должны сочетать формальные и неформальные методы, взаимоусиливающие и взаимодополняющие друг друга. Формальные методы являются, прежде всего, средством научно обоснованной подготовки материала для действий человека в процессах управления. Это позволяет продуктивно использовать опыт и интуицию человека, его способности решать плохо формализуемые задачи.

4.1. Принцип оптимальности

Рассмотрим систему

и функционал

(4.2)

который требуется минимизировать. Правый конец фазовых координат является свободным.

Наряду с этой вариационной задачей рассмотрим вспомогательную, когда процесс рассматривается в интервале
и минимизируется функционал

. (4.3)

Пусть сначала найден минимум (4.2) и соответствующее ему оптимальное управление (рис. 14а):

а потом – минимум (4.3) и оптимальное управление (рис. 14б):

В последнем случае предполагается, что в момент процесс начинается с состояния
, достигнутого к моменту временипри оптимизации процесса в интервале
.

Вообще говоря, управления
и
отличаются интервалом и значениями. Принцип оптимальности утверждает, что оптимальные управления
и
в общей части интервала
совпадают, не зависимо от предыстории процесса и вполне определяются состоянием
в момент
.

В случае со свободным правым концом принцип оптимальности доказывается. В самом деле, допустим, что на участке
управления
и
не совпадают и

(4.6)

Рис. 14а Рис.14б

Тогда для первой задачи введем управление

(4.7)

и вычислим функционал

При управлении (4.7) функционал (4.2) принимает меньшее значение, чем при (4.4). Но управлениеявляется оптимальным. Поэтому допущение (4.6) неверно.

A предположение

противоречит тому, что
- управление, минимизирующее
(4.3).

Таким образом, остается, что

,

и если оптимальное управление единственное, то

Кратко принцип оптимальности можно сформулировать так: последний участок оптимальной траектории является оптимальным независимо от предыстории процесса.

4.2. Основное уравнение метода динамического программирования

Применим принцип оптимальности к решению вариационной задачи (4.1), (4.2). Для этого сначала рассмотрим функционал (4.3). Наименьшее значение его при связях (4.1) обозначим:

. (4.8)

Если
- оптимальное управление, то

.

Оптимальное управление
зависит от начального состояния
в момент
. Следовательно,является функцией оти:
, а от управленияи его вариаций функция
не зависит. Она вполне определяется значениями
.

Интервал
разделим на два интервала
и
и выражение (4.8) запишем в виде:

.

Согласно принципу оптимальности последний участок также является оптимальным:

(4.9)

Обозначим:

, (4.10)

где
- приращение вектора фазовых координат за время
. Оно определяется согласно уравнениям движения (4.1). Подставляя
из (4.10) в равенство (4.9), получим:

.

Хотя функция
зависит только от фазовых координат и времени, ее нельзя выносить за знак
. Значение приращения
за время
зависит от управления в интервале
. Но
не зависит от управления в интервале
и ее можно внести под знак
. Введем
под знак минимума и разделим на
:

.

Учитывая, что

;

,

получим основное уравнение метода динамического программирования:

(4.11)

Это соотношение состоит из двух утверждений:


Если
- управление, минимизирующее выражение
, то основное уравнение метода динамического программирования

(4.12)

Здесь
зависит от управления по определению, функция же
не зависит от него. Тем не менее, производнаяот управления зависит. В этом можно убедиться, если ее представить в виде

изаменить согласно системе (4.1):

.(4.13)

Подставляя (4.13) в (4.12) получим уравнение Р.Беллмана:

. (4.14)

Это уравнение в частных производных относительно
, которое после подстановки
становится нелинейным. Согласно определению(4.8) при
должно выполняться конечное условие

.

В случае бесконечного интервала при
процесс должен быть асимптотически устойчивым, т.е.
.

В том случае, когда рассматривается функционал Больца

(4.15)

Уравнение (4.12) сохраняет силу, функция v в момент
должна удовлетворять условию

. (4.16)

4.3. Две задачи оптимального управления

В теории оптимального управления различают задачи двух типов: программного управления и синтеза. В первой задаче оптимальное управление строится в виде функции временидля конкретных начальных и конечных условий, если они заданы. Зависимость
рассматривается как программа.

Во второй задаче оптимальное управление строится для каждого момента временикак функция вектора фазовых координатт.е. в виде

. (4.17)

Построение такой зависимости является целью задачи синтеза. Значение второй задачи в том, что зависимость
дает уравнение обратной связи или оптимального регулятора, замыкающего систему. Она применяется при оптимальном управлении переходным процессом.

Программное управление и управление по обратной связи осуществляются технически по-разному. Первое может осуществляться программным часовым механизмом, по жесткому закону, как функция времени . Это управление никак не реагирует на возможные отклонения состояний объекта от идеального, желательного. Управление по обратной связи осуществляется при помощи регулятора, который по результатам измерения реального состояния фазовых координат вырабатывает сигнал, согласно которому отклоняется управляющий орган.

Обе задачи взаимосвязаны. Решение одной можно выразить через другое. Однако отметим, что принцип максимума обычно приводит к представлению управления в виде программы, а метод динамического программирования – в виде синтеза.

Значительное развитие получила задача синтеза оптимального управления процессами, описываемыми линейной системой дифференциальных уравнений, при минимизации интегральных квадратичных функционалов. Она называется задачей аналитического конструирования оптимальных регуляторов (АКОР), или задачей А.М.Летова.

4.4. Задача аналитического конструирования оптимальных регуляторов

Предположим уравнения возмущенного движения системы имеют вид

(4.18)

Матрицы
, размерности
и
, соответственно, имеют в качестве своих элементов известные функции
.

Предполагается также, что состояние системы (4.18) в каждый момент времени известно.

В качестве критерия оптимальности рассматривается квадратичный функционал Больца

где
- симметричные неотрицательно определенные матрицы,
- положительно определенная матрица; *) - индекс транспонирования.

Требуется найти оптимальное (минимизирующее функционал 4.19) управление, являющееся функцией текущего состояния
.

Для решения этой задачи можно воспользоваться принципом максимума, но наиболее короткий путь – метод динамического программирования.

В соответствии с этим методом нужно найти функцию
, удовлетворяющего уравнению

. (4.20)

В общем случае – это сложная задача, однако для линейных систем с квадратичным критерием оптимальности функцию
можно искать в виде некоторой квадратичной формы.

(4.21)

где
- есть некоторая, пока неизвестная, квадратичная форма, удовлетворяющая в силу (4.16) конечному условию

. (4.22)

Таким образом, для линейных систем задача сводится к отысканию функции
. Дифференцируя (4.21) с учетом (4.18) получим

Минимизируя (4.23) по
, получим

(4.24)

Так как
, то управление (4.24) действительно доставляет минимум выражению
.

Подставляя (4.24) в (4.23), получим

Квадратичная форма (4.25) равна нулю при любых
только в том случае, когда равна нулю матрица, ее образующая. Таким образом, получаем уравнение для определения матрицы

(2.26)

с граничным условием (4.22).

Интегрируя уравнение (4.26) в обратном направлении, получим
, а значит и параметры оптимального управления (4.24). Нетрудно показать, что матрица
- симметричная матрица. Для этого достаточно транспонировать уравнение (4.26). Тогда

откуда с учетом симметричности матриц следует, что
.

Замечание 1 . В том случае, когда система (4.18) стационарна (матрицы A и B – числовые матрицы), матрицы - числовые матрицы,
(рассматривается установившийся режим). Матрицатоже числовая и удовлетворяет алгебраическому уравнению

Замечание 2. Из выражения (4.24) следует, что для реализации оптимального управления необходима полная и точная информация о состоянии управляемого процесса
. В том случае, когда эту информацию получить невозможно, для реализации оптимального управления используются оценки состояния, получаемые на основе имеющейся неполной информации.

4.5. Синтез локально-оптимального управления

При проектировании систем управления часто бывает необходимо, чтобы поведение системы было оптимальным в некотором смысле в любой текущий момент времени.

Рассмотрим непрерывный управляемый процесс, описываемый системой дифференциальных уравнений (4.18).

Пусть задан функционал (функция)
параметрически зависящий от времении определенный на множестве функций
и
.

Требуется найти уравнение
, минимизирующее
, где- текущий момент времени. Такое управление называется локально-оптимальным.

В качестве критерия оптимальности рассмотрим функционал

матрица удовлетворяют тем же требованиям, что и в параграфе 4.4.

Нетрудно показать , что локально-оптимальное уравнение
с необходимостью удовлетворяет условию

. (4.28)

Воспользуемся этим условием.

Тогда, дифференцируя (4.27) в силу (4.18), найдем выражение для определения производной

из условия
найдем локально-оптимальное управление

Найденное управление действительно доставляет производной
, так как

.

Из выражения (4.30) следует, что локально-оптимальное управление полностью определяется матрицами
, а для реализации его необходима полная информация о состоянии процесса
. Задаваясь различными матрицами весовых функций
, можно обеспечить те или иные свойства управляемого процесса, в частности свойства устойчивости или асимптотической устойчивости.

Потребуем, например, чтобы на локально-оптимальном управлении выполнялось условие

. (4.31)

Тогда, подставляя (4.30) в (4.29), из (4.31) найдем

(4.32)

Из условия (4.32) следует, что оно будет выполнено, если матрица
будет определена из условия

Пусть теперь рассматривается управляемое движение на отрезке
, где- некоторый фиксированный момент времени. Потребуем также, чтобы в момент времениматричная функция
удовлетворяла конечному условию

(4.34)

Тогда из сравнения формул (4.24), (4.26), (4.22) и (4.30), (4.33), (4.34) следует, что локально-оптимальное управление(4.30) по критерию (4.27) с матрицей
, определяемой из уравнения (4.33) с условием (4.34) совпадает с управлением (4.24), оптимальным по квадратичному критерию (4.19) на интервале
.

5. Оптимальное управление стохастическими системами в условиях неопределенности.

5.1. Характеристики случайных сигналов

В пособие в качестве математических моделей возмущающих воздействий и погрешностей измерений используются стохастические (случайные) процессы и последовательности.

Случайный процесс
- это такая функция, значение которой в фиксированный момент есть случайная величина, т.е. случайный процесс можно рассматривать как случайную величину, зависящую от параметра . В том случае, когда параметр меняется дискретно, случайный процесс называют случайной последовательностью.

Через
будем обозначать реализацию случайного процесса
.

Следует отметить, что многие статистические характеристики случайных процессов и последовательностей совпадают.

Как известно, наиболее полной характеристикой случайного процесса является - мерный закон распределения

или -мерная плотность распределения

Здесь символом обозначается вероятность события, заключенногов скобках. Значение может быть любым от I до
. Для произвольного случайного процесса такую информацию иметь невозможно. Однако существует класс случайных процессов (последовательностей), называемых марковскими, для которых статистические характеристики полностью определяются двумерным законом распределения или двумерной плотностью распределения.

Часто, особенно в прикладных задачах, для статистического описания случайных процессов используют начальные
ицентральные
моменты -гo порядка. Здесь символом
обозначена операция осреднения (математического ожидания). Наиболее важную роль играют следующие моменты:

Математическое ожидание (среднее значение)

; (5.3)

Дисперсия случайного процесса

Второй начальный момент

где
- центрированный случайный процесс с нулевым математическим ожиданием;

Среднеквадратичное отклонение

. (5.6)

Из определения
,
,
и
следует, что эти величины характеризуют случайный процесс только в фиксированномсечении . Для характеристики связи двух различных сечений случайного процесса используется корреляционная функция;

. (5.7)

Если математическое ожидание
случайного процесса не зависит от времени, а корреляционная функция является функцией одного аргумента
, то такой процесс называется стационарным в широком смысле.

Если плотность распределения имеетгауссовский характер, то такой процесс называют гауссовским

.

Гауссовский процесс полностью определяется заданием математического ожидания
и корреляционной функции
.

Важной характеристикой стационарного случайного процесса в широком смысле является спектральная плотность
- плотностьраспределения дисперсии (энергии) по частотам.

Спектральная плотность
и корреляционная функция
связаны прямым и обратным преобразованием Фурье:

; (5.8)

. (5.9)

Чисто случайный процесс (последовательность) - это процесс, для которого случайные величины
взаимно независимы при любых значениях аргументов. Такой процесс полностью характеризуется одномерной функцией распределения. Чисто случайный стационарный процесс называют белым шумом, если корреляционная функция имеет вид - функции. Спектральная плотность такого процесса постоянна по всем частотам. Так как
, то нетрудновидеть, что дисперсия белого шума является бесконечно большой. Такие процессы в природе реально не существуют. Однако реальный шум по его воздействию на систему может быть заменен белым шумом. Кроме того, реальный случайный процесс можно представить как выходной сигнал некоторой системы (формирующего фильтра), на вход которой поступает белый шум. Поэтому задача статистического анализа или синтеза систем с реальными характеристиками случайных воздействий может быть сведена к задаче статистического анализа или синтеза, когда входным сигналом является белый шум. В настоящем учебном пособии, как правило, будут использоваться модели белых шумов и чисто случайных последовательностей.

Наряду со скалярными случайными процессами можно рассматривать и векторные случайные процессы:

где каждая компонента
является случайным процессом. Для характеристики векторного случайного процесса вводятся следующие векторы и матрицы:

Математическое ожидание :

; (5.11)

Дисперсионная матрица
:

(5.12)

с элементами

; (5.13)

Ковариационная матрица
:

(5.14)

с элементами

; (5.15)

Матрица

с элементами

. (5.17)

Здесь
означает транспонирование.

Непосредственно из определения матрицы
видно, что на ее диагонали расположены дисперсии составляющих случайного процесса.

Матрицы
,
и
обладают следующими свойствами:

; (5.18)

для всех и (5.I9)

Для стационарного векторного случайного процесса
вводится матрица спектральных плотностей как преобразование Фурье ко вариационной матрицы
, т.е.

. (5.21)

Матрица
обладает следующим свойством:

(5.22)

5.2. Математическое описание линейных систем при случайных возмущениях.

В общем виде уравнение управляемой динамической системы может быть записано в виде:

где - оператор (или в частном случае функция) системы, т.е. совокупность правил, по которым преобразуются начальное условие
, управляющие воздействия
, возмущающие воздействия
в выход системы
в момент .

Если параметр меняется непрерывно, то такую систему будем называть непрерывной; если меняется дискретно, то система называется дискретной.

Если оператор не зависит от параметров и , то такую систему называют стационарной. Оператор может быть линейным илинелинейным, однородным или неоднородным и может задаваться в различной форме, например, в форме дифференциальных и интегродифференциальных уравнений, с помощью передаточных функций и разностных уравнений.

В данном учебном пособии будут рассматриваться только линейные системы.

Рассмотрим системы, описываемые дифференциальными уравнениями.

Обозначим через

-мерный вектор состояния системы; через
- -мерный вектор управляющих воздействий; через
- -мерный вектор возмущений. Тогда уравнение движения линейной непрерывной динамической системы можно записать в следующей дифференциальной форме:

Здесь
,
,
- матрицы размерностей соответственно. Элементами этих матриц являются непрерывные функции. Если матрицы
иявляются постоянными, то управляемаясистема называется стационарной. Уравнения (5.24) обычно называют уравнениями состояния, так как они описывают изменение переменных состояния системы во времени.

Для целей управления необходимо знать состояние системы в любой текущий момент времени. Однако с помощью измерителей можно получить информацию, как правило, только о некоторых составляющих процессах или их комбинациях. Кроме того, наблюдаемые (выходные) переменные могут содержать погрешности измерения. В дальнейшем будем предполагать, что уравнения измерений имеют вид:

где
-
-мерный наблюдаемый сигнал;
- матрица размерности
,характеризующая способ измерения;
- погрешность измерения. Если
( - единичная матрица) и
, то говорят, что измерение полное и точное.

В некоторых случаях удобно представить решение системы (5.24) в интегральной форме через фундаментальную матрицу решений
,которая удовлетворяет следующему матричному уравнению:

(5.26)

В интегральной форме решение системы (5.24), в соответствии с формулой Коши, можно представить в следующем виде:

(5.27)

В выражении (5.27) первая составляющая учитывает свободное движение, обусловленное начальным условием , вторая составляющая учитывает вынужденное движение, обусловленное управляющими воздействиями на интервале времени
, третья составляющая характеризует вынужденное движение, обусловленное возмущениями
на интервале
.

Относительно системы (5.24), (5.25) сделаем следующие предположения:

(5.28)

Из соотношений (5.28) видно, что случайные процессы
и
являются процессами типа белого шума. Матрицы
и вектор считаются известными. Предполагаются известными в каждый момент времени и управляющие воздействия.

Одним из видов динамических систем являются дискретные системы, которые можно разделить на два типа:

а) собственно дискретные системы, такие как ЦВМ, автоматы различных типов и т.д.;

б) дискретные системы, которые получаются в результате использования непрерывных систем в дискретные моменты времени, в частности, при использовании в контуре управления вычислительных машин. Поведение дискретных систем обычно описывают разностными уравнениями, которые являются аналогом дифференциальных уравнений для непрерывных систем.

Рассмотрим поведение непрерывной системы с дискретным управлением, которое можно представить в виде кусочно-постоянной вектор-функции (рис. 15), т.е. управляющие воздействия можно записать в следующем виде:

для (5.29)

где - последовательность моментов времени, не обязательно равноотстоящих друг от друга.

Если нас интересует состояние системы только в дискретные моменты времени , то непрерывную систему (5.24) в эти моменты, используя соотношение (5.27), можно записать в следующем виде:

(5.30)

Учитывая (5.29), соотношение (5.30) перепишем в виде:

(5.31)

Третье слагаемое в соотношении (5.3I) можно рассматривать как некоторую случайную последовательность. В том случае, когда случайный процесс типа белого шума, то справедливо следующее соотношение:

,

где
- чисто случайная последовательность.

Вводя обозначения

(5.32)

систему уравнений (5.31) запишем в виде:

Матрицы называются переходными матрицами по состоянию, управлению и возмущению соответственно;
- дискретное время.

Уравнение измерений, соответственно, можно записать в виде:

Иногда систему (5.33) - (5.34) записывают в следующем виде:

Относительно систем (5.33), (5,34) будем предполагать, что:

(5.37)

Пример. Рассмотрим вращательное движение тела вокруг одной из осей под действием возмущающего момента
. Уравнения движения имеют вид:

, (5.38)

где - момент инерция тела;- угол поворота тела в некоторойинерциальной системе координат. Вводя новые переменные

(5.39)

получим уравнения движения объекта в нормальной форме:

(5.40)

Для этой системы уравнений фундаментальная матрица
состоит из двух вектор-столбцов решений следующей системы уравнений

с начальными условиями

Отсюда следует, что матрица
имеет вид:

(5.41)

Этот же результат получается, если искать матрицу
в виде ряда:

Рассмотрим поведение системы (5.40) через равные промежутки времени в моменты , т.е.
.

На основании соотношений (5.3I) - (5.33), полагая, что
постоянно на шаге дискретности, получим следующую эквивалентную дискретную систему:

(5.43)

(5.44)

В дальнейшем необходимо получить зависимость
не только от и
, но оти всех предшествующих
. Используя соотношения (5.33), для различныхможно записать:

Продолжая соответствующие выкладки, можно получить соотношение

, (5.45)

где матрица
определяется следующим образом:

причем
при
.

Полученные соотношения (5.45), (5.46) будут использованы при статистическом анализе дискретных систем.

5.3. Уравнения моментов для линейных систем

Сначала рассмотрим непрерывные системы. Пусть уравнения движения имеют вид;

. (5.47)

Относительно возмущающих воздействий
и начального состояния будем предполагать, что они удовлетворяют условиям (5.28).

При получении соотношений для математического ожидания состояния системы
осредним уравнение (5.47):

Учитывая (5.28), получим:

. (5.48)

На основании (5.47), (5.48) уравнение для центрированной составляющей
имеет вид:

. (5.49)

Теперь найдем уравнение для дисперсионной матрицы . Дифференцируя по матрицу
и учитывая, что матрицы
и
не случайные, получим:

(5.50)

Для вычисления математического ожидания
используем формулу Коши (5.27):

. (5.51)

Умножив выражение (5.51) справа на
, осредниви учитывая (5.28), получим:

(5.52)

С учетом того, что

, (5.53)

уравнение (5.50) примет вид;

с начальным условием
.

Теперь пусть поведение системы описывается дискретным уравнением

Будем полагать, что начальное условие и возмущающие воздействия
удовлетворяют соотношениям (5.37). Найдем уравнения для математического ожидания и дисперсионной матрицы.

Осредняя (5.55) и учитывая (5.37), получим:

Уравнение для центрированной составляющей
имеет вид:

Используя (5.57) и (5.37), найдем уравнение для дисперсионной матрицы
:

(5.58)

Определим математическое ожидание
, используясоотношение (5.45) и свойства (5.37):

(5.59)

Аналогично

.

Таким образом, уравнение для определения матрицы
имеет вид:

5.4. Задача оптимальной фильтрации и ее решение методом Калмана

Как было показано раньше, для оптимального управления по принципу обратной связи необходимо иметь полную информацию о состоянии системы. Однако измерению доступны лишь некоторые функции состояния или их комбинации. Кроме того, наблюдаемый сигнал содержит погрешности измерений. В такой ситуации важной является задача получения наилучшей оценки состояния системы по результатам измерений – задача оптимальной фильтрации.

Предположим, что динамический процесс описывается совокупностью дифференциальных уравнений

где
--мерный вектор состояния,
--мерный вектор возмущающих воздействий,
и
матрицы соответствующих размерностей.

Пусть измерению поддается
-мерный вектор некоторых комбинаций функций состояния (5.25)

где
- погрешность измерения.

Относительно свойств случайных процессов
и начального состояния
будет предполагать, что они удовлетворяют условиям (5.28), т.е. будет предполагать, что это случайные процессы типа белого шума, не коррелированные друг с другом и начальным состоянием системы.

Математически задача оптимальной фильтрации ставится как задача отыскания оценки
состояния системы (5.61)
на основе имеющейся информации
.

Калман предложил искать уравнение фильтра в виде линейной системы на вход которой подается наблюдаемый сигнал
. Тогда уравнения движения такой системы можно описать совокупностью уравнений

(5.63)

где матрицы
и
подлежат определению, т.е. структура фильтра задается, а параметры структуры и начальное состояние определяются из дополнительных условий.

Так как
, то всегда будет ошибка оценки

.

Тогда для определения искомых матриц
и
можно использовать условие несмещенности оценки

(5.64)

и условие ее оптимальности

где
- симметричная положительно определенная матрица.

Для того, чтобы использовать условия (5.64) и (5.65) найдем уравнение для ошибки оценивания. Вычитая (5.63) из (5.61) с учетом (5.62), получим

Если теперь положить, что

то уравнение для ошибки оценки
примет вид:

с начальным условием

. (5.68)

Из (5.67), (5.68) следует, что условие несмещенности оценки (5.64) будет выполнено, если положить

. (5.69)

Чтобы убедиться в этом, достаточно взять математическое ожидание от выражений (5.67), (5.68)

т.е. получили однородное линейное уравнение с нулевыми начальными условиями, откуда непосредственно следует, что
для любого.

Остается определить матрицу
из условия минимума критерия (5.65). Примем для простоты выкладок, что
- постоянная единичная матрица, тогда

Здесь
- корреляционная матрица ошибки оценивания (матрица вторыхцентральных моментов ошибок оценки компонент вектора состояния системы). Обозначим ее через
, тогда критерий оптимальности есть сумма диагональных элементов этой матрицы. В соответствие с условием локальной оптимальности будем искать оптимальное значение матрицы
из условия минимума производной к ритерия по времени:

. (5.71)

Нетрудно показать, что минимизация производной критерия обеспечивает минимум и для самого критерия

Запишем выражение
, опуская для простоты время :

. (5.72)

Подставив в (5.72) выражение для из (5.67) и соответствующее выражение для , получим:

(5.73)

Найдем
, для чего запишем уравнение Коши для (5.67):

где
- весовая матричная функция. Тогда

Используем свойство дельта-функции:

,

если имеетразрыв в точке
.

Поскольку

. (5.74)

Аналогично можно найти
:

. (5.75)

Подставив полученные выражения для
и соответственно транспонированные выражения для
в (5.73) получим:

Следующее тождество легко проверить, раскрыв в правой части скобки и использовав симметрию матрицы
:

С учетом тождества приведем уравнение (5.76) к виду:

В правой части (5.78) от коэффициента
будет зависеть лишь последнее слагаемое, причем оно представляет собой положительно определенную матрицу. Очевидно, что для минимизации критерия (5.71) нужно выбрать
в следующем виде:

При этом последний член в уравнении (5.78) обращается в нуль и уравнение приобретает вид

с начальным значением
.

Итак, можем записать уравнение фильтра

Уравнения (5.79), (5.80), (5.81) представляют собой уравнения фильтра Калмана-Бьюси.

Система оценивания (фильтр) схематически представлена на рис. 16.

Следует отметить, что уравнение фильтра и его параметры не зависят от матрицы
, однако последняя должна быть положительно определенной.

Для стационарной системы при стационарном возмущающем воздействии и стационарном шуме измерителя после окончания переходных процессов матричный коэффициент усиления в фильтре Калмана становится постоянным
, а уравнение Риккати (5.80) вырождается в алгебраическое.При этом процесс
и, следовательно, процесс
являются стационарными, так что
.

Запишем уравнения стационарного фильтра Калмана в следующем виде:

; (5.83)

Один из часто используемых способов решения уравнения (5.84) (обычно с помощью ЦВМ) заключается в решении нестационарного уравнения (5.80) с соответствующими постоянными значениями коэффициентов, из которых составлены матрицы А, С, Q, R, и произвольной неотрицательно определенной матрицей начальных условий для в текущем времени до тех пор, пока полученное решение не достигнет постоянного установившегося значения. Это окончательное значение принимается за искомое решение уравнения (5.84). Такой способ решения удобен тем, что алгоритмы решения дифференциальных уравнений, как правило, эффективнее алгоритмов решения нелинейных алгебраических уравнений.

Замечание 1.

Важным свойством полученной ошибки является то, что она некоррелирована с ошибкой оценивания, т.е.

.

Замечание 2.

Пусть теперь уравнение измерения имеет вид (5.62), а погрешность измерения отсутствует. В этом случае для получения оценки
необходимо воспользоваться производной
наблюдаемого сигнала

которая может быть представлена в виде (5.62)

Замечание 3.

Для управляемых систем, описываемых совокупностью уравнений

Уравнение фильтра может быть получено аналогично. В этом случае уравнение фильтра будет иметь вид

где матрица
, а корреляционная матрица
, как и раньше, находится из матричного уравнения

с начальным условием
.

Система оценивания (фильтр) схематически представлена на рис. 17.

5.5. Синтез локально-оптимального управления линейными стохастическими системами при полной и точной информации.

Пусть управляемое движение в условиях воздействия возмущений описывается системой уравнений

Случайный процесс
и начальное состояние будем считать независимыми, обладающими свойствами (5.28). Предполагается, что состояние
в любой момент времени известно. Будем искать управление
как некоторую линейную функцию текущего состояния

. (5.88)

Тогда задача определения локально-оптимального управления сводится к нахождению
-матрицы
. Оптимальную матрицу
будем искать среди матриц, элементами которых являются непрерывные функции со значениями из открытой области.

В качестве функционала, характеризующего управляемое движение, возьмем математическое ожидание локального функционала
(4.27)

.

Введем матрицу корреляционных моментов

. (5.89)

Используя (5.88), (5.89) функционал можно
преобразовать к виду

(5.90)

Таким образом, значение критерия качества в текущий момент времени определяется матрицей корреляционных моментов.

Найдем уравнение для ее определения. Уравнение управляемого процесса (5.87) с учетом (5.88) можно представить в виде

где матрица

B соответствии с (5.54) уравнение для матрицы
будет иметь вид

или, с учетом (5.91),

(5.92)

Начальным условием является, очевидно,

Из (5.92), (5.93) с учетом предположения о симметричности матриц ,
непосредственно следует, что матрица
является симметричной, т.е.
.

Таким образом, задача определения оптимального управления свелась к задаче определения матрицы
из условия минимума
(5.90). Для нахождения ее воспользуемся условием (4.28). Дифференцируя (5.90) и учитывая (5.92), получим

Выпишем составляющие
, зависящие от
:

Обозначим через
искомую локально-оптимальную матрицу. Введем в рассмотрение семейство матричных функций сравнения

.

где
- произвольная малая вариация матричной функции
из рассматриваемого класса.

Приращение
, вызванное вариацией матрицы
, будет иметь вид

Тогда из (5.94) следует, что

В силу произвольности
и предполагая, что матрица
не особая, из условия
получим уравнение для определения оптимальной матрицы

Найденное значение
действительно доставляет минимум
, так как вторая вариация

в силу определенной положительности матрицы
. Здесь.

Сравнивая (5.88), (5.95) с (4.30), видим, что найденное локально-оптимальное управление полностью совпадает с локально-оптимальным управлением для детерминированного случая.

Таким образом, синтезированное локально-оптимальное управление для детерминированной системы при полной и точной информации о ее состоянии оказывается локально-оптимальным и для стохастической системы, возбуждаемой случайным возмущением типа белого шума

Аналогичный результат имеет место и при квадратичном критерии качества (4.19).

Это объясняется тем, что при
поведение стохастической системы зависит от возмущения
, значение которого предсказать не представляется возможным, и поэтому управление целесообразно оставлять таким же, как в детерминированном случае при отсутствие этих возмущений.

5.6. Синтез локально-оптимального управления линейными стохастическими системами (теорема разделения).

Пусть управляемое движение описывается уравнением (5.87), а уравнение измерения – (5.62).

Рассмотрим задачу синтеза, оптимального по критерию

При этом будем отыскивать такое управление, значение которого в момент времени определяется значениями вектор-функции
на отрезке
.

Обозначим через
оптимальную оценку состояния управляемой системы, через
- ошибку оценивания.

Наряду с системой (5.87) рассмотрим соответствующую ей неуправляемую систему

с уравнением измерения

Для вспомогательной системы задача фильтрации решена и оценка
удовлетворяет уравнению

(5.98)

с начальным условием

где матрица
определяется из уравнений (5.79), (5.80).

Из уравнений (5.87) и (5.97) следует, что

, (5.99)

где
- фундаментальная матрица решений систем (5.87).

Мы отыскиваем управление, которое определяется в момент времени значениями вектор-функции
на отрезке
. Тогда для каждой реализации
процесса
управление
принимает конкретное значение, т.е. управление является детерминированным оператором от вектора наблюдений. Поэтому

(5.100)

Из (5.99) и (5.100) следует, что

Найдем теперь уравнение для определения
. Для этого дифференцируя (5.100), получим

Учитывая (5.98), найдем

(5.101)

Тогда уравнение фильтра окончательно запишется в виде (5.85)

с начальным условием

, (5.103)

т.е. фильтр для определения оценки состояния управления системы есть динамическое звено, на вход которого поступает измеряемый сигнал и управление
.

Теорема разделения. Локально-оптимальное управление системой (5.87) по критерию (5.96) имеет вид:

Здесь
- заданные матрицы локального функционала, а
- решение векторного уравнения (5.102) с начальным условием (5.103).

Доказательство. Рассмотрим функционал (5.96). Учитывая, что оценки
и ошибка оценки
не коррелированны для всех, функционал (5.96) можно представить в виде

,

Так как на
не влияет ни
, ни
, то задача сводится к минимизациипри условиях (5.102), (5.103). При этом оценка является полностью наблюдаемой.

Рассмотрим выражение

Учитывая, что , нетрудно показать , что

Таким образом, в уравнении (5.102) выражение
можно рассматривать как эквивалентный «белый шум» с корреляционной матрицей
.

В результате мы пришли к задаче синтеза локально-оптимального уравнения в системе (5.102), (5.103), возмущаемой «белым шумом» при полном и точном измерении ее состояния, решение которой было дано в предыдущем разделе. Теорема доказана. Можно показать, что теорема разделения справедлива и при синтезе оптимального управления по квадратичному решению.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows