Локально-вычислительные сети (ЛВС). Что такое ЛВС и СКС? В чём разница

Локально-вычислительные сети (ЛВС). Что такое ЛВС и СКС? В чём разница

18.08.2019

С появлением микроЭВМ и персональных ЭВМ возникли локальные вычислительные сети. Они позволили поднять на качественно новую ступень управление производственным объектом, повысить эффективность использования ЭВМ, улучшить качество обрабатываемой информации, реализовать безбумажную технологию, создать новые технологии.

Локальная вычислительная сеть – компьютерная сеть для ограниченного круга

пользователей, объединяющая компьютеры в одном помещении или в рамках одного

предприятия.

Дадим развернутое определение локальной вычислительной сети.

Локальная вычислительная сеть (ЛВС) - это совокупность технических средств

(компьютеров, кабелей, сетевых адаптеров и др.), работающих под управлением сетевой операционной системы и прикладного программного обеспечения.

Локальные сети получили широкое распространение, начиная с 80-х годов. Локальная компьютерная сеть позволяет легко обмениваться информацией внутри отдельной организации.

По назначению (характеру реализуемых функций) ЛВС их можно разделить на сле-

􀂃 вычислительные, выполняющие преимущественно расчетные работы;

􀂃 информационно-вычислительные, кроме расчетных выполняющие работу по информационному обслуживанию пользователей;

􀂃 информационные, выполняющие в основном информационное обслуживание пользователей (создание и оформление документов, доставку пользователю директивной, текущей, справочной и другой нужной ему информации);

􀂃 информационно-поисковые - разновидность информационных, специализирующуюся на поиске информации в сетевых хранилищах по нужной пользователю тематике;

􀂃 информационно-советующие, обрабатывающие текущую организационную, техническую и технологическую информацию и вырабатывающие результирующую информацию для поддержки принятия пользователем правильных решений;

􀂃 информационно-управляющие, обрабатывающие текущую техническую и технологическую информацию и вырабатывающие результирующую информацию, на базе которой автоматически вырабатываются воздействия на управляемую систему и т. д.

По количеству подключенных к сети компьютеров сети можно разделить на малые,

объединяющие до 10-15 машин, средние - до 50 машин и большие - свыше 50 машин,

По территориальной расположенности ЛВС делятся на компактно размещенные (все компьютеры расположены в одном помещении) и распределенные (компьютеры сети размещены в разных помещениях).

По пропускной способности ЛВС делятся на три группы:

􀂃 ЛВС с малой пропускной способностью (скорости передачи данных в пределах до десятка мегабит в секунду), использующие чаще всего в качестве каналов связи тонкий коаксиальный кабель или витую пару;


􀂃 ЛВС со средней пропускной способностью (скорости передачи данных несколько десятков мегабит в секунду), использующие чаще всего в качестве каналов связи толстый коаксиальный кабель или экранированную витую пару;

􀂃 ЛВС с большой пропускной способностью (скорости передачи данных сотни и даже тысячи мегабит в секунду), использующие чаще всего в качестве каналов связи волоконнооптические кабели.

Объединение компьютеров в ЛВС обеспечивает решение задач коллективной работы с информацией.

1. Разделение файлов. ЛВС позволяет многим пользователям одновременно работать с одним файлом, хранящимся на центральном файл-сервере. Например, на пред-

приятии или фирме несколько сотрудников могут одновременно использовать одни

и те же руководящие документы.

2. Передача файлов. ЛВС позволяет быстро и надежно копировать файлы любого

размера с одной машины на другую.

3. Доступ к информации и файлам. ЛВС позволяет запускать прикладные программы с любой из рабочих станций, где бы она ни была расположена.

4. Разделение прикладных программ и баз данных. ЛВС позволяет двум пользователям использовать одну и ту же копию программы. При этом, конечно, они не могут одновременно редактировать один и тот же документ или запись в базе данных.

5. Одновременный ввод данных в прикладные программы. Сетевые прикладные программы позволяют нескольким пользователям одновременно вводить данные, необходимые для работы этих программ. Например, вести записи в базе данных так,

что они не будут мешать друг другу. Однако только специальные сетевые версий программ позволяют одновременный ввод информации. Обычные компьютерные

программы позволяют работать с набором файлов только одному пользователю.

6. Разделение принтера или другого технического устройства. ЛВС позволяет нескольким пользователям на различных рабочих станциях совместно использовать

один или несколько дорогостоящих лазерных принтеров или других устройств.

7. Электронная почта. Пользовать может использовать ЛВС как почтовую службу и

рассылать служебные записки, доклады, сообщения и т.п. другим пользователям. В

отличие от телефона электронная почта передаст ваше сообщение даже в том случае, если в данный момент абонент (группа абонентов) отсутствует на своем рабочем месте, причем для этого ей не потребуется бумаги.

Топология вычислительной сети во многом определяется структурой сети связи, т.е. способом соединения абонентов друг с другом и ЭВМ . По топологическим признакам ЛВС делятся на сети следующих типов: с общей шиной, кольцевые, иерархические, радиальные и многосвязные.

Топология вычислительной сети в ЛВС с общей шиной характеризуется тем, что одна из машин служит в качестве системного обслуживающего устройства, обеспечивающего централизованный доступ к общим файлам и базам данных, печатающим устройствам и другим вычислительным ресурсам.

Сети данного типа приобрели большую популярность благодаря низкой стоимости, высокой гибкости и скорости передачи данных, легкости расширения сети (подключение новых абонентов к сети не сказывается на ее основных характеристиках). К недостаткам шинной топологии следует отнести необходимость использования довольно сложных протоколов и уязвимость в отношении физических повреждений кабеля.

Кольцевая топология в сети отличается тем, что информация по кольцу

может передаваться только в одном направлении и все подключенные ПЭВМ могут участвовать в ее приеме и передаче. При этом абонент-получатель должен пометить полученную информацию специальным маркером, иначе могут появиться «заблудившиеся» данные, мешающие нормальной работе сети.

Как последовательная конфигурация кольцо особенно уязвимо в отношении отказов: выход из строя какого-либо сегмента кабеля приводит к прекращению обслуживания всех пользователей. Разработчики ЛВС приложили немало усилий, чтобы справиться с этой проблемой. Защита от повреждений или отказов обеспечивается либо замыканием кольца на обратный (дублирующий) путь, либо переключением на запасное кольцо. И в том, и в другом случае сохраняется общая кольцевая топология.

Иерархическая ЛВС (конфигурация типа «дерево») представляет собой более развитой вариант структуры ЛВС, построенной на основе общей шины. Дерево образуется

путем соединения нескольких шин с корневой системой, где размещаются самые важные

компоненты ЛВС. Оно обладает необходимой гибкостью для того, чтобы охватить средствами ЛВС несколько этажей в здании или несколько зданий на одной территории, и реализуется, как правило, в сложных системах, насчитывающих десятки и даже сотни абонентов.

Радиальную (звездообразную) конфигурацию (Рис. 3.2, г) можно рассматривать как

дальнейшее развитие структуры «дерево с корнем» с ответвлением к каждому подключенному устройству. В центре сети обычно размещается коммутирующее устройство, обеспечивающее жизнеспособность системы. ЛВС подобной конфигурации находят наиболее частое применение в автоматизированных учрежденческих системах управления, использующих центральную базу данных. Звездообразные ЛВС, как правило, менее надежны, чем сети с общей шиной или иерархические, но эта проблема решается дублированием аппаратуры центрального узла. К недостаткам можно также отнести значительное потребление кабеля (иногда в несколько раз превышающее расход в аналогичных по возможностям ЛВС с общей шиной или иерархических).

Наиболее сложной и дорогой является многосвязная топология (Рис. 3.2, д), в которой каждый узел связан со всеми другими узлами сети. Эта топология в ЛВС применяется очень редко, в основном там, где требуются исключительно высокие надежность сети и скорость передачи данных.

На практике чаще встречаются гибридные ЛВС, приспособленные к требованиям конкретного заказчика и сочетающие фрагменты шинной, звездообразной и других топологий.

Основными аппаратными компонентами ЛВС являются:

􀂃 рабочие станции;

􀂃 серверы;

􀂃 интерфейсные платы;

􀂃 кабели.

Рабочие станции (PC) - это, как правило, персональные ЭВМ, которые являются

рабочими местами пользователей сети.

Требования, предъявляемые к составу рабочих станций, определяются характеристиками решаемых в сети задач, принципами организации вычислительного процесса, используемой операционной системой и некоторыми другими факторами.

Иногда в рабочей станции, непосредственно подключенной к сетевому кабелю, могут отсутствовать накопители на магнитных дисках. Такие рабочие станции называют бездисковыми рабочими станциями.

Основным преимуществом бездисковых PC является низкая стоимость, а также высокая защищенность от несанкционированного проникновения в систему пользователей и компьютерных вирусов. Недостаток бездисковой PC заключается в невозможности работать в автономном режиме (без подключения к серверу), а также иметь свои собственные архивы данных и программ.

Серверы в ЛВС выполняют функции распределения сетевых ресурсов. Обычно его

функции возлагают на достаточно мощный ПК, мини-ЭВМ, большую ЭВМ или специальную ЭВМ-сервер. В одной сети может быть один или несколько серверов. Каждый из серверов может быть отдельным или совмещенным с PC. В последнем случае не все, а только часть ресурсов сервера оказывается общедоступной.

При наличии в ЛВС нескольких серверов каждый из них управляет работой подключенных к нему рабочих станций. Совокупность компьютеров сервера и относящихся к нему рабочих станций часто называют доменом. Иногда в одном домене находится несколько серверов. Обычно один из них является главным, а другие - выполняют роль резерва (на случай отказа главного сервера) или логического расширения основного сервера.

Существует два основных принципа управления в локальных сетях: централизация и децентрализация.

Согласно этим принципам локальные сети бывают:

􀂃 одноранговые сети;

􀂃 сети с выделенным сервером (файл-сервером).

Одноранговые сети не предусматривают выделение специальных компьютеров, организующих работу сети. Каждый пользователь, подключаясь к сети, выделяет в сеть какие-либо ресурсы (дисковое пространство, принтеры) и подключается к ресурсам, предоставленным в сеть другими пользователями. Такие сети просты в установке, наладке, они существенно дешевле сетей с выделенным сервером.

В свою очередь, сети с выделенным сервером, несмотря на сложность настройки и относительную дороговизну, позволяют осуществлять централизованное управление. В данном случае все компьютеры, кроме сервера, называются рабочими станциями.

Сервер – компьютер, выделенный для совместного использования участниками сети, поставляющий ресурсы и услуги.

Клиент – компьютер, использующий ресурсы и услуги сервера.

Каждый компьютер сети имеет уникальное сетевое имя. Каждому пользователю серверной сети необходимо согласовать с администратором сети свое сетевое имя и сетевой пароль.

Следует заметить, что в серверной сети на компьютеры с разными ролями устанавливают различные операционные системы. Так, на сервер устанавливают одну из серверных операционных систем. В качестве примера можно указать Windows NT Server. На компьютеры-клиенты можно устанавливать любую операционную систему, содержащую средства для выполнения роли клиента серверной сети, например, Windows 95/98.

Каждый компьютер сети имеет уникальное сетевое имя, позволяющее однозначно его идентифицировать. Для каждого пользователя серверной сети необходимо иметь свое сетевое имя и сетевой пароль. Имена компьютеров, сетевые имена и пароли пользователей прописываются на сервере.

Для удобства управления локальной компьютерной сетью, несколько компьютеров,

имеющих равные права доступа, объединяют в рабочие группы.

Совокупность приемов разделения и ограничения прав доступа участников компьютерной сети к ресурсам называется политикой сети.

Обеспечением работоспособности сети и ее администрированием занимается системный администратор – человек, управляющий организацией работы локальной сети.

Рабочая группа – группа компьютеров в локальной сети.

Политика сети – совокупность приемов разделения и ограничения прав доступа

участников компьютерной сети к ресурсам.

Системный администратор – человек, управляющий организацией работы локальной сети.

Локальная вычислительная сеть - это понятие, знакомое многим не понаслышке. Практически каждое предприятие использует эту технологию, поэтому можно утверждать, что каждый человек так или иначе сталкивался с ней. Локальные сети существенно ускорили производственные процессы, тем самым дав резкий скачок дальнейшему их применению по всему земному шару. Все это позволяет прогнозировать дальнейший рост и развитие подобной системы передачи данных, вплоть до внедрения ЛВС на каждом, даже самом небольшом предприятии.

Понятие локальной сети

Локальная вычислительная сеть представляет собойнекое количество компьютеров, соединенных между собой специальным оборудованием, позволяющим осуществлять полноценный обмен информацией между ними. Важной особенностью этого вида передачи данных является относительно небольшая территория размещения узлов связи, то есть самих вычислительных машин.

Локальные сети не только существенно облегчают взаимодействие между пользователями, но и выполняют некоторые другие функции:

  • Упрощают работу с документацией. Сотрудники могут редактировать и просматривать файлы на своем рабочем месте. При этом надобность в коллективных собраниях и совещаниях отпадает, что экономит драгоценное время.
  • Позволяют работать над документами совместно с коллегами, когда каждый находится за своим компьютером.
  • Дают возможность доступа к приложениям, установленным на сервере, что позволяет экономить свободное пространство на установленном жестком диске.
  • Экономят пространство на жестком диске, позволяя сохранять документы на главном компьютере.

Виды сетей

Локальная вычислительная сеть может быть представлена двумя моделями: одноранговой сетью и иерархической. Различаются они способами взаимодействия узлов связи.

Одноранговая сеть основана на равноправии всех машин, а данные распределены между каждой из них. По сути, пользователь одного компьютера может получить доступ к ресурсам и информации другого. Эффективность работы одноранговой модели напрямую зависит от числа рабочих узлов, а уровень ее безопасности неудовлетворителен, что вкупе с достаточно сложным процессом управления делает такие сети не слишком надежными и удобными.

Иерархическая модель включает в себя один (или больше) главный сервер, где хранятся и обрабатываются все данные, и несколько узлов-клиентов. Этот тип сетей используется гораздо чаще первого, имея преимущество в быстродействии, надежности и безопасности. Однако скорость работы такой ЛВС во многом зависит от сервера, что при определенных условиях можно считать недостатком.

Составление технических требований

Проектирование локальной вычислительной сети представляет собой достаточно сложный процесс. Начинается он с разработки технического задания, которое следует тщательно продумать, так как недочеты в нем грозят последующими трудностями в построении сети и дополнительными финансовыми затратами. Первичное проектирование можно произвести с помощью специальных конфигураторов, которые позволят подобрать оптимальное сетевое оборудование. Особенно удобны такие программы тем, что можно исправлять различные значения и параметры непосредственно во время работы, а также составлять отчет по окончании процесса. Только после этих действий можно будет приступить к следующему этапу.

Эскизное проектирование

Этот этап заключается в сборе данных о предприятии, где планируется монтаж локально вычислительной сети, и анализе полученной информации. Определяется количество:

  • Пользователей.
  • Рабочих станций.
  • Серверных помещений.
  • Портов подключения.

Важным моментом является наличие данных о путях прокладки магистралей и планирование определенной топологии. В целом же необходимо придерживаться ряда требований, которые предъявляет стандарт IEEE 802.3. Однако, несмотря на эти правила, иногда может понадобиться произвести расчеты задержек распространения сигнала или же проконсультироваться у производителей сетевого оборудования.

Основные характеристики ЛВС

Выбирая способ размещения узлов связи, необходимо помнить об основных требованиях, предъявляемых к локальным сетям:

  • Производительности, которая сочетает в себе несколько понятий: пропускную способность, время реакции, задержку передачи.
  • Совместимости, т.е. способности подключить разное оборудование локальных вычислительных сетей и программное обеспечение.
  • Безопасности, надежности, т.е. возможности предотвращения несанкционированного доступа и полной защиты данных.
  • Масштабируемости - способности увеличения количества рабочих станций без ухудшения производительности сети.
  • Управляемости - возможности контроля главных элементов сети, профилактики и устранения проблем.
  • Прозрачности сети, заключающейся в представлении для пользователей единым вычислительным устройством.

Основные топологии локально-вычислительных сетей: достоинства и недостатки

Топология сети представляет собой физическое ее расположение, значительно влияя на основные характеристики. На современных предприятиях в основном используются три вида топологий: "Звезда", "Шина" и "Кольцо".

Топология «Звезда» является самой распространенной, имеет множество преимуществ перед остальными. Такой способ монтажа отличается высокой надежностью; если какой-либо компьютер вышел из строя (кроме сервера), на работу остальных это никак не повлияет.

Топология «Шина» представляет собой единый магистральный кабель с подключенными вычислительными машинами. Подобная организация локальной вычислительной сети экономит финансы, но не подходит для объединения большого количества компьютеров.

Топология «Кольцо» отличается низкой надежностью за счет особого расположения узлов - каждый из них соединен с двумя другими с помощью сетевых карт. Поломка одного компьютера приводит к остановке работы всей сети, поэтому такой вид топологии применяется все реже.

Рабочее проектирование сети

Локальная вычислительная сеть предприятия включает в себя также различные технологии, оборудование и кабели. Поэтому следующим этапом станет подбор всех этих элементов. Принятие решения в пользу того или иного программного либо аппаратного обеспечения определяется целью создания сети, количеством пользователей, перечнем используемых программ, размерами сети, а также ее месторасположением. В настоящее время чаще всего используются оптоволоконные магистрали, отличающиеся большой надежностью, быстродействием и доступностью.

О видах кабеля

Кабели используются в сетях для передачи сигналов между рабочими станциями, у каждого из них есть свои особенности, что необходимо учитывать при проектировании ЛВС.

  • Витая пара состоит из нескольких пар проводников, покрытых изоляцией и скрученных между собой. Невысокая цена и простота монтажа являются выгодными преимуществами, что делает такой кабель самым популярным для монтажа локальных сетей.
  • Коаксиальный кабель включает в себя два проводника, вставленных один в другой. Локальная вычислительная сеть с применением коаксиала уже не так распространена - ее заменила витая пара, однако она встречается в некоторых местах до сих пор.
  • Оптоволокно представляет собой стеклянную нить, способную переносить свет посредством его отражения от стенок. Кабель из этого материала передает данные на огромные расстояния и отличается высоким быстродействием по сравнению с витой парой и коаксиалом, однако стоит недешево.

Необходимое оборудование

Сетевое оборудование локальных вычислительных сетей включает множество элементов, наиболее часто используемыми среди которых являются:

  • Концентратор или хаб. Он объединяет некоторое количество устройств в один сегмент при помощи кабеля.
  • Коммутатор . Использует специальные процессоры для каждого порта, обрабатывающие пакеты обособленно от других портов, за счет чего обладают высокой производительностью.
  • Маршрутизатор . Это устройство, принимающее решения о рассылке пакетов на основе данных о таблицах маршрутизации и некоторых правил.
  • Модем . Широко применяется в системах связи, обеспечивая контакт с другими рабочими станциями посредством кабельной или телефонной сети.

Конечное сетевое оборудование

Аппаратное обеспечение локальной вычислительной сети в обязательном порядке включает серверную и клиентскую части.

Сервер - это мощный компьютер, имеющий высокую сетевую значимость. Функции его заключаются в хранении информации, баз данных, обслуживании пользователей и обработке программных кодов. Серверы находятся в специальных помещениях с регулируемой постоянной температурой воздуха - серверных, а корпус их оснащен дополнительной защитой от пыли, случайного выключения, а также мощной охлаждающей системой. Как правило, доступ к серверу имеют только системные администраторы либо руководители предприятия.

Рабочая станция представляет собой обычную вычислительную машину, подключенную к сети, то есть ею является любой компьютер, запрашивающий услуги у главного сервера. Для обеспечения связи на таких узлах используется модем и сетевая плата. Поскольку обычно рабочими станциями используются ресурсы сервера, клиентская часть оснащена слабыми планками памяти и жесткими дисками небольшого объема.

Программное обеспечение

Оборудование локальных вычислительных сетей не сможет полноценноосуществлять свои функции без подходящего программного обеспечения. К программной части относятся:

  • Сетевые операционные системы на серверах, составляющие основу любой сети. Именно ОС управляет доступом ко всем сетевым ресурсам, координирует маршрутизацию пакетов, разрешает конфликты устройств. В таких системах имеется встроенная поддержка протоколов TCP/IP, NetBEUI, IPX/SPX.
  • Автономные ОС, управляющие клиентской частью. Ими являются обычные операционные системы, к примеру, Windows XP, Windows 7.
  • Сетевые службы и приложения. Эти программные элементы позволяют производить различные действия: просмотр удаленной документации, печать на сетевом принтере, рассылка почтовых сообщений. Традиционные службы HTTP, POP-3, SMTP, FTP и Telnet являются основой этой категории и реализуются при помощи программного обеспечения.

Нюансы проектирования локальных сетей

Проектирование локальной вычислительной сети требует долгого и неспешного анализа, а также учета всех тонкостей. Важно предусмотреть возможность роста предприятия, что повлечет за собой и увеличение масштабов локальной сети. Составлять проект необходимо таким образом, чтобы ЛВС в любой момент была готова к подключению новой рабочей станции или другого устройства, а также модернизации любого ее узла и компонента.

Не менее важны и вопросы безопасности. Кабеля, применяемые при построении сети, должны быть надежно защищены от несанкционированного доступа, а магистрали размещены вдали от потенциально опасных мест, где они могут быть повреждены - нечаянно либо умышленно. Компоненты ЛВС, размещаемые за пределами помещения, в обязательном порядке следует заземлить и надежно закрепить.

Разработка локально вычислительной сети - это достаточно трудозатратный процесс, однако при правильном подходе и проявленной должной ответственности ЛВС будет работать надежно и стабильно, обеспечивая бесперебойную работу пользователей.

С помощью персонального компьютера пользователь может обмениваться с другими людьми различной информацией (документами, программами и т.п.). Для этого можно использовать дискеты, диски и накопители памяти. Не всегда перемещение носителя той или иной информации возможно между компьютерами, либо это может занять достаточно много времени. Необходимость в быстром доступе к информационным ресурсам, принтерам и другим устройствам привела к созданию компьютерных сетей.

Простая локальная сеть

Что такое локальная сеть? Это система, позволяющая объединить компьютеры, которые установлены на достаточно небольшом удалении друг от друга (например, в одном здании или помещении).

В локальную сеть объединяют компьютеры, установленные в кабинете информатики в школе, а также другие компьютеры и принтеры, находящиеся в других кабинетах.

Сети с сервером

В небольших сетях компьютеры, как правило, равноправны. Локальная сеть между компьютерами позволяет всем пользователям получать доступ к открытым документам и папкам. К тому же пользователи могут самостоятельно решать, на какие ресурсы компьютера открыть доступ для других пользователей данной сети (это могут быть принтеры, диски и т.д.). После получения доступа человек, работающий за другим компьютером локальной сети, сможет пользоваться ресурсами другого компьютера.

Основной недостаток таких сетей - это слабый уровень защиты информации от неразрешенного доступа.

Чтобы обеспечить максимальную информационную безопасность, один из компьютеров, работающих в локальной сети, может стать сервером, на котором будет храниться вся самая важная информация. Доступ к этим данным сможет установить только один человек - администратор.

Компьютеры, находящиеся в локальной сети, работающие на ОС Windows, находятся в папке «Сеть», а устройства с ОС Linux - в папке «Сетевые ресурсы». В Windows нажатие на значок «Сеть», находящийся на Рабочем столе, открывает папку с компьютерами, входящими в состав локальной сети.

В свою очередь, каждый из этих компьютеров тоже является папкой, которая содержит диски. Если к дискам, принтеру или папкам открыть доступ, то каждый пользователь сети сможет воспользоваться ими так же, как своими собственными. Он сможет копировать их, удалять и переименовывать, а также использовать принтер, печатая на нем документы.

Обеспечение локальных сетей

Что такое локальная сеть, и какое оборудование требуется для ее обеспечения? Все компьютеры и принтеры, подключенные к локальной сети, должны быть с сетевой платой. Ее основная функция - передача и получение различной информации из локальной сети. Сети бывают проводные и беспроводные.

Работает проводная локальная сеть через соединение сетевых плат компьютеров между собой при помощи витой пары. Беспроводные же сети используют в качестве основного сетевого устройства точку доступа. В таком случае на каждом компьютере нужно установить особую беспроводную сетевую плату типа Wi-Fi.

История создания локальных вычислительных сетей (ЛВС, LAN)

Разбирая вопрос о том, что такое локальная сеть, следует отметить, что изначально компьютерные сети были довольно небольшими. Они соединяли около 10 компьютеров и принтер. Технология, используемая для передачи данных в сети, ограничивала ее размеры, включая количество подключенных устройств и физическую длину сети. К примеру, в 1980-х годах самыми популярными были сети, не превышающие 30 компьютеров. Протяженность кабеля при этом была максимум 185 м.

Подобные сети можно было с легкостью расположить на одном этаже какого-то здания или небольшого учреждения. Некрупные фирмы знают, что такое локальная сеть и какие преимущества она может дать. Поэтому они и в настоящее время используют для своей работы подобную конфигурацию, поскольку она им отлично подходит.

Локальная вычислительная сеть (ЛВС)

Что такое Они представляют собой систему коммуникации, которая позволяет совместно пользоваться ресурсами подключенных компьютеров. Это могут быть принтеры, модемы, диски, CD-ROM и прочие устройства. Локальные вычислительные сети позволяют расположить устройства на значительном расстоянии друг от друга (до нескольких километров). Как правило, их соединяют скоростные линии связи, скорость обмена при этом составляет от 1-10 Мбит за секунду и более. Не исключено соединение компьютеров при помощи телефонных линий.

Создается такая локальная сеть между компьютерами какой-нибудь организации (компании, организации), поэтому ее чаще всего называют корпоративной. Компьютеры в этом случае располагаются в пределах помещения, здания либо соседнего строения.

Программное обеспечение компьютера выполняет 2 функции: управляет собственными ресурсами и обменивается ими с другими компьютерами.

Собственные ресурсы компьютера находятся в управлении операционной системы. Сетевое управление, в свою очередь, выполняет сетевое ПО.

С помощью них пользователи могут работать с одними и теми же ресурсами, программами, данными, не отходя от собственного рабочего места.

Что такое ЛВС?

Самый распространенный вид сетей - локальные

ЛВС - это компьютерная сеть, связывающая локальные машины пользователей, находящихся на некотором удалении друг от друга. Хотя радиус действия такой сети достигает нескольких километров, обычно она используется для связи компьютеров на небольшом расстоянии. Как правило, это рабочие машины одного предприятия или домашние персональные компьютеры.

Конфигурация ЛВС

По конфигурации можно отметить локальные сети с серверным управлением и без такового (равноправные).

Равноправные локальные сети

В таких сетях все компьютеры схожи по техническим характеристикам. Одноранговая ЛВС - это локальная сеть, в которой каждая рабочая станция может выполнять все доступные функции как клиента, так и сервера. Для эффективного распределения нагрузки в такой ЛВС количество участвующих компьютеров не может быть более 10. В противном случае страдает быстродействие всей сети.

Сети с серверным управлением (многоуровневые)

В таких ЛВС один из компьютеров отличается лучшей производительностью, объемом памяти и другими показателями. Такой ПК назначается в ЛВС - это компьютеры с высокой производительностью и большим объемом памяти по сравнению с пользовательскими локальными машинами. Именно он обеспечивает взаимодействие других компьютеров сети, хранит общедоступные файлы и организует к ним доступ, передает данные клиенту в виде информации для обработки или конечного результата. ЛВС, в которых сервер используется лишь для размещения общих данных, называются сетями с выделенным файловым сервером. Наряду с такими системами существуют ЛВС, в которых на сервере осуществляется также и а клиент получает лишь результат. Это так называемые клиент-серверные системы.

Топология ЛВС

Все компьютеры в сети на физическом уровне соединены между собой. Топология ЛВС - это способ соединения локальных машин. Сейчас в локальных сетях используются такие способы соединения, как шина, звезда и кольцо.

Шинная топология

В ЛВС, монтаж которой планируется согласно этой топологии, при сборке используют единый кабель, к которому присоединяются локальные компьютеры пользователей. Таким образом, информация от одной машины проходит через все остальные. Рабочая станция, которой адресованы данные, отбирает нужную информацию из общего потока.

Преимущества ЛВС шинной топологии:

  • сбой в работе одного из локальных компьютеров не влияет на работу других машин и сети в целом;
  • относительно простая настройка и проектирование ЛВС;
  • сравнительно небольшая стоимость расходных материалов (при малом радиусе действия, например, в рамках одной организации).

Недостатки топологии:

  • повреждение кабеля блокирует работу сети в целом;
  • ограниченный радиус действия и небольшое количество пользователей;
  • сравнительно небольшое быстродействие (в зависимости от количества компьютеров в сети).

Топология «звезда»

Топология такого вида предполагает взаимодействие локальных компьютеров через сетевое оборудование (концентратор или хаб), которое обеспечивает параллельное соединение рабочих машин. Каждая станция соединена с центральным устройством через сетевую карту отдельным кабелем. Как и в предыдущем виде топологии, исходящие данные доступны для всех компьютеров сети и принимаются только пользователем, для которого они предназначены.

Преимущества топологии:

  • легкость организации нового рабочего места;
  • высокая производительность;
  • быстрый поиск неисправностей или обрыва кабеля;
  • на работу сети не влияют неисправности отдельных локальных машин.

Недостатки топологии:

  • выход из строя центрального устройства прекращает работу всей сети;
  • число пользователей ограничено количеством портов центрального устройства;
  • неэкономичность в расходе кабеля;
  • затраты на приобретение концентратора (или другого сетевого оборудования).

Топология «кольцо»

ЛВС, монтаж которой производится согласно правилам этого вида топологии, состоят из последовательно соединенных между собой рабочих машин, образующих кольцо. Данные в таком случае проходят от одного компьютера к другому и останавливаются на том, которому они адресованы.

Достоинства топологии «кольцо»:

  • отсутствуют затраты на сетевое оборудование (концентратор, маршрутизатор);
  • возможность передачи информации несколькими компьютерами одновременно.

Недостатки топологии:

  • быстродействие всей сети зависит от быстродействия каждого компьютера;
  • при разрыве кабеля или выходе из строя одного компьютера блокируется работоспособность всей сети;
  • сложность настройки и конфигурирования;
  • организация нового рабочего места на время парализует работу ЛВС.

Топология «кольцо» практически не применяется на практике из-за общей ненадежности, но подвергается различным модификациям.

В настоящее время практически ни одна организация не обходится без ЛВС. Более распространены сети топологии «звезда» из-за их надежности и устойчивости к сбоям. ЛВС топологии «кольцо», напротив, не отвечают современным показателям работоспособности и безопасности. Однако ЛВС в целом прочно вошли в нашу жизнь и способствуют эффективности любого предприятия.

Локальные вычислительные сети являются важным звеном единой информационно-телекоммуникационной системы предприятий и организаций. Понятие локальности в этом случае означает, что основная часть взаимодействия в сети происходит между ПK, территориально незначительно удаленными друг от друга и принадлежащими одной организационной структуре, а нередко и решающими специализированные функциональные задачи в этом подразделении.

Локальная вычислительная сеть - аппаратно-программные и информационные ресурсы, организованные в пределах ограниченной территории и объединенные каналами связи для информационного обмена между специалистами .

Применяемые ЛВС на предприятиях и организациях обеспечивают:

Универсальное сетевое пространство на основе открытых стандартов и технологий;

Функционирование общесистемных служб и сервисов, в том числе доступа к информации, сетевой печати и офисных приложений коллективной работы;

Функционирования специализированных прикладных программных средств;

Возможность прозрачной связи между любыми двумя ее узлами а также с существующими сетями;

Возможность удаленного диагностирования отдельных сегментов и ЛВС в целом.

Таким образом, организация ЛВС позволяет решать следующие задачи:

Обмен информацией между абонентами сети, что позволяет сократить бумажный документооборот и перейти к электронному документообороту;

Обеспечение распределенной обработки данных, связанное с объединением АРМ всех специалистов данной организации в сеть. Несмотря на существенные различия в характере и объеме расчетов, проводимых на АРМ специалистами различного профиля, используемая при этом информация в рамках одной организации находится в единой базе данных, поэтому объединение таких АРМ в сеть является целесообразным и эффективным ре­шением;

Поддержка принятия управленческих решений, предоставляющая руководителям и управленческому персоналу организации достоверную и оперативную информацию, необходимую для оценки ситуации и принятия правильных решений;

Организация собственных информационных систем, содержащих АБД;

Коллективное использование ресурсов, таких как сетевые принтеры, запоминающие устройства большой емкости, мощные средства обработки информации, прикладные программные системы, БД, базы знаний.

Локальные вычислительные сети можно классифицировать по разным признакам, представленным в табл. 4.1.

Таблица 4.1 Классификация локальных вычислительных сетей

Вид вычислительной сети Характеристика
1. По типу ПК, входящих в сеть
Гомогенные Сети, состоящие из программно совместимых ПК
Гетерогенные Сети, в состав которых входят программно несовместимые ПК
С коммутацией каналов Характеризуются установлением прямой связи с абонентом на некоторое время в пределах общей очереди. Основным недостатком такой связи является ожидание соединения в общей очереди. Положительным качеством такой передачи является тот факт, что передача не может быть осуществлена произвольно, что повышает достоверность передачи информации в целом
С коммутацией сообщений Характеризуются наличием узлов коммутации, которые получают сообщение, запоминают его и в случае освобождения канала связи с абонентом по определенному адресу передают это сообщение. Положительной стороной такой передачи является минимальное время ожидания, отрицательной то, что сеть получается более дорогой (необходимо иметь специальное ПО узла коммутации), а при передаче большого объема информации (1 млн байт) канал может быть занят несколько часов
С коммутацией пакетов Позволяют длинное сообщение на передающем пункте разбивать на пакеты сообщений, которые затем передаются. Положительная сторона такого способа передачи - сокращается время ожидания передачи, отрицательная - необходимость иметь ПО, позволяющее разбивать на передающем пункте сообщение на пакеты с заголовком, адресом и контрольным числом, а на принимающем пункте - сборку сообщения
3. По режиму передачи данных
Широковеща-тельные Характеризуются тем, что в каждый момент времени на передачу данных может работать только одна рабочая станция, а все остальные станции в это время работают на прием
Последовательные Характеризуются тем, что передача данных производится последовательно от одной станции к соседней, причем на разных участках сети могут использоваться различные виды физической передающей среды
4. По характеру реализуемых функций
Вычислительные Предназначены для решения задач управления на основе вычислительной обработки исходной информации
Информационные Предназначены для получения справочных данных по запросу пользователей
Смешанные Реализуют вычислительные и информационные функции
5. По способу управления
С централизован-ным управлением Вычислительная сеть, в которой все функции управления и координации выполняемых сетевых операций сосредоточены в одном или нескольких управляющих ПК
С децентрализован-ным управлением Вычислительная сеть, в которой каждый угол сети имеет полный набор программных средств для координации выполняемых сетевых операций.
Смешанные Вычислительные сети, в которых в определенном сочетании реализованы принципы централизованного и децентрализованного управления, например задачи с высшим приоритетом решаются под централизованным управлением, а остальные задачи - под децентрализованным.


Одной из первых была одноранговая или «безсерверная» организация построения локальной вычислительной сети (использующаяся и в настоящее время), которая допускает включение в нее как ПК различной мощности, так и терминалов ввода-вывода. Термин «одноранговая сеть» означает, что все рабочие станции локальной вычислительной сети имеют в ней одинаковые права, т.е в ней нет выделенного сервера. Каждый пользователь одноранговой сети может определить состав файлов, которые он предоставляет для общего использования (так называемые public files). Таким образом, пользователи одноранговой сети могут работать как со всеми своими файлами, так и с файлами, предоставляемыми другими ее пользователями на своих рабочих станциях. Подключение отдельных ПК в одноранговую сеть производится преимущественно высокочастотными коаксиальными кабельными линиями связи.

Создание одноранговой сети обеспечивает наряду с взаимообменом данными между включенными в нее ПК совместное использование части дискового пространства (через public files), а также совместную эксплуатацию периферийных устройств (например, принтеров). Существуют и другие возможности, например, когда одна из рабочих станций временно берет на себя функции «сервера», а остальные работают в режиме «клиентов». Последнее широко используется в различного рода обучающих системах. Достоинствами одноранговых ЛВС являются также: относительная простота их установки и эксплуатации, умеренная стоимость, возможность развития (например, по числу включенных в них рабочих станций), независимость выполняемых вычислительных и других процессов для каждой включенной в сеть рабочей станции.

Получившие наибольшее распространение иерархические или серверные ЛВС включают следующие основные компоненты -рабочие станции, серверы, сетевые адаптеры, повторители и концентраторы, мосты и коммутаторы, маршрутизаторы, шлюзы, каналы связи, сетевую операционную систему.

1. Рабочая станция - это персональный компьютер, подключенный к вычислительной сети, через который пользователь получает доступ к сетевым ресурсам. Рабочая станция функционирует как в сетевом, так и в локальном режиме и обеспечивает пользователя всем необходимым инструментарием для решения прикладных задач.

2. Сервер - это компьютер, выполняющий функции управления сетевыми ресурсами общего доступа: осуществляет хранение данных, управляет базами данных, выполняет удаленную обработку заданий, обеспечивает печать заданий и др. Выделяют следующие виды серверов:

- универсальный сервер для выполнения определенного набора различных задач в ЛВС, например, для предоставления рабочим станциям доступ к общесетевым ресурсам, распределяющий эти ресурсы и т.д.;

- сервер приложений для выполнения прикладных процессов. С одной стороны, взаимодействует с клиентами, получая задания а с другой - работает с базами данных, выбирая информацию, необходимую для обработки, и т.д.;

- сервер баз данных для создания и управления базами данных. Как правило, является автоматизированным банком данных в ИТ;

- файловый сервер обеспечивает функционирование распределенных ресурсов, включая файлы и программное обеспечение;

- сервер удаленного доступа обеспечивает сотрудникам, работающим вне предприятия (дома, в удаленных филиалах, командировочным), возможность работать с информационными ресурсами сети;

- телефонный сервер для организации локальной сети службы телефонии. Этот сервер выполняет функции речевой почты, автоматического распределения вызовов, учет стоимости телефонных разговоров, интерфейса с внешней телефонной сетью. Наряду с телефонией сервер также может передавать изображения и сообщения факсимильной связи;

- архивационный сервер для резервного копирования и архивирования информации в крупных многосерверных вычислительных сетях. Такой сервер обычно выполняет ежедневное автоматическое архивирование со сжатием информации, поступающей от серверов и рабочих станций;

- коммуникационный сервер для организации связи персональных компьютеров, удаленно расположенных пользовательских устройств - принтеров, плоттеров, кассовых аппаратов и т.д. по каналам вычислительных сетей местного или удаленного доступа;

- терминальный сервер объединяет группу терминалов и упрощает переключения при их перемещении;

- прокси-сервер (proxy-сервер) обеспечивает подключение рабочих станций локальной сети к глобальной сети Internet;

- Web-сервер предназначен для работы с web -ресурсами глобальной сети Internet;

- сервер печати для эффективного использования сетевых принтеров;

- сервер телеконференций имеет систему автоматической обработки видеоизображений и организации видеовзаимодействия в глобальной сети;

- видеосервер снабжает пользователей видеоматериалами, обучающими программами, видеоиграми, обеспечивает электронный маркетинг. Имеет высокую производительность и объемную па мять;

- почтовый сервер для организации функционирования электронной почты;

- сервер защиты данных содержит широкий набор средств обеспечения безопасности данных и, в первую очередь, идентификации паролей и т.д.

Для повышения производительности, надежности, отказоустойчивости технических решений в информационных технологиях практикуется объединение серверов в группы (домены), которые работают под управлением сетевой операционной системы. При этом ресурсы и нагрузки распределяются между серверами, что увеличивает эффективность функционирования локальной вычислительной сети.

Группирование серверов в домены дает два важных преимущества сетевым администраторам и специалистам предприятия. Наиболее важное - серверы домена формируют единый административный блок, совместно использующий службу безопасности и информацию учетных записей пользователей (рис. 4.1).

Рис. 4.1. Организация домена в ЛВС

Каждый домен имеет одну базу данных, содержащую учетные записи специалиста и групп пользователей, а также установочные параметры политики безопасности. Все серверы домена функционируют либо как первичный контроллер домена, либо как резервный контроллер домена, содержащий копию этой базы данных.

Контроллер - специализированный процессор, предназначенный для управления внешними устройствами, и, таким образом, освобождения центрального процессора от выполнения этих функций.

Это означает, что администраторам нужно управлять только одной учетной записью для каждого специалиста, который должен использовать пароль только одной учетной записи.

Второе преимущество доменов сделано для удобства пользователей. Когда пользователи просматривают сеть в поисках доступных ресурсов, они видят сеть, сгруппированную в домены, а не разбросанные по всей сети серверы.

3. Сетевой адаптер (сетевая карта) представляет собой устройство сопряжения для подключения персональных компьютеров к сети. Он относится к периферийным устройствам ПК, непосредственно взаимодействующим со средой передачи данных, которая прямо или через другое коммуникационное оборудование связывает его с другими компьютерами.

Сетевые адаптеры вместе с сетевым программным обеспечением способны распознавать и обрабатывать ошибки, которые могут возникнуть из-за электрических помех, коллизий или плохой работы оборудования.

4. Повторители и концентраторы. Основная функция повторителя (repeater), как это следует из его названия, - повторение сигналов, поступающих на его порт. Повторитель улучшает электрические ха­рактеристики сигналов и их синхронность, и за счет этого появляется возможность увеличивать общую длину кабеля между самыми удаленными в сети узлами.

Многопортовый повторитель часто называют концентратором (concentrator) или хабом (hub), что отражает тот факт, что данное устройство реализует не только функцию повторения сигналов, но и концентрирует в одном центральном устройстве функции объединения компьютеров в сеть. Практически во всех современных сетевых стандартах концентратор является необходимым элементом сети, соединяющим отдельные компьютеры в сеть.

Концентратор может выполнять следующие дополнительные функции:

Объединение сегментов сети с различными физическими средами в единый логический сегмент;

Автосегментация портов - автоматическое отключение порта при его некорректном поведении (повреждение кабеля, интенсивная генерация пакетов ошибочной длины и т.п.);

Поддержка между концентраторами резервных связей, которые используются при отказе основных;

Защита передаваемых по сети данных от несанкционированно доступа (например, путем искажения поля данных в кадрах повторяемых на портах, не содержащих компьютера с адрес назначения) и др.

5. Мосты и коммутаторы делят общую среду передачи данных на логические сегменты.

Логический сегмент образуется путем объединения нескольких физических сегментов (отрезков кабеля) с помощью одного или нескольких концентраторов. Каждый логический сегмент подключается к отдельному порту моста или коммутатора, который является многопортовым и многопроцессорным мостом, обрабатывающие кадры со скоростью, значительно превышающей скорость работы моста.

При поступлении кадра на какой-либо из портов мост или коммутатор повторяет этот кадр, но не на всех портах, как это делает концентратор, а только на том порту, к которому подключен сегмент, содержащий компьютер-адресат.

Основное отличие мостов и коммутаторов состоит в том, что мост обрабатывает кадры последовательно (один за другим), а коммутатор - параллельно (одновременно между всеми парами своих портов).

6. Маршрутизатор представляет собой ретрансляционную систему, соединяющую две коммуникационные сети либо их части. Маршрутизатор обменивается информацией об изменениях структуры сетей, трафике и их состоянии. Благодаря этому, выбирается оптимальный маршрут следования блока данных в разных вычислительных сетях от абонентской системы-отправителя к системе-получателю. Маршрутизаторы обеспечивают также соединение административно независимых коммуникационных сетей.

7. Шлюз является наиболее сложной ретрансляционной системой, обеспечивающей взаимодействие сетей с различными наборами протоколов всех семи уровней модели открытых систем.

Шлюзы оперируют на верхних уровнях модели OSI (сеансовом, представительском и прикладном) и представляют наиболее развитый метод подсоединения сетевых сегментов и компьютерных сетей. Необходимость в сетевых шлюзах возникает при объединении двух систем, имеющих различную архитектуру, так как в этом случае требуется полностью переводить весь поток данных, проходящих между двумя системами.

В качестве шлюза обычно используется выделенный персональный компьютер, на котором функционирует программное обеспечение шлюза и производятся преобразования, позволяющие взаимодействовать нескольким системам в сети.

8. Каналы связи позволяют быстро и надежно передавать информацию между различными устройствами локальной вычислительной сети.

Выделяют следующие виды каналов связи, представленные на рис. 4.2.

Рис. 4.2. Каналы связи, используемые в ЛВС

Кабельные технологии организации каналов связи .

Витая пара состоит из 8 изолированных проводов, свитых по два между собой. Скручивание проводов уменьшает влияние внешних электромагнитных полей на передаваемые сигналы. Витые пары имеют различные характеристики, определяемые размерами, изоляцией и шагом скручивания. Невысокая стоимость и небольшая масса этого вида передающей среды делает ее достаточно популярной для ЛВС. Основные недостатки витой пары - плохая помехозащищенность, низкая скорость передачи информации, простота несанкционированного подключения, ограничения на количество станций в сети. Технологические усовершенствования позволяют повысить скорость передачи и помехозащищенность (экранированная витая пара), но при этом возрастает стоимость этого типа передающей среды.

Коаксиальный кабель представляет собой многожильный кабель с хорошей изоляцией. По сравнению с витой парой он обладает высокой механической прочностью, помехозащищенностью и более высокой скоростью передачи информации. Для промышленного использования выпускаются два типа коаксиальных кабелей: толстый и тонкий. Толстый кабель более прочен и передает сигналы нужной амплитуды на большее расстояние, чем тонкий. В то же время тонкий кабель значительно дешевле.

Оптоволоконный кабель состоит из световодов, выполненных из высококачественного стеклянного (пластикового) волокна диаметром несколько микрон, окруженного твердым заполнителем и сверу защищенного специальной оболочкой. Имеет высокую скорость передачи информации, не подвержен действию электромагнитных полей, полностью пожаро- и взрывобезопасен, не имеет излучения Последнее свойство позволяет использовать его в сетях, требующих повышенной секретности информации. По сравнению с предыдущими типами передающей среды он имеет следующие недостатки - высокая стоимость, сложность технологии сращивания кабеля, необходимость иметь дополнительное оборудование (модемы) для преобразования световых сигналов в электрические и т.д.

Беспроводные технологии организации каналов связи

Радиосреда в ЛВС в настоящее время получает широкое распространение за счет внедрения так называемой технологии беспроводных сетей Wi-Fi, Bluetooth, WiMAX. Главное достоинство радиоканала - отсутствие кабеля, за счет чего возможно обслуживать мобильные рабочие станции.

Передача данных в микроволновом диапазоне использует высокие частоты и применяется как на коротких, так и на больших расстояниях. Главное ограничение заключается в том, чтобы передатчик и приемник были в зоне прямой видимости. Применяются в местах, где использование проводных технологий затруднено.

Лазерная передача осуществляется при помощи узкого пучка света, генерируемого лазером. Система работает на более высоких частотах, чем микроволновая передача, и является более узконаправленной. В качестве излучателей используют лазеры, а в качестве приемников - фотодиоды. Лазерная передача сильно зависит от атмосферных явлений и работает на коротких расстояниях в условиях прямой видимости.

Инфракрасные технологии функционируют на очень высоких частотах, приближающихся к частотам видимого света. Они могут быть использованы для установления двусторонней или широковещательной передачи на близких расстояниях. При инфракрасной связи обычно используют светодиоды для передачи инфракрасных волн приемнику. Инфракрасная передача ограничена малым расстоянием в прямой зоне видимости.

9. Сетевая операционная система (СОС) наряду с аппаратной частью играет важную роль в организации локальной вычислительной сети.

Сетевая операционная система необходима для управления потоками сообщений между рабочими станциями и сервером. Она предоставляет разнообразные виды сетевых служб и поддерживает работу прикладных процессов, реализуемых в сетях.

Одной из характеристик ЛВС является топология (или архитектура вычеслительной сети, под которой понимается схема (архитектура) сети, отображающая физическое расположение узлов и соединений между ними.

Чаше всего в ЛВС используется одна из трех топологий: шинная, кольцевая, звездообразная.

Большинство других топологий являются производными от перечисленных. К ним относятся: древовидная, иерархическая, полносвязная, гибридная. Топология усредняет схему соединений рабочих станций. Так, например, и эллипс, и замкнутая линия относятся к кольцевой топологии, а незамкнутая ломаная линия - к шинной.

Шинная топология основана на использовании кабеля, к которому подключены рабочие станции. Кабель шины зачастую прокладывается в фальшпотолках здания. Для повышения надежности вместе с основным кабелем прокладывают и запасной, на который переключаются станции в случае неисправности основного (рис. 4.3, а).

Кольцевая топология характеризуется тем, что рабочие станции последовательно соединяются друг с другом, образуя замкнутую линию. Выход одного узла сети соединяется со входом другого (рис. 4.3, б).

Звездообразная топология основывается на концепции центрального узла (сервера или пассивного соединителя), к которому подключаются рабочие станции сети (рис. 4.3, в).

Древовидная топология представляет собой более развитый вариант шинной топологии. Дерево образуют путем соединения нескольких шин. Ее используют, чтобы соединить сетью несколько этажей в здании или несколько зданий, расположенных на одной территории (рис. 4.3, г).

Полносвязная топология является наиболее сложной и дорогой. Она характеризуется тем, что каждый узел сети связан со всеми другими рабочими станциями. Эта топология применяется достаточно редко, в основном там, где требуется высокая надежность и скорость передачи информации (рис. 4.3, д).

На практике чаще встречаются гибридные топологии ЛВС, которые приспособлены к требованиям конкретного заказчика и сочетают фрагменты шинной, звездообразной или других топологий Рис.4.3,е).

Рис. 4.3. Схемы построения топологических структур ЛВС

Одним из важнейших вопросов, решаемых при организации ЛВС, является не только выбор топологии сети и способа соединения персональных компьютеров в единый вычислительный комплекс, но и организация метода доступа к информации в ЛВС, под которым понимается набор правил, определяющий использование канала передачи данных, соединяющего узлы сети.

По способу получения доступа к среде передачи методы доступа можно разделить на два класса - детерминированные и недетерминированные.

Детерминированный метод доступа. Среда передачи распределяется между узлами сети с помощью механизма управления, который обеспечивает некоторый интервал времени для передачи данных каждому узлу.

Наиболее распространенным детерминированным методом доступа является метод передачи права, который характеризуется передачей по сети с кольцевой логической топологией служебного сообщения - маркера. Получение узлом сети маркера предоставляет ему право на доступ к среде передачи данных. При наличии нуждающихся в передаче данных выполняется их доставка адресату, после чего маркер передается следующему по очереди устройству. На время прохождения данных маркер в сети отсутствует, остальные станции не имеют возможности передачи, таким образом появляется возможность избежать коллизии. При отсутствии информации, нуждающейся в отправке, маркер сразу переходит к следующему узлу сети. Для обработки возможных ошибок, в результате которых маркер может быть утерян, существует механизм его регенерации. К детерминированным методам доступа относятся методы доступа Arcnet и Token Ring.

Коллизия (collision) - искажение передаваемых данных в ЛВС, которое появляется при попытке одновременной передачи несколькими сетевыми устройствами.

Метод доступа Arcnet (Attached resource computer Network) был разработан Datapoint Corporation в 1977 г. Используется в основном в ЛВС, имеющей центральный узел (компьютер или пассивный соединитель), к которому через концентратор подключены все ПК сети, при этом организуется логическое кольцо, по которому передается маркер. Устройство, получившее маркер, имеет право на передачу порции данных в канал. Принимает данные то устройство, чей адрес указан в блоке данных. Каждому подключенному устройству присваивается номер. Последовательность обхода маркера определяется номерами устройств.

Метод доступа Token Ring был запатентован фирмой IBM в 1981 г. и основан на передаче маркера по физическому кольцу. Рабочая станция, владеющая маркером, имеет право передать по определенному конечному адресу информацию, при этом передаваемый блок данных добавляется (цепляется) к маркеру. Маркер последовательно передается от одной станции к другой. Передаваемый блок данных принимает то устройство, которому он адресован. После принятия данных, устройство делает пометку о приеме и отправляет с маркером дальше по кольцу. Узел сети, который передавал данные, получив пометку о приеме, удаляет блок данных из кольца. Достоинством технологии Token Ring является большая устойчивость к высоким нагрузкам на канал, относительно стабильное время доступа к каналу, недостатком - повышенная сложность и стоимость.

Развитием технологии Token Ring применительно к оптоволоконному кольцу является технология FDDI (Fiber Distributed Interface - распределенный волоконный интерфейс данных), которая строится на основе двух оптоволоконных кабелей, образующих основной и резервный (первичное и вторичное кольцо) пути передачи данных между узлами сети, как правило, кольцевой топологии.

Именно наличие двух колец стало основным способом повышения отказоустойчивости в сети FDDL. Узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного кольца, а вторичное кольцо в этом режиме не используется. В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным, вновь образуя единое кольцо.

Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении, а по вторичному - в обратном. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними рабочими станциями ЛВС.

Недетерминированный (случайный) метод доступа . Узел сети пытается получить доступ к среде передачи только в тот момент времени, когда это необходимо. Если среда занята, то узел повторяет попытку доступа до тех пор, пока очередная попытка не окажется успешной.

Наиболее распространенным недетерминированным методом доступа является множественный доступ с контролем несущей и обнаружением коллизий (Carrier Sense Multiple Access/Collision Detection 4 CSMA/CD). Этот метод основан на контроле несущей в линии передачи данных и устранении конфликтов, возникающих из-за попыток одновременного начала передачи двумя или более станциями, путем повторения попыток захвата линии через случайный отрезок времени. К недетерминированному методу доступа относится метод доступа Ethernet.

Метод доступа Ethernet является самым распространенным в ЛВС. Свое название он получил от первой ЛВС, разработанной фирмой Xerox в 1972 г. Впоследствии вокруг проекта Ethernet объединились фирмы DEC, Intel и Xerox. В 1982 г. эта сеть была принята в качестве стандарта.

Метод доступа Ethernet использует магистральный высокоскоростной моноканал, организованный в виде общей шины. Каждая станция, имеющая данные для передачи, отслеживает состояние канала (прослушивает канал). Если канал свободен, станция передает блок данных в канал. Если одновременно две станции начали передачу данных, происходит столкновение передач (конфликт, коллизия). В этом случае через случайный интервал времени происходит попытка новой передачи данных каждым из узлов сети. Ethernet может использоваться в сетях с шинной или звездообразной топологией. Во втором случае общая шина реализуется внутри концентратора. Обычная скорость передачи 10 и 100 Мбит/с.

В настоящее время в больших локальных вычислительных сетях для оптимизации доступа к информации используется технология виртуализации (виртуальный - мнимый), на основе которой организуются виртуальные локальные вычислительные сети.

Виртуальная ЛВС (Virtual LAN ) - логическое объединение узлов большой локальной вычислительной сети, которые могут принадлежать к ее различным физическим сегментам, подключенным к разным концентраторам.

Виртуальные ЛВС полностью ликвидируют физические барьеры на пути формирования рабочих групп специалистов в масштабе сети более высокого уровня, но особенно это актуально в масштабе корпоративной вычислительной сети (КВС), поскольку реализуется возможность объединения физически рассредоточенных сотрудников компании в группы пользователей с сохранением целостности связи внутри их групп. При этом обеспечивается высокая организационная гибкость в управлении предприятиями и организациями. Технология виртуальных ЛВС позволяет сетевым администраторам группировать разных пользователей КВС, совместно использующих одни и те же сетевые ресурсы. Разбиение КВС на логические сегменты, каждый из которых представляет собой виртуальную ЛВС, предоставляет существенные преимущества в администрировании сети, обеспечении безопасности информации, в управлении широковещательными передачами из виртуальной сети по магистрали корпоративной сети.

Виртуальная ЛВС создается при помощи коммутирующих концентраторов или маршрутизаторов. Специальное программное обеспечение системы управления позволяет разделить сеть на несколько логических частей (виртуальных сегментов). Администратор сети может по своему усмотрению создавать виртуальные сегменты, добавлять в них или удалять отдельные узлы. Данные, предназначенные для конкретных узлов виртуальной сети, благодаря коммутации пакетов передаются только в рамках заданного логического сегмента. Этим предотвращаются перегрузки в локальных вычислительных сетях и обеспечивается повышение их безопасности.

Технология виртуальных ЛВС позволяет упростить процесс создания независимых сетей, которые затем должны связываться с помощью протоколов сетевого уровня.

При использовании технологии виртуальных сетей в комутатоpax одновременно решаются две задачи:

1. Повышение производительности в каждой из виртуальных сетей, так как коммутатор передает кадры в такой сети только узлу назначения.

2. Изоляция сетей друг от друга для управления правами доступа пользователей и создания защитных барьеров.

Метод создания виртуальных ЛВС используется в сетях типа Ethernet. Принцип логического объединения узлов разнородных сетей (в том числе Token Ring и др.) в виртуальные сегменты используется также в распределенных и глобальных сетях.

Кроме традиционных проводных ЛВС в настоящее время широкое распространение получила технология беспроводных сетей - WI-FI (от Wireless Fidelity - высокая точность беспроводной передачи данных) - это современная беспроводная технология соединения компьютеров в локальную сеть и подключения их к Internet. Под аббревиатурой Wi-Fi в настоящее время развивается целое семейство стандартов передачи цифровых потоков данных по радиоканалам.

Основными элементами сетей Wi-Fi являются:

- Wi-Fi-adanmep - служит для подключения компьютера пользователя к беспроводной сети и выполняет ту же функцию, что и сетевая карта в проводной сети;

- точка доступа представляет собой автономный модуль со встроенным микрокомпьютером и приемно-передающим устройством. Через точку доступа осуществляется взаимодействие и обмен информацией между беспроводными адаптерами, а также связь с проводным сегментом сети;

- зона обслуживания (Service Set - SS ) - это логически сгруппированные устройства, обеспечивающие подключение к беспроводной сети;

- базовая зона обслуживания (Basic Service Set - BSS) - это группа станций, которые связываются друг с другом по беспроводной связи.

Технология Wi-Fi использует метод множественного доступа с контролем несущей и предотвращением коллизий {Carrier Sense Multiple Access with Collision Avoidance - CSMA/CA). Вместо прямого распознавания коллизий по методу CSMA/CD здесь используется их косвенное выявление. Для этого каждый переданный кадр должен подтверждаться кадром приема, посылаемым станцией назначения. Если же по истечении оговоренного тайм-аута кадр приема не поступает, станция-отправитель считает, что произошла коллизия.

Беспроводные сети Wi-Fi поддерживают несколько различных режимов работы, реализуемых для конкретных целей.

Режим Ad Нос («точка-точка») характеризуется тем, что клиенты устанавливают связь непосредственно друг с другом через Wi-Fi~ адаптер. Таким образом организуется одноранговая сеть, в которой компьютеры взаимодействуют напрямую без применения точек доступа. При этом создается только одна зона обслуживания, не имеющая интерфейса для подключения к проводной локальной сети. Режим Ad Hoc позволяет устанавливать соединение на скорости не более 11 Мбит/с, независимо от используемого оборудования. Дальность связи составляет не более ста метров, а скорость передачи данных быстро падает с увеличением расстояния (рис. 4.4. а).

Рис. 4.4. Основные режимы работы беспроводной сети Wi-Fi

Инфраструктурный режим характеризуется тем, что связь ПК обеспечивается через точку доступа. Точку доступа в этом случае можно рассматривать как беспроводной коммутатор. Клиентские станции не связываются непосредственно одна с другой, а связываются с точкой доступа, и она уже направляет пакеты адресатам. Точка доступа, как правило, имеет порт Ethernet, через который базовая зона обслуживания подключается к проводной или смешанной сети, т.е. к сетевой инфраструктуре (рис. 4.4, б).

Режим распределенной беспроводной системы WDS (Wireless Distribution System) позволяет организовать мостовую связь между точками доступа и подключить клиентские ПК, при этом каждая точка может соединяться с несколькими другими точками. Подключение клиентов может осуществляться как по проводной сети через uplink -порты точек, так и по принципу инфраструктурного режима беспроводного доступа.

Uplink-порт - это порт, который предназначен для подключения к другим коммутаторам, но может и использоваться как обычный порт для подключения оконечного оборудования .

Данная технология поддерживается большинством современных точек доступа (рис. 4.4, в).

Дальнейшим развитием беспроводной связи стала технология WiMAX, основанная на стандарте IEEE 802.16 (Institute Electrical and Electronics Engineers - Институт инженеров по электротехнике и paдиоэлектронике ИИЭР США), который разработан на электронную технику, включая компьютерные сети и их элементы.

WiMAX (англ. Worldwide Interoperability for Microwave Access) - телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов).

Название «WiMAX» было создано WiMAXForum - организацией, которая была основана в июне 2001 г. с целью продвижения и развития технологии WiMAX, предоставляющей высокоскоростной беспроводной доступ к сети, альтернативный выделенным линиям и DSL (англ. Digital Subscriber Line - цифровая абонентская линия).

WiMAX подходит для решения следующих задач:

Соединение точек доступа Wi-Fi друг с другом и другими сегментами Internet;

Обеспечение беспроводного широкополосного доступа как альтернативы выделенным линиям и DSL;

Предоставление высокоскоростных сервисов передачи данных и телекоммуникационных услуг;

Создание точек доступа, не привязанных к географическому положению.

WiMAX позволяет осуществлять доступ в Internet на высоких скоростях, с гораздо большим покрытием, чем у Wi-Fi-сетей. Это позволяет использовать технологию в качестве «магистральных каналов», продолжением которых выступают традиционные DSL и выделенные линии, а также локальные сети. В результате подобный подход позволяет создавать маштабируемые высокоскоростные сети в рамках целых городов (рис. 4.5).

Рис. 4.5. Вариант организации технологии WiMAX

Основное различие двух технологий состоит в том, что Фиксированный WiMAX позволяет обслуживать только «статичных» абонентов, а мобильный ориентирован на работу с пользователями, передвигающимися со скоростью до 120 км/ч. Мобильность означает наличие функций роуминга и «бесшовного» переключения между базовыми станциями при передвижении абонента (как происходит в сетях сотовой связи). В частном случае мобильный WiMAX может применяться и для обслуживания фиксированных пользователей.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows