Описание G и M кодов для программирования ЧПУ (CNC) станков. Как создать управляющую программу для станка с чпу Примеры программ для чпу с описанием

Описание G и M кодов для программирования ЧПУ (CNC) станков. Как создать управляющую программу для станка с чпу Примеры программ для чпу с описанием

06.11.2021

Можно писать управляющие программы на компьютере в блокноте, особенно если с математикой хорошо и много свободного времени. Или можно сразу на станке, и пусть весь цех подождет, да и заготовку лишнюю не жалко. Есть еще третий способ написания – лучше еще не придумали.

Станок с ЧПУ обрабатывает заготовку по программе в G-кодах. G-код – это набор стандартных команд, которые поддерживают станки с ЧПУ. Эти команды содержат информацию, где и с какой скоростью двигать режущий инструмент, чтобы обработать деталь. Передвижение режущего инструмента называется траекторией. Траектория инструмента в управляющей программе состоит из отрезков. Эти отрезки могут быть прямыми линиями, дугами окружностей или кривыми. Точки пересечения таких отрезков называются опорными точками. В тексте управляющей программы выводятся координаты опорных точек.

Пример программы в G-кодах

Текст программы

Описание

Задаем параметры: плоскость обработки, номер нулевой точки, абсолютные значения

Вызов инструмента с номером 1

Включение шпинделя – 8000 об/мин

Ускоренное перемещение в точку X-19 Y-19

Ускоренное перемещение на высоту
по Z 3 мм

Линейное перемещение инструмента в точку ХЗ Y3 с подачей F = 600 мм/мин

Перемещение инструмента по дуге радиусом 8 мм в точку X8 Y3

Выключение шпинделя

Завершение программы

Есть три метода программирования станков с ЧПУ:

  1. Вручную.
  2. На станке, на стойке с ЧПУ.
  3. В CAM-системе.

Вручную

Для ручного программирования вычисляют координаты опорных точек и описывают последовательность перемещения от одной точки к другой. Так можно описать обработку простой геометрии, в основном для токарной обработки: втулки, кольца, гладкие ступенчатые валы.

Проблемы

Вот с какими проблемами сталкиваются, когда программу на станок пишут вручную:

- Долго . Чем больше строк кода в программе, тем выше трудоемкость изготовления детали, тем выше себестоимость этой детали. Если в программе получается больше 70 строк кода, то лучше выбрать другой способ программирования.

- Брак. Нужна лишняя заготовка на внедрение, чтобы отладить управляющую программу и проверить на зарезы или недорезы.

- Поломка оборудования или инструмента. Ошибки в тексте управляющей программы, помимо брака, также могут привести и к поломке шпинделя станка или инструмента.

У деталей, для которых программы пишут вручную, очень высокая себестоимость.

На стойке с ЧПУ

На стойке с ЧПУ программируют обработку детали в диалоговом режиме. Наладчик станка заполняет таблицу с условиями обработки. Указывает, какую геометрию обрабатывать, ширину и глубину резания, подходы и отходы, безопасную плоскость, режимы резания и другие параметры, которые для каждого вида обработки индивидуальны. На основе этих данных стойка с ЧПУ создает G-команды для траектории движения инструмента. Так можно программировать простые корпусные детали. Чтобы проверить программу, наладчик запускает режим симуляции на стойке с ЧПУ.

Проблемы

Вот с какими проблемами сталкиваются, когда программу пишут на стойке:

- Время. Станок не работает, пока наладчик пишет программу для обработки детали. Простой станка – это потерянные деньги. Если в программе получается больше 130 строк кода, то лучше выбрать другой способ программирования. Хотя на стойке с ЧПУ, конечно, написать программу быстрее, чем вручную.

- Брак. Стойка с ЧПУ не сравнивает результат обработки с 3D-моделью детали, поэтому симуляция на стойке с ЧПУ не показывает зарезы или положительный припуск. Для отладки программы нужно заложить лишнюю заготовку.

- Не подходит для сложнопрофильных деталей. На стойке с ЧПУ не запрограммировать обработку сложнопрофильных деталей. Иногда для конкретных деталей и типоразмеров производители стоек ЧПУ под заказ делают специальные операции.

Пока идет создание программы на стойке, станок не приносит деньги производству.

В SprutCAM

SprutCAM – это CAM-система. CAM – сокращение от Computer-Aided Manufacturing. Это переводят как «изготовление при помощи компьютера». В SprutCAM загружают 3D-модель детали или 2D-контур, затем выбирают последовательность изготовления детали. SprutCAM рассчитывает траекторию режущего инструмента и выводит ее в G-кодах для передачи на станок. Для вывода траектории в G-код используют постпроцессор. Постпроцессор переводит внутренние команды SprutCAM на команды G-кода для станка с ЧПУ. Это похоже
на перевод с иностранного языка.

Принцип работы в SprutCAM представлен в этом видео:

Преимущества

Вот какие плюсы при работе со SprutCAM:

- Быстро. Сокращает время на создание программ для станков с ЧПУ на 70 %.

- Внедрение без лишней заготовки. Программа проверяется до запуска на станке.

- Исключает брак. По отзывам наших пользователей, SprutCAM сокращает появление брака на 60 %.

- Контроль столкновений. SprutCAM контролирует соударения с деталью или рабочими узлами станка, врезания на ускоренной подаче.

- Обработка сложнопрофильных деталей. В SprutCAM для многоосевых операций используют 13 стратегий перемещения инструмента по поверхности детали и 9 стратегий управления осью инструмента. SprutCAM автоматически контролирует угол наклона и рассчитывает безопасную траекторию обработки, чтобы не было соударений державки или режущего инструмента с заготовкой.

Составление управляющей программы для своего станка с ЧПУ возможно в полнофункциональной версии SprutCAM . Ее нужно скачать и запустить. После установки необходимо будет пройти регистрацию. Сразу после регистрации SprutCAM начнет работать.

Для тех кто только начал пробовать, мы предоставляем 30 дневную полнофункциональную бесплатную версию программы!

SprutCAM – это 15 конфигураций, в том числе две спецверсии: SprutCAM Практик и SprutCAM Robot. Чтобы узнать, какая конфигурация подходит для вашего оборудования и сколько она стоит, звоните по телефону 8-800-302-96-90 или пишите на адрес info@сайт.

Ну если учесть то, что 80% этого списка уже было в ТФ 2005 года (ТФ v.7-8) и 20% было году в 2010 (ТФ v.11): то фора в три года растворилась, и сейчас получается преимущество ТФ над К лет в 10-15. Но есть интересные партнерские решения, которые вроде как на каком-то уровне интегрировали в К, но думаю при наличии крупного заказчика не сложно интегрировать куда угодно:) :

1992 – год создания компании. Разработана первая коммерческая версия системы T-FLEX CAD 2.x (TopCAD). https://www.tflex.ru/about/history/ 1989 - Разработка первой версии КОМПАС для IBM PC. Центры разработки находятся в Ленинграде и Коломне. Заключен первый контракт на поставку 10 мест КОМПАС для Ленинградского Металлического завода. https://ascon.ru/company/history/

Элементы массива можно было исключать давно, но целиком весь элемент, а не какую-то одну часть, когда элемент включает в себя несколько деталей. Ей час видимо можно будет исключать подетально, что неплохо. Если двигателе строители поставят аскон раком, то успеют. Двигателе строителям нужна спецификация?

Так SSD в разы медленнее оперативы, вы не знали? Все-равно МЕДЛЕННЕЕ будет работать ваш комп с SSD, когда оперативы не хватает, чем мой без SSD, но с полным баком оперативы. Вот когда оператива кончается - SSD помогает (в сравнении с просто HDD), но живет недолго. А уже 64Гб оперативы НЕ ТРЕБУЕТ SSD от слова совсем. Можно вообще сделать виртуальный диск из оперативы и положить туда файл подкачки. Но нафик такой экстрим, если файл подкачки при таком количестве оперативы можно и отключить... Вообще-то загруженный САПР ведет себя по-разному. Солид вообще монстр размером с 3 катии наверное, и всякие библиотеки подгружает нередко. Катия подгружает модули тоже при переходе к ним, но это 5 сек на обычном винте и SSD ну совсем не просит. Задержки заметны лишь когда проект весит несколько гигабайт. Вы не забывайте - сохранение не есть процесс записи на диск напрямую, есть еще кэширование записи, и на большой оперативе под кэширование винда выделяет несколько гиг, и все, что меньше - на винт пишется очень быстро. Также (уже повторяюсь) - есть prefetch в винде - когда при старте она грузит заранее в оперативу наиболее "популярные" файлы. Отсюда подождав при загрузке винды пару десятков секунд можно увидеть, как САПР ваш грузится не с винта, а из кэша, за несколько секунд. Со всеми его библиотеками. Ну это как если загрузить тяжелую прогу и закрыть. Повторный запуск будет из кэша. А на большой оперативе такой эффект уже при первой загрузке проги. Надо только дать компу "прокэшироваться". К примеру - солид 2018 с предпоследним СП грузился у меня со старта 5-8 сек. С обычного винта. Правда - я запускал его через несколько минут после загрузки винды (занят другим САПРом был). В-общем, залетал как офис 2003-й или легонький вьювер...

Значительно повышают производительность производства и качество изготовляемой продукции. Однако для их работы необходимы специальные программы. С их помощью создаются макеты будущих изделий и задаются команды, регулирующие работу станков. Описание управляющих программ для станков с ЧПУ поможет подобрать нужный софт.

Общие сведения

В первую очередь для работы с таким станком понадобится ЗD редактор. При создании самодельных медалей, номерков или других простых изделий, можно обойтись и без подобного софта. Достаточно будет преобразовать необходимое изображение в g код. Однако макеты объемных изделий создаются в соответственных редакторах.

Объемные модели создаются в специальном софте (к примеру, Art Cam) с последующим преобразованием. Для промышленных устройств рекомендуется использовать отдельное ПО.

Большое значение имеет операционная система. Важно прямое управление портом LPT. Программное обеспечение от компании Microsoft не обладает такими возможностями (речь идет об операционных системах Windows). Для некоторого ПО задержки до 0,2 секунд будут нормальными. Однако такой софт как MATH 3, к примеру, нельзя использовать при наличии подобных задержек (станку может быть нанесен вред).

Программы для ЧПУ гораздо лучше работают в среде Линукс. Существует даже специально созданная для такой деятельности операционная система «CNC Linux». Она оптимизирована для нормальной работы со станком посредством использования порта LPT.

Перечень ПО

Количество софта для ЧПУ велико. Он различен по своему функционалу и предназначению. Некоторый софт требует наличия мощных ЭВМ. Другие образцы способны работать на менее мощных компьютерах.

Можно выделить следующее программное обеспечение:

  • «Visual CAD/CAM 2014». Это пакет софта, в состав которого входит программное обеспечение, необходимое для создания управляющих программ для 3-осевых фрезеров. Кроме того, данный пакет содержит средства, визуализирующие процесс обработки;
  • «Feature CAM 2011». Одна из наиболее известных утилит, которые применяются для моделирования и изготовления изделий сложной конструкции, и технологической оснастки. Автомобильная, аэрокосмическая, машиностроительная и энергетическая отрасли промышленности уже не первый год пользуются данным программным обеспечением;
  • «Gibbs CAM». Предназначена для двух – пяти осевых фрезеров. При помощи данного программного обеспечения также можно заниматься несколькими видами моделирования (2D, 3D, поверхностное, каркасное и т.д.);
  • «Art CAM». Лучшая утилита, с помощью которой можно проектировать объемные рельефы. Примечательной особенностью данного ПО является отсутствие необходимости дальнейшей ручной доработки.

Перечисленные выше программы для ЧПУ хорошо справляются со своей работой. Уже не первый год ими пользуются разные предприятия во всем мире.

MATH 3

Отдельно стоит упомянуть американское ПО «MATH 3». Оно подходит для разных видов фрезеров, плоттеров и токарных станков. Широко используется как профессионалами, так и любителями.

При помощи данной программы для фрезерного станка с ЧПУ можно:

  • управлять несколькими координатами (до шести);
  • импортировать графические изображения разных форматов напрямую;
  • создавать управляющее ПО;
  • управлять таким показателем, как частота вращения ;
  • применять ручные генераторы импульсов;
  • создавать пользовательские М-коды.

Для использования данного софта необходимо обладать ОС «CNC Linux». В противном случае обеспечить корректную работу ПО не удастся.

Создание управляющего софта

Процесс создания программы управления ЧПУ состоит из нескольких этапов. Как пример можно привести создание проекта для резьбы по дереву. Станки ЧПУ программируются в связке программного обеспечения «CAD/CAM», поэтому весь процесс работы будет состоять из трех этапов:

  1. Создание модели изделия. Для этого используются 3D редакторы. Работу выполняют специально обученные дизайнеры, к услугам которых и необходимо будет прибегнуть. Создаваемая модель может в будущем воплощаться в разных масштабах и размерах.
  2. Создание управляющей программы. Для этого используется ПО, описанное выше. Готовая модель будущего изделия импортируется в выбранный софт. В соответствии с ее размерами, формой, типом и другими параметрами составляется соответственное ПО.
  3. Фрезерование. Команды управляющей программы считываются станком, благодаря чему работающие органы устройства перемещаются по заранее созданным координатам, выполняя предписанные действия.

Работа со станком, управляемым при помощи ЧПУ, требует определенных знаний. Однако наличие специального программного обеспечения облегчает эту задачу.

Таким образом, работка станков с числовым программным управлением невозможна без специальных утилит. Они создаются при помощи отдельного софта. Сегодня существует большое количество такого ПО. Разный софт отличается как по функциональности, так и по требованиям к ЭВМ. Хотя для работы с ПО необходимы определенные знания, многочисленные инструкции облегчают процесс обучения.

Станки с ЧПУ представляют собой электронно-механическое оборудование, которое создает в автономном или полуавтономном режиме сложные детали из заготовок. Эффективность работы такого оборудования полностью зависит от УП для ЧПУ. Управляющая программа представляет собой порядок действий с четкой последовательностью и уверенностью во временном интервале. В результате получается точная обработка деталей с минимальными погрешностями. Запрограммированный станок способен самостоятельно изготавливать серии однотипных изделий без присутствия человека.

Возможности программ

Высокоточное оборудование с ЧПУ массово используются в фрезерном, токарном, сверлильном и другом производстве для изготовления серийных деталей, на которые человеку понадобится большое количество времени.

Станки с ЧПУ нашли широкое применение в изготовлении сложных деталей. Благодаря такой программе можно создать деталь любой формы, отверстия любой формы. На оборудовании с электронным управлением производится вырезание барельефов, гербов и икон. Производство герба с помощью такой проги перестало быть трудоемким.

Процесс разработки

Разработка управляющих команд для ЧПУ требует специальных навыков и осуществляется в несколько этапов:

  • Получение информации детали и процессе производства;
  • На основании чертежей создание ;
  • Создание комплекса команд;
  • Эмуляция и корректировка кода;
  • Испытание готового продукта, изготовление опытной детали.

Сбор информации – это самый первый этап создания УП. Он необходим не только для написания управляющих команд, но и для выбора инструмента и учета особенностей материала при создании. В первую очередь выясняется:

  • Характер необходимой поверхности детали;
  • Характеристика материала: плотность, температура плавления;
  • Величина припуска;
  • Необходимость проведения шлифовки, резанья и других операций.

Это позволит вычислить операции, необходимые для обработки, а также рабочие инструменты.

Следующим этапом является моделирование детали. Разработать программу для создания деталей средней и более сложности без моделирования невозможно. При создании стандартных изделий можно поискать готовые модели в интернете, но следует тщательно проверить их на соответствие.

Современные средства компьютерной графики сильно облегчают процесс моделирования. Создание управляющей программы в ArtCam, увидевшей свет в 2008 году, позволяет автоматически получить необходимую трехмерную модель из плоского рисунка. Арткам способен экспортировать растровые изображения распространенных форматов, после чего переводить их в трехмерные изображения или рельефы. Использование алгоритмов незаменимо при написании раздела ЧПУ с нанесением гравировки на деталь.

Но основе информации об изделии и модели вычисляется количество проходов инструмента и их траектория, после чего можно приступать непосредственно к разработке ПО для микроконтроллера.

Разработка ЧПУ

После сбора всей необходимой информации, подбора рабочего инструмента и расчета необходимого количества действий создается программа для ЧПУ станка. Информация об управляющих командах и процессе создания программного продукта для каждой конкретной модели находится в инструкции к оборудованию. Управляющие алгоритмы представляют собой набор команд, в числе которых:

  • Технологические (включение/выключение, выбор инструмента);
  • Геометрические (движение рабочих инструментов);
  • Подготовительные (забор и подача деталей, задание режимов работы);
  • Вспомогательные (включение и отключение дополнительных механизмов, очистка станка).

Программирование управляющей стойки осуществляется одним из двух способов:

  • Через ПК с подключением флешки к контроллеру и записью готового кода;
  • С помощью человеко-машинного интерфейса стойки ЧПУ.

Большинство современных производителей поставляют в комплекте со станком софт для написания управляющего кода. Благодаря этому можно составить управляющие воздействия на более удобном интерфейсе или переработать уже существующий программный код.

Учтите факторы

При написании программы для станков с ЧПУ учитывается ряд важнейших факторов:

Максимальное количество одновременно задействованного инструмента на станке, рабочий ход, мощность ЧПУ и максимальная скорость выполняемых станком операций. При выборе скоростного режима учитывается максимальный разогрев детали, ошибки в этой части могут вызвать деформацию изделия. К тому же следует учитывать наличие на станках с числовым программным управлением дополнительных механизмов. В противном случае при выполнении алгоритма может произойти сбой или наблюдаться ошибки в работе.

Подробные инструкции по созданию управляющих алгоритмов, их интеграции в систему числового программного управления, возможности оборудования и наличие дополнительных функциях подробно описываются в инструкциях к станкам. Внимательное прочтение инструкции и самостоятельное обучение на протяжение небольшого промежутка времени позволяет написать программу человеку, ранее не знакомому с управлением устройством.


Отладка программы, распространенные ошибки

После создания управляющей программы для станка с ЧПУ следует ее отладка. Этот процесс выполняется на компьютере или непосредственно на производстве с использованием опытной заготовки. Если программное обеспечение составлено не правильно, а результат будет далек от ожиданий, следует тщательно разобрать ошибки. Они делятся на 2 типа:

  • геометрические;
  • технологические.

Первые возникают, когда в программах существуют ошибки в расчетах размеров и плотности материала. Чтобы их исправить, необходимо заново произвести все измерения, но создавать программу заново скорее всего не придется. Технологические ошибки – это неправильно заданные параметры самого станка. Обычно они возникают из-за недостаточного опыта разработчика.

В этом случае необходимо тщательно осуществить проверку, лучше всего подойдет пошаговая эмуляция специальными программами на ПК.

После проверки и получения изделия необходимого качества станку можно приступать к автономной работе по выпуску больших партий сложных изделий.

Детали, обрабатываемые на станке с ЧПУ, можно рассматривать как геометрические объекты. Во время обработки вращающийся инструмент и заготовка перемещаются относительно друг друга по некоторой траектории. УП описывает движение определенной точки инструмента – его центра. Траекторию инструмента представляют состоящей из отдельных, переходящих друг в друга участков. Этими участками могут быть прямые линии, дуги окружностей, кривые второго или высших порядков. Точки пересечения этих участков называются опорными, или узловыми, точками. Как правило, в УП содержатся координаты именно опорных точек.

Попробуем написать небольшую программу для обработки паза, представленного на рис. 3.4. Зная координаты опорных точек, сделать это несложно. Мы не будем подробно рассматривать код всей УП, а обратим особое внимание на написание строк (кадров УП), непосредственно отвечающих за перемещение через опорные точки паза. Для обработки паза сначала нужно переместить фрезу в точку Т1 и опустить ее на соответствующую глубину. Далее необходимо переместить фрезу последовательно через все опорные точки и вывести инструмент вверх из материала заготовки. Найдем координаты всех опорных точек паза и для удобства поместим их в табл. 3.1.

Таблица 3.1. Координаты опорных точек паза

Точка Координата по оси X Координата по оси Y
Tl 3 8
Т2 3 3
ТЗ 7 3
Т4 7 8

Подведем режущий инструмент к первой опорной точке:

Следующие два кадра заставляют инструмент опуститься на требуемую глубину в материал заготовки.

N60 G00 Z0.5
N70 G01 Z-l F25

Как только инструмент окажется на нужной глубине (1 мм), можно перемещать его через все опорные точки для обработки паза:

N80 G01 Х3 Y3
N90 G01 Х7 Y3
N100 G01 Х7 Y8

Теперь следует вывести инструмент из материала заготовки – поднять на небольшую высоту:

Соберем все кадры вместе, добавим несколько вспомогательных команд и получим окончательный вариант программы:

Кадры УП Описание кадра
% Символ начала программы
О0001 (PAZ) Номер программы (0001) и ее название (PAZ)
N10 G21 G40 G49 G54 G80 G90 Строка безопасности
N20 М06 Т01 (FREZA D1) Вызов инструмента № 1
N30 G43 Н01 Компенсация длины инструмента № 1
N40 M03 S1000 Включение оборотов шпинделя (1000 об/мин)
N50 G00 X3 Y8 Ускоренное перемещение в опорную точку Т1
N60 G00 Z0.5 Ускоренное перемещение инструмента B Z0.5
N70 G01 Z-l F25 Перемещение на глубину 1 мм на подаче 25 мм/мин
N80 G01 ХЗ Y3 Перемещение инструмента в точку Т2 (25 мм/мин)
N90 G01 Х7 Y3 Перемещение инструмента в точку Т3 (25 мм/мин)
N100 G01 Х7 Y8 Перемещение инструмента в точку Т4 (25 мм/мин)
N110 G01 Z5 Подъем инструмента вверх в Z5 (25 мм/мин)
N120 М05 Выключение оборотов шпинделя
N130 МЗ0 Завершение программы
% Символ конца программы


© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows