Как найти определение функции. Как найти область определения функции

Как найти определение функции. Как найти область определения функции

25.06.2019

Определение
Функцией y = f(x) называется закон (правило, отображение), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y .

Множество X называется областью определения функции .
Множество элементов y ∈ Y , которые имеют прообразы во множестве X , называется множеством значений функции (или областью значений ).

Область определения функции иногда называют множеством определения или множеством задания функции.

Элемент x ∈ X называют аргументом функции или независимой переменной .
Элемент y ∈ Y называют значением функции или зависимой переменной .

Само отображение f называется характеристикой функции .

Характеристика f обладает тем свойством, что если два элемента и из множества определения имеют равные значения: , то .

Символ, обозначающий характеристику, может совпадать с символом элемента значения функции. То есть можно записать так: . При этом стоит помнить, что y - это элемент из множества значений функции, а - это правило, по которому для элемента x ставится в соответствие элемент y .

Сам процесс вычисления функции состоит из трех шагов. На первом шаге мы выбираем элемент x из множества X . Далее, с помощью правила , элементу x ставится в соответствие элемент множества Y . На третьем шаге этот элемент присваивается переменной y .

Частным значением функции называют значение функции при выбранном (частном) значении ее аргумента.

Графиком функции f называется множество пар .

Сложные функции

Определение
Пусть заданы функции и . Причем область определения функции f содержит множество значений функции g . Тогда каждому элементу t из области определения функции g соответствует элемент x , а этому x соответствует y . Такое соответствие называют сложной функцией : .

Сложную функцию также называют композицией или суперпозицией функций и иногда обозначают так: .

В математическом анализе принято считать, что если характеристика функции обозначена одной буквой или символом, то она задает одно и то же соответствие. Однако, в других дисциплинах, встречается и другой способ обозначений, согласно которому отображения с одной характеристикой, но разными аргументами, считаются различными. То есть отображения и считаются различными. Приведем пример из физики. Допустим мы рассматриваем зависимость импульса от координаты . И пусть мы имеем зависимость координаты от времени . Тогда зависимость импульса от времени является сложной функцией . Но ее, для краткости, обозначают так: . При таком подходе и - это различные функции. При одинаковых значениях аргументов они могут давать различные значения. В математике такое обозначение не принято. Если требуется сокращение, то следует ввести новую характеристику. Например . Тогда явно видно, что и - это разные функции.

Действительные функции

Область определения функции и множество ее значений могут быть любыми множествами.
Например, числовые последовательности - это функции, областью определения которых является множество натуральных чисел, а множеством значений - вещественные или комплексные числа.
Векторное произведение тоже функция, поскольку для двух векторов и имеется только одно значение вектора . Здесь областью определения является множество всех возможных пар векторов . Множеством значений является множество всех векторов.
Логическое выражение является функцией. Ее область определения - это множество действительных чисел (или любое множество, в котором определена операция сравнения с элементом “0”). Множество значений состоит из двух элементов - “истина” и “ложь”.

В математическом анализе большую роль играют числовые функции.

Числовая функция - это функция, значениями которой являются действительные или комплексные числа.

Действительная или вещественная функция - это функция, значениями которой являются действительные числа.

Максимум и минимум

Действительные числа имеют операцию сравнения. Поэтому множество значений действительной функции может быть ограниченным и иметь наибольшее и наименьшее значения.

Действительная функция называется ограниченной сверху (снизу) , если существует такое число M , что для всех выполняется неравенство:
.

Числовая функция называется ограниченной , если существует такое число M , что для всех :
.

Максимумом M (минимумом m ) функции f , на некотором множестве X называют значение функции при некотором значении ее аргумента , при котором для всех ,
.

Верхней гранью или точной верхней границей действительной, ограниченной сверху функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.

Верхней гранью неограниченной сверху функции

Нижней гранью или точной нижней границей действительной, ограниченной снизу функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.

Нижней гранью неограниченной снизу функции является бесконечно удаленная точка .

Таким образом, любая действительная функция, на не пустом множестве X , имеет верхнюю и нижнюю грани. Но не всякая функция имеет максимум и минимум.

В качестве примера рассмотрим функцию , заданную на открытом интервале .
Она ограничена, на этом интервале, сверху значением 1 и снизу - значением 0 :
для всех .
Эта функция имеет верхнюю и нижнюю грани:
.
Но она не имеет максимума и минимума.

Если мы рассмотрим туже функцию на отрезке , то она на этом множестве ограничена сверху и снизу, имеет верхнюю и нижнюю грани и имеет максимум и минимум:
для всех ;
;
.

Монотонные функции

Определения возрастающей и убывающей функций
Пусть функция определена на некотором множестве действительных чисел X . Функция называется строго возрастающей (строго убывающей)
.
Функция называется неубывающей (невозрастающей) , если для всех таких что выполняется неравенство:
.

Определение монотонной функции
Функция называется монотонной , если она неубывающая или невозрастающая.

Многозначные функции

Пример многозначной функции. Различными цветами обозначены ее ветви. Каждая ветвь является функцией.

Как следует из определения функции, каждому элементу x из области определения, ставится в соответствие только один элемент из множества значений. Но существуют такие отображения, в которых элемент x имеет несколько или бесконечное число образов.

В качестве примера рассмотрим функцию арксинус : . Она является обратной к функции синус и определяется из уравнения:
(1) .
При заданном значении независимой переменной x , принадлежащему интервалу , этому уравнению удовлетворяет бесконечно много значений y (см. рисунок).

Наложим на решения уравнения (1) ограничение. Пусть
(2) .
При таком условии, заданному значению , соответствует только одно решение уравнения (1). То есть соответствие, определяемое уравнением (1) при условии (2) является функцией.

Вместо условия (2) можно наложить любое другое условие вида:
(2.n) ,
где n - целое. В результате, для каждого значения n , мы получим свою функцию, отличную от других. Множество подобных функций является многозначной функцией . А функция, определяемая из (1) при условии (2.n) является ветвью многозначной функцией .

Это совокупность функций, определенных на некотором множестве.

Ветвь многозначной функции - это одна из функций, входящих в многозначную функцию.

Однозначная функция - это функция.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

В математике имеется достаточно небольшое количество элементарных функций, область определения которых ограничена. Все остальные "сложные" функции - это всего лишь их сочетания и комбинации.

1. Дробная функция - ограничение на знаменатель.

2. Корень четной степени - ограничение на подкоренное выражение.

3. Логарифмы - ограничение на основание логарифма и подлогарифмическое выражение.

3. Тригонометрические tg(x) и ctg(x) - ограничение на аргумент.

Для тангенса:

4. Обратные тригонометрические функции.

Арксинус Арккосинус Арктангенс, Арккотангенс

Далее решаются следующие примеры на тему "Область определения функций".

Пример 1 Пример 2
Пример 3 Пример 4
Пример 5 Пример 6
Пример 7 Пример 8
Пример 9 Пример 10
Пример 11 Пример 12
Пример 13 Пример 14
Пример 15 Пример 16

Пример нахождения области определения функции №1

Нахождение области определения любой линейной функции, т.е. функции первой степени:

y = 2x + 3 - уравнение задает прямую на плоскости.

Посмотрим внимательно на функцию и подумаем, какие же числовые значения мы сможем подставить в уравнение вместо переменной х?

Попробуем подставить значение х=0

Так как y = 2·0 + 3 = 3 - получили числовое значение, следовательно функция существует при взятом значении переменной х=0.

Попробуем подставить значение х=10

так как y = 2·10 + 3 = 23 - функция существует при взятом значении переменной х=10 .

Попробуем подставить значение х=-10

так как y = 2·(-10) + 3 = -17 - функция существует при взятом значении переменной х=-10 .

Уравнение задает прямую линию на плоcкости, а прямая не имеет ни начала ни конца, следовательно она существует для любых значений х.


Заметим, что какие бы числовые значения мы не подставляли в заданную функцию вместо х, всегда получим числовое значение переменной y.

Следовательно, функция существует для любого значения x ∈ R или запишем так: D(f) = R

Формы записи ответа: D(f)=R или D(f)=(-∞:+∞)или x∈R или x∈(-∞:+∞)

Сделаем вывод:

Для любой функции вида y = ax + b областью определения является множество действительных чисел.

Пример нахождения области определения функции №2

Задана функция вида:

y = 10/(x + 5) - уравнение гиперболы

Имея дело с дробной функцией, вспомним, что на ноль делить нельзя. Следовательно функция будет существовать для всех значений х, которые не

обращают знаменатель в ноль. Попробуем подставить какие-либо произвольные значения х.

При х = 0 имеем y = 10/(0 + 5) = 2 - функция существует.

При х = 10 имеем y = 10/(10 + 5) = 10/15 = 2/ 3 - функция существует.

При х = -5 имеем y = 10/(-5 + 5) = 10/0 - функция в этой точке не существует.

Т.е. если заданная функция дробная, то необходимо знаменатель приравнять нулю и найти такую точку, в которой функция не существует.

В нашем случае:

x + 5 = 0 → x = -5 - в этой точке заданная функция не существует.

x + 5 ≠ 0 → x ≠ -5

Для наглядности изобразим графически:

На графике также видим, что гипербола максимально близко приближается к прямой х = -5 , но самого значения -5 не достигает.

Видим, что заданная функция существует во всех точках действительной оси, кроме точки x = -5

Формы записи ответа: D(f)=R\{-5} илиD(f)=(-∞;-5) (-5;+∞) или x∈ R\{-5} илиx∈ (-∞;-5) (-5;+∞)

Если заданная функция дробная, то наличие знаменателя накладывает условие неравенства нулю знаменателя.


Пример нахождения области определения функции №3

Рассмотрим пример нахождения области определения функции с корнем четной степени:


Так как квадратный корень мы можем извлечь только из неотрицательного числа, следовательно, функция под корнем - неотрицательна.

2х - 8 ≥ 0

Решим простое неравенство:

2х - 8 ≥ 0 → 2х ≥ 8 → х ≥ 4

Заданная функция существует только при найденных значениях х ≥ 4 или D(f)=- ∞; + ∞[ .

Пример 1. Найти область определения функции y = 2 .

Решение. Область определения функции не указана, значит, в силу выше приведённого определения имеется в виду естественная область определения. Выражение f (x ) = 2 определено при любых действительных значениях x , следовательно, данная функция определена на всём множестве R действительных чисел.

Поэтому на чертеже сверху числовая прямая заштрихована на всём протяжении от минус бесконечности до плюс бесконечности.

Область определения корня n -й степени

В случае, когда функция задана формулой и n - натуральное число:

Пример 2. Найти область определения функции .

Решение. Как следует из определения, корень чётной степени имеет смысл, если подкоренное выражение неотрицательно, то есть, если - 1 ≤ x ≤ 1 . Следовательно, область определения данной функции - [- 1; 1] .

Заштрихованная область числовой прямой на чертеже сверху - это область определения данной функции.

Область определения степенной функции

Область определения степенной функции с целым показателем степени

если a - положительное, то областью определения функции является множество всех действительных чисел, то есть ]- ∞; + ∞[ ;

если a - отрицательное, то областью определения функции является множество ]- ∞; 0[ ∪ ]0 ;+ ∞[ , то есть вся числовая прямая за исключением нуля.

На соответствующем чертеже сверху вся числовая прямая заштрихована, а точка, соответствующая нулю, выколота (она не входит в область определения функции).

Пример 3. Найти область определения функции .

Решение. Первое слагаемое целой степенью икса, равной 3, а степень икса во втором слагаемом можно представить в виде единицы - так же целого числа. Следовательно, область определения данной функции - вся числовая прямая, то есть ]- ∞; + ∞[ .

Область определения степенной функции с дробным показателем степени

В случае, когда функция задана формулой :

если - положительное, то областью определения функции является множество 0; + ∞[ .

Пример 4. Найти область определения функции .

Решение. Оба слагаемых в выражении функции - степенные функции с положительными дробными показателями степеней. Следовательно, область определения данной функции - множество - ∞; + ∞[ .

Область определения показательной и логарифмической функции

Область определения показательной функции

В случае, когда функция задана формулой , областью определения функции является вся числовая прямая, то есть ]- ∞; + ∞[ .

Область определения логарифмической функции

Логарифмическая функция определена при условии, если её аргумент положителен, то есть, областью её определения является множество ]0; + ∞[ .

Найти область определения функции самостоятельно, а затем посмотреть решение

Область определения тригонометрических функций

Область определения функции y = cos(x ) - так же множество R действительных чисел.

Область определения функции y = tg(x ) - множество R действительных чисел, кроме чисел .

Область определения функции y = ctg(x ) - множество R действительных чисел, кроме чисел .

Пример 8. Найти область определения функции .

Решение. Внешняя функция - десятичный логарифм и на область её определения распространяются условия области определения логарифмической функции вообще. То есть, её аргумент должен быть положительным. Аргумент здесь - синус "икса". Поворачивая воображаемый циркуль по окружности, видим, что условие sin x > 0 нарушается при "иксе" равным нулю, "пи", два, умноженном на "пи" и вообще равным произведению числа "пи" и любого чётного или нечётного целого числа.

Таким образом, область определения данной функции задаётся выражением

,

где k - целое число.

Область определения обратных тригонометрических функций

Область определения функции y = arcsin(x ) - множество [-1; 1] .

Область определения функции y = arccos(x ) - так же множество [-1; 1] .

Область определения функции y = arctg(x ) - множество R действительных чисел.

Область определения функции y = arcctg(x ) - так же множество R действительных чисел.

Пример 9. Найти область определения функции .

Решение. Решим неравенство:

Таким образом, получаем область определения данной функции - отрезок [- 4; 4] .

Пример 10. Найти область определения функции .

Решение. Решим два неравенства:

Решение первого неравенства:

Решение второго неравенства:

Таким образом, получаем область определения данной функции - отрезок .

Область определения дроби

Если функция задана дробным выражением, в котором переменная находится в знаменателе дроби, то областью определения функции является множество R действительных чисел, кроме таких x , при которых знаменатель дроби обращается в нуль.

Пример 11. Найти область определения функции .

Решение. Решая равенство нулю знаменателя дроби, находим область определения данной функции - множество ]- ∞; - 2[ ∪ ]- 2 ;+ ∞[ .

В математике бесконечное множество функций. И у каждой - свой характер.) Для работы с самыми разнообразными функциями нужен единый подход. Иначе, какая же это математика?!) И такой подход есть!

При работе с любой функцией мы предъявляем ей стандартный набор вопросов. И первый, самый важный вопрос - это область определения функции. Иногда эту область называют множеством допустимых значений аргумента, областью задания функции и т.п.

Что такое область определения функции? Как её находить? Эти вопросы частенько представляются сложными и непонятными... Хотя, на самом деле, всё чрезвычайно просто. В чём вы сможете убедиться лично, прочитав эту страничку. Поехали?)

Ну, что тут сказать... Только респект.) Да! Естественная область определения функции (о которой здесь идёт речь) совпадает с ОДЗ выражений, входящих в функцию. Соответственно, и ищутся они по одним и тем же правилам.

А сейчас рассмотрим не совсем естественную область определения.)

Дополнительные ограничения на область определения функции.

Здесь речь пойдёт об ограничениях, которые накладываются заданием. Т.е. в задании присутствуют какие-то дополнительные условия, которые придумал составитель. Или ограничения выплывают из самого способа задания функции.

Что касается ограничений в задании - тут всё просто. Обычно, и искать-то ничего не надо, всё в задании уже сказано. Напомню, что ограничения, написанные автором задания, никак не отменяют принципиальные ограничения математики. Нужно просто не забыть учесть условия задания.

Например, такое задание:

Найти область определения функции:

на множестве положительных чисел.

Естественную область определения этой функции мы нашли выше. Эта область:

D(f)=(-∞ ; -1) (-1; 2]

В словесном способе задания функции нужно внимательно читать условие и находить там ограничения на иксы. Иногда глаза ищут формулы, а слова свистят мимо сознания да...) Пример из предыдущего урока:

Функция задана условием: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х.

Здесь надо заметить, что речь идёт только о натуральных значениях икса. Тогда и D(f) мгновенно записывается:

D(f): х N

Как видите, область определения функции - не такое уж сложное понятие. Нахождение этой области сводится к осмотру функции, записи системы неравенств и решению этой системы. Конечно, системы бывают всякие, простые и сложные. Но...

Открою маленький секрет. Иногда функция, для которой надо найти область определения, выглядит просто устрашающе. Хочется побледнеть и заплакать.) Но стоит записать систему неравенств... И, вдруг, системка оказывается элементарной! Причём, частенько, чем ужаснее функция, тем проще система...

Мораль: глаза боятся, голова решает!)



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows