C инициализация структуры при объявлении. Структуры в си и их передача. Приём и восстановление структуры

C инициализация структуры при объявлении. Структуры в си и их передача. Приём и восстановление структуры

24.03.2019

Недавно познакомился со структурами C/C++ - struct. Господи, да «что же с ними знакомиться» скажете вы? Тем самым вы допустите сразу 2 ошибки: во-первых я не Господи, а во вторых я тоже думал что структуры - они и в Африке структуры. А вот как оказалось и - нет. Я расскажу о нескольких жизненно-важных подробностях, которые кого-нибудь из читателей избавят от часовой отладки…

Выравнивание полей в памяти

Обратите внимание на структуру:

Struct Foo { char ch; int value; };
Ну во-первых какой у этой структуры размер в памяти? sizeof(Foo) ?
Размер этой структуры в памяти зависит от настроек компилятора и от директив в вашем коде…

В общем выравниваются в памяти поля по границе кратной своему же размеру. То есть 1-байтовые поля не выравниваются, 2-байтовые - выравниваются на чётные позиции, 4-байтовые - на позиции кратные четырём и т.д. В большинстве случаев (или просто предположим что сегодня это так) выравнивание размера структуры в памяти составляет 4 байта. Таким образом, sizeof(Foo) == 8 . Где и как прилепятся лишние 3 байта? Если вы не знаете - ни за что не угадаете…

  • 1 байт: ch
  • 2 байт: пусто
  • 3 байт: пусто
  • 4 байт: пусто
  • 5 байт: value
  • 6 байт: value
  • 7 байт: value
  • 8 байт: value
Посмотрим теперь размещение в памяти следующей структуры:

Struct Foo { char ch; short id; int value; };
Оно выглядит вот так:

  • 1 байт: ch
  • 2 байт: пусто
  • 3 байт: id
  • 4 байт: id
  • 5 байт: value
  • 6 байт: value
  • 7 байт: value
  • 8 байт: value
То есть, то что можно впихнуть до выравнивания по 4 байта - впихивается на ура (без увеличения размера структуры в памяти), добавим ещё одно поле:

Struct Foo { char ch; short id; short opt; int value; };
Посмотрим на размещение полей в памяти:

  • 1 байт: ch
  • 2 байт: пусто
  • 3 байт: id
  • 4 байт: id
  • 5 байт: opt
  • 6 байт: opt
  • 7 байт: пусто
  • 8 байт: пусто
  • 9 байт: value
  • 10 байт: value
  • 11 байт: value
  • 12 байт: value
Всё это ой как печально, но есть способ бороться с этим прямо из кода:

#pragma pack(push, 1) struct Foo { // ... }; #pragma pack(pop)
Мы установили размер выравнивания в 1 байт, описали структуру и вернули предыдущую настройку. Возвращать предыдущую настройку - категорически рекомендую. Иначе всё может закончиться очень плачевно. У меня один раз такое было - падало Qt. Где-то заинклюдил их.h-ник ниже своего.h-ника…

Битовые поля

В комментариях мне указали на то, что битовые поля в структурах по стандарту являются «implementation defined» - потому их использования лучше избежать, но для меня соблазн слишком велик...

Мне становится не то что неспокойно на душе, а вообще становится хреново, когда я вижу в коде заполнение битовых полей при помощи масок и сдвигов, например так:

Unsigned field = 0x00530000; // ... field &= 0xFFFF00FF; field |= (id) << 8; // ... field &= 0xFFFFFF83; field |= (proto) << 2;
Всё это пахнет такой печалью и такими ошибками и их отладкой, что у меня сразу же начинается мигрень! И тут из-за кулис выходят они - Битовые Поля. Что самое удивительное - были они ещё в языке C, но кого ни спрашиваю - все в первый раз о них слышат. Этот беспредел надо исправлять. Теперь буду давать им всем ссылку, ну или хотя бы ссылку на эту статью.

Как вам такой кусок кода:

#pragma pack(push,1) struct IpHeader { uint8_t header_length:4; uint8_t version:4; uint8_t type_of_service; uint16_t total_length; uint16_t identificator; // Flags uint8_t _reserved:1; uint8_t dont_fragment:1; uint8_t more_fragments:1; uint8_t fragment_offset_part1:5; uint8_t fragment_offset_part2; uint8_t time_to_live; uint8_t protocol; uint16_t checksum; // ... }; #pragma pack(pop)
А дальше в коде мы можем работать с полями как и всегда работаем с полями в C/C++. Всю работу по сдвигам и т.д. берет на себя компилятор. Конечно же есть некоторые ограничения… Когда вы перечисляете несколько битовых полей подряд, относящихся к одному физическому полю (я имею ввиду тип который стоит слева от имени битового поля) - указывайте имена для всех битов до конца поля, иначе доступа к этим битам у вас не будет, иными словами кодом:

#pragma pack(push,1) stuct MyBitStruct { uint16_t a:4; uint16_t b:4; uint16_t c; }; #pragma pack(pop)
Получилась структура на 4 байта! Две половины первого байта - это поля a и b . Второй байт не доступен по имени и последние 2 байта доступны по имени c . Это очень опасный момент. После того как описали структуру с битовыми полями обязательно проверьте её sizeof !

Также порядок размещения битовых болей в байте зависит от порядка байтов. При порядке LITTLE_ENDIAN битовые поля раздаются начиная со первых байтов, при BIG_ENDIAN - наоборот…

Порядок байтов

Меня также печалят в коде вызовы функций htons() , ntohs() , htonl() , nthol() в коде на C++. На C это ещё допустимо, но не на С++. С этим я никогда не смирюсь! Внимание всё нижесказанное относится к C++!

Ну тут я буду краток. Я в одной из своих предыдущих статей уже писал что нужно делать с порядками байтов. Есть возможность описать структуры, которые внешне работают как числа, а внутри сами определяют порядок хранения в байтах. Таким образом наша структура IP-заголовка будет выглядеть так:

#pragma pack(push,1) struct IpHeader { uint8_t header_length:4; uint8_t version:4; uint8_t type_of_service; u16be total_length; u16be identificator; // Flags uint8_t _reserved:1; uint8_t dont_fragment:1; uint8_t more_fragments:1; uint8_t fragment_offset_part1:5; uint8_t fragment_offset_part2; uint8_t time_to_live; uint8_t protocol; u16be checksum; // ... }; #pragma pack(pop)
Внимание собственно обращать на типы 2-байтовых полей - u16be . Теперь поля структуры не нуждаются ни в каких преобразованиях порядка байт. Остаются проблемы с fragment_offset , ну а у кого их нет - проблем-то. Тем не менее тоже можно придумать шаблон, прячущий это безобразие, один раз его оттестировать и смело использовать во всём своём коде.

«Язык С++ достаточно сложен, чтобы позволить нам писать на нём просто» Как ни странно - Я

З.Ы. Планирую в одной из следующих статей выложить идеальные, с моей точки зрения, структуры для работы с заголовками протоколов стека TCP/IP. Отговорите - пока не поздно!

Структура — это агрегатный тип данных, так как может содержать в себе разнотипные элементы. Синтаксис объявления структуры в С++ отличается от C. Хотя версия C остается правильной для C++. Получается, что в С++ можно двумя стилями объявления структур пользоваться, а в языке C — только одной. Смотрим синтаксис объявления структуры в языке С++:

Struct Name { type atrib; // остальные элементы структуры } structVar1, structVar2, ...;

  • struct — ключевое слово, которое начинает определение структуры
  • Name — имя структуры
  • type — тип данных элемента структуры
  • atrib — элемент структуры
  • structVar1-2 — структурные переменные

Объявление структуры всегда должно начинаться с ключевого слова struct . Необязательно, чтобы структура имела имя, но тогда такая структура обязательно должна иметь структурные переменные, объявленные между закрывающей фигурной скобкой и точкой с запятой, строка 5. Обязательно в объявлении структуры должны присутствовать фигурные скобочки, они обрамляют тело структуры, в котором объявляются её атрибуты (элементы), строка 3. Структурные переменные, при объявлении структуры, указывать необязательно, строка 5.

Так как структура это тип данных, то, для того, чтобы использовать этот тип данных, необходимо объявить структурную переменную, а вместо типа данных указать имя структуры.

struct_name structVariable;

Синтаксис объявления структуры в языке Си:

Typedef struct name { type atrib1; type atrib2; // остальные элементы структуры... } newStructName structVar;

Синтаксис объявления структуры в языке Си предполагает два варианта. Первый, опустить ключевое слово typedef , при этом имя newStructName тоже не используется, и имя структуры, тогда обязательно необходимо при объявлении структуры использовать структурные переменные — structVar , строка 6. Смотрим пример:

Struct name structVar;

Или вы можете воспользоваться typedef , для объявления псевдонима структуры newStructName , псевдоним:

NewStructName structVar;

В любом случае, если вы хотите, объявить указатель на структуру внутри структуры, вы должны использовать первый синтаксис:

Struct name *struct_instance; // указатель на структуру

Объявление указателя на структуру

Синтаксис объявления указателя на структуру в Си неоднозначен. В Си, если вы не используете typedef при определении структуры, то, в обязательном порядке необходимо использовать структурные переменные, между закрывающейся фигурной скобочкой и точкой с запятой.
В C++, этого не требуется. Чтобы объявить указатель на структуру, в С++ вы просто перед именем структурной переменной ставите символ указателя — * .

StructName *structVar; // указатель на структуру structName

NewStructName *structVar; // newStructName должно быть объявлено с typedef

или так, тоже для СИ:

Struct name *structVar;

Доступ к элементам структуры

Доступ к элементам структуры так же прост, как использование символа «точка». Предположим. что у нас есть структурная переменная с именем car и у нее есть элемент с именем speed , к которому, мы сейчас получим доступ:

Car.speed;

Примечание: такой способ доступа к элементам структуры работает только в том случае, когда структура не является указателем на структуру.

Доступ к элементам указателя на структуру

Чтобы получить доступ к элементам структуры, через указатель на структуру, вместо оператора «точка», используйте оператор стрелка -> :

CarPtr->speed;

P.S.: Всем владельцам Android-смартфонов представляю хорошую подборку программ GPS навигаторов для android . В списке представлено около 20 программных продуктов, вы можете любой скачать и установить на свой девайс. Все программы абсолютно бесплатные.

Структуры

Как вам должно быть уже известно, классы относятся к ссылочным типам данных. Это означает, что объекты конкретного класса доступны по ссылке, в отличие от значений простых типов, доступных непосредственно. Но иногда прямой доступ к объектам как к значениям простых типов оказывается полезно иметь, например, ради повышения эффективности программы. Ведь каждый доступ к объектам (даже самым мелким) по ссылке связан с дополнительными издержками на расход вычислительных ресурсов и оперативной памяти.

Для разрешения подобных затруднений в C# предусмотрена структура , которая подобна классу, но относится к типу значения, а не к ссылочному типу данных. Т.е. структуры отличаются от классов тем, как они сохраняются в памяти и как к ним осуществляется доступ (классы - это ссылочные типы, размещаемые в куче, структуры - типы значений, размещаемые в стеке), а также некоторыми свойствами (например, структуры не поддерживают наследование). Из соображений производительности вы будете использовать структуры для небольших типов данных. Однако в отношении синтаксиса структуры очень похожи на классы.

Главное отличие состоит в том, что при их объявлении используется ключевое слово struct вместо class. Ниже приведена общая форма объявления структуры:

struct имя: интерфейсы { // объявления членов }

где имя обозначает конкретное имя структуры.

Как и у классов, у каждой структуры имеются свои члены: методы, поля, индексаторы, свойства, операторные методы и события. В структурах допускается также определять конструкторы, но не деструкторы. В то же время для структуры нельзя определить конструктор, используемый по умолчанию (т.е. конструктор без параметров). Дело в том, что конструктор, вызываемый по умолчанию, определяется для всех структур автоматически и не подлежит изменению. Такой конструктор инициализирует поля структуры значениями, задаваемыми по умолчанию. А поскольку структуры не поддерживают наследование, то их члены нельзя указывать как abstract, virtual или protected.

Объект структуры может быть создан с помощью оператора new таким же образом, как и объект класса, но в этом нет особой необходимости. Ведь когда используется оператор new, то вызывается конструктор, используемый по умолчанию. А когда этот оператор не используется, объект по-прежнему создается, хотя и не инициализируется. В этом случае инициализацию любых членов структуры придется выполнить вручную.

Давайте рассмотрим пример использования структур:

Using System; namespace ConsoleApplication1 { // Создадим структуру struct UserInfo { public string Name; public byte Age; public UserInfo(string Name, byte Age) { this.Name = Name; this.Age = Age; } public void WriteUserInfo() { Console.WriteLine("Имя: {0}, возраст: {1}",Name,Age); } } class Program { static void Main() { UserInfo user1 = new UserInfo("Alexandr", 26); Console.Write("user1: "); user1.WriteUserInfo(); UserInfo user2 = new UserInfo("Elena",22); Console.Write("user2: "); user2.WriteUserInfo(); // Показать главное отличие структур от классов user1 = user2; user2.Name = "Natalya"; user2.Age = 25; Console.Write("\nuser1: "); user1.WriteUserInfo(); Console.Write("user2: "); user2.WriteUserInfo(); Console.ReadLine(); } } }

Обратите внимание, когда одна структура присваивается другой, создается копия ее объекта. В этом заключается одно из главных отличий структуры от класса. Когда ссылка на один класс присваивается ссылке на другой класс, в итоге ссылка в левой части оператора присваивания указывает на тот же самый объект, что и ссылка в правой его части. А когда переменная одной структуры присваивается переменной другой структуры, создается копия объекта структуры из правой части оператора присваивания.

Поэтому, если бы в предыдущем примере использовался класс UserInfo вместо структуры, получился бы следующий результат:

Назначение структур

В связи с изложенным выше возникает резонный вопрос: зачем в C# включена структура, если она обладает более скромными возможностями, чем класс? Ответ на этот вопрос заключается в повышении эффективности и производительности программ. Структуры относятся к типам значений, и поэтому ими можно оперировать непосредственно, а не по ссылке. Следовательно, для работы со структурой вообще не требуется переменная ссылочного типа, а это означает в ряде случаев существенную экономию оперативной памяти.

Структуры в си (c) - это объединенные данные, у которых есть некоторая логическая взаимосвязь. В отличие от массивов, структуры могут содержать данные разных типов. Вот пару примеров структур в си (c): структура класс (имя учащегося, буква класса, средний балл); структура футбольная команда (тренер, название команды, место в турнирной таблице). Т.е. структуру вы будете использовать довольно часто. Теперь давайте рассмотрим, как описываются структуры в си:

struct klass {
char name;
char klass_name;
float bal;
};

struct

Любая структура в языке си (c) должна начинаться с ключевого слова - struct , которое сообщает компилятору, что тут у нас будет структура. Все данные в структуре (struct) пишутся в фигурных скобках, и в конце ставится запятая с точкой (;). Советую сразу ставить запятую с точкой, что бы не было ошибок.

Как вы видите, в структуре (struct) у нас находятся данные различных типов, но они объединены в логическую связь, так как в моем примере они являются определенным школьным классом. Данные в структуре должны иметь уникальные имена, но в различных структурах можно использовать одинаковые названия.

Структура, которая создана выше не занимает в памяти компьютера места, так как мы, на самом деле, просто создали свой тип данных. Объявление структуры ни чем не отличается от объявления любого типа данных в языке си (c). Вот пример:

struct klass a, b, *c;

Мы объявили переменную а типа struct klass, массив b, состоящий из 5 элементов типа struct klass и указатель на переменную struct klass.

Так же можно объявлять переменные сразу после объявления структуры:

struct klass {
char name;
char klass_name;
float bal;
} a, b, *c;

А какие же операции можно проделывать со структурами? Ответ на этот вопрос лучше перечислить по пунктам:

  1. присваивание полю структуры значение того же типа
  2. можно получить адрес структуры. Не забываем операцию взятия адреса (&)
  3. можно обращаться к любому полю структуры
  4. для того, что бы определить размер структуры можно использовать операцию sizeof()

Инициализация структуры

Инициализация структуры в языке си (c) происходит так же, как и при инициализации массива. Вот пример инициализации структуры:

struct klass a = {"Sergey", "B", 4.5 };

Т.е. мы создаем переменную типа struct klass и присваиваем всем трем полям, которые у нас определенны в структуре, значения. Порядок очень важен при инициализации структуры , так как компьютер сам не может отсортировывать данные. Если какое-либо поле у вас будет не заполненным, то оно автоматом заполнится 0 - для целочисленных типов; NULL - для указателей; \0 (ноль-терминатор) - для строковых типов.

Структура - это совокупность переменных, объединенных одним именем, предоставляющая общепринятый способ совместного хранения информации. Объявление структуры приводит к образованию шаблона, используемого для создания объектов структуры. Переменные, образующие структуру, называются членами структуры. (Члены структуры также часто называются элементами или полями.)

Обычно все члены структуры связаны друг с другом. Например, информация об имени и адресе, находящаяся в списке рассылки, обычно представляется в виде структуры. Следующий фрагмент кода объявляет шаблон структуры, определяющий имя и адрес. Ключевое слово struct сообщает компилятору об объявлении структуры.

Struct addr {
char name;
char street ; char city;
char state;
unsigned long int zip;
};

Объявление завершается точкой с запятой, поскольку объявление структуры - это оператор. Имя структуры addr идентифицирует структуру данных и является спецификатором типа. Имя структуры часто используют как ярлык.

На данный момент на самом деле не создано никакой переменной. Определена только форма данных. Для объявления настоящей переменной, соответствующей данной структуре, следует написать:

Struct addr addr_info;

В данной строке происходит объявление переменной addr_info типа addr. При объявлении структуры определяется переменная смешанного типа. До тех пор, пока не будет объявлена переменная данного типа, она не будет существовать.

Когда объявлена структурная переменная, компилятор автоматически выделяет необходимый участок памяти для размещения всех ее членов. Рис. показывает размещение addr_info в памяти.

Рисунок: Размещение структуры addr_info в памяти

При объявлении структуры можно одновременно объявить одну или несколько переменных.

Например:

Struct addr {
char name;
char street;
char city;
char state;
unsigned long int zip;
} addr_info; binfo, cinfo;

объявляет структуру addr и объявляет переменные addr_info, binfo, cinfo данного типа.

Важно понять, что каждая вновь создаваемая структурная переменная содержит свои собственный копии переменных, образующих структуру. Например, поле zip переменной binfo отделено от поля zip переменной cinfo. Фактически, единственная связь между binfo и cinfo заключается в том, что они обе являются экземплярами одного типа структуры. Больше между ними нет связи.

Если необходима только одна структурная переменная, то нет необходимости в ярлыке структуры. Это означает, что

Struct {
char name;
char street;
char city;
char state;
unsigned long int zip;
} addr_info;

Объявляет одну переменную addr_info с типом, определенным предшествующей ей структурой. Стандартный вид объявления структуры следующий:

struct ярлык {
тип имя переменной;
тип имя переменной;
тип имя переменной;
} структурные переменные;

Ярлык - это имя типа структуры, а не имя переменной. Структурные переменные - это разделенный запятыми список имен переменных. Следует помнить, что или ярлык, или структурные переменные могут отсутствовать, но не оба.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows