Цепи формирования сигнала. Дифференцирующая и интегрирующая цепь. Дифференцирующие и интегрирующие цепи Для чего нужна дифференцирующая цепь

Цепи формирования сигнала. Дифференцирующая и интегрирующая цепь. Дифференцирующие и интегрирующие цепи Для чего нужна дифференцирующая цепь

В дифференцирующей цепи (рис. 11.2, а) постоянная вре­мени должна быть малой по сравнению с длительностью им­пульсов. Эту цепь применяют в тех случаях, когда импульсы сравнительно большой длительности необходимо преобразовать в короткие запускающие импульсы с крутым фронтом. Цепь сохраняет крутой фронт импульса в той же полярности и по су­ществу ведет себя как фильтр верхних частот, ослабляющий низкочастотные и пропускающий высокочастотные составляю­щие импульса.

При подаче напряжения на конденсатор протекающий через него ток пропорционален производной приложенного к конден­сатору напряжения е с:

(11.4)

При малой постоянной времени сопротивление резистора ока­зывается значительно больше реактивного сопротивления кон­денсатора. Поэтому выходное напряжение, равное падению на­пряжения на резисторе, приближенно выражается формулой

(11.5)

На рис. 11.2,6 и в показаны соответственно формы импуль­са на входе и выходе дифференцирующей цепи. От начального момента действия импульса и в течение всей его длительности к входу схемы прикладывается постоянное напряжение. Если при подаче входного импульса конденсатор Ci не был заряжен, то в первый момент через конденсатор, а также через рези стор R1 будет протекать большой ток. Таким образом, на рези­сторе сразу же появляется большое падение напряжения, бла­годаря чему на выходе очень быстро нарастает фронт импульса (рис. 11.2, в). По мере заряда конденсатора протекающий че­рез него ток уменьшается со скоростью, зависящей от постоян­ной времени цепи. При малой постоянной времени конденса­тор быстро заряжается и ток перестает протекать по цепи. Та­ким образом, когда конденсатор полностью заряжен, напряже­ние на резисторе R 1 спадает до нулевого уровня. В момент окончания действия импульса входное напряжение уменьшает­ся до нуля, и конденсатор начинает разряжаться. Ток разряда конденсатора имеет противоположное но сравнению с током за­ряда направление, следовательно, направление тока через рези­стор также противоположно току заряда. Поэтому на выходе теперь появится отрицательный всплеск напряжения.

Рис. 11.2. Дифференцирующая цепь (а) и форма импульса на входе (б) и выходе (в) цепи.

На практике на вход дифференцирующей цепи обычно по­даются импульсы. Если же на вход дифференцирующей цепи подать синусоидальные колебания, то их форма не изменится, но произойдут сдвиг фазы выходного колебания и уменьшение амплитуды этих колебаний на величины, зависящие от частоты входного сигнала. Другой тип дифференцирующей схемы мож­но получить, если C 1 заменить резистором, а R 1 - индуктив­ностью. В такой цепи фактором, определяющим качество диф­ференцирования, является также постоянная времени. Как и в интегрирующей цепи, омическое сопротивление катушки индук­тивности ухудшает характеристики схемы. Поэтому такую цепь применяют довольно редко.

Дифференцирующие цепи – это цепи, в которых напряжение на выходе пропорционально производной входного напряжения. Эти цепи решают две основные задачи преобразования сигналов: получение импульсов очень малой длительности (укорочение импульсов), которые используются для запуска управляемых преобразователей электрической энергии, триггеров, одновибраторов и других устройств; выполнение математической операции дифференцирования (получение производной по времени) сложных функций, заданных в виде электрических сигналов, что часто встречается в вычислительной технике, аппаратуре авторегулирования и др.

Схема емкостной дифференцирующей цепи показана на рис. 1. Входное напряжение прикладывается ко всей цепи, а выходное снимается с резистора R. Ток, протекающий через конденсатор, связан с напряжением на нем известным соотношением i C = C (dU C /dt). Учитывая, что этот же ток протекает через резистор R, запишем выходное напряжение

Если U ВЫХ << U ВХ, что справедливо, когда падение напряжения на резисторе много меньше напряжения U С, то уравнение можно записать в приближенном виде U ВЫХ . Соотношение U ВЫХ << U ВХ » U C выполняется, если величина сопротивления R много меньше величины реактивного сопротивления конденсатора, т.е. R << 1/wC (для сигнала синусоидальной формы) и R << 1/w в C, где w в – частоты высшей гармоники импульсного сигнала.

Величина t = RC называется постоянной времени цепи. Из курса электричества известно, что конденсатор заряжается (разряжается) через резистор по экспоненциальному закону. Через промежуток времени t = t = RC конденсатор заряжается на 63 % от поданного входного напряжения, через t = 2,3 t - до 90 % от U ВХ и через 4,6 t - до 99 % от U ВХ.

Пусть на вход дифференцирующей цепи (рис. 1) подан прямоугольный импульс длительностью t И (рис. 2, а). Пусть t И = 10 t. Тогда выходной сигнал будет иметь форму, показанную на рис. 2, г. Действительно, в начальный момент времени напряжение на конденсаторе равно нулю, и мгновенно оно измениться не может. Поэтому все входное напряжение прикладывается к резистору. В дальнейшем конденсатор заряжается экспоненциально убывающим током. При этом напряжение на конденсаторе увеличивается, а напряжение на резисторе уменьшается так, что в каждый момент времени выполняется равенство U BX = U C + U ВЫХ. Через промежуток времени t ³ 3 t конденсатор заряжается практически до входного напряжения, зарядный ток прекратится и выходное напряжение станет равным нулю.

Когда входной импульс закончится (U BX = 0), конденсатор начнет разряжаться через резистор R и входную цепь. Направление тока разряда противоположно направлению зарядного тока, поэтому полярность напряжения на резисторе меняется. По мере разряда конденсатора напряжение на нем уменьшается, а вместе с ним уменьшается напряжение на резисторе R. В результате получаются укороченные импульсы (при t И > 4¸5 RC). Изменение формы импульса при других соотношениях длительности импульса и постоянной времени показано на рис. 2,б,в.

Интегрирующая цепь – это цепь, у которой выходное напряжение пропорционально интегралу по времени от входного напряжения. Отличаются интегрирующие цепи (рис. 3) от дифференцирующих (рис. 1) тем, что выходное напряжение снимается с конденсатора. Когда напряжение на конденсаторе С незначительно по сравнению с напряжением на резисторе R, т.е. U ВЫХ = U C << U R , то ток i в цепи пропорционален входному напряжению, которое прикладывается ко всей цепи. Поэтому

ДИФФЕРЕНЦИРУЮЩАЯ ЦЕПЬ - устройство, предназначенное для дифференцирования по времени электрич. сигналов. Выходная реакция Д. ц. u вых (t ) связана со входным воздействием u вх (t ) соотношением , где - пост. величина, имеющая размерность времени. Различают пассивные и активные Д. ц. Пассивные Д. ц. применяют в импульсных и цифровых устройствах для укорачивания импульсов. Aктивные Д. ц. используют как дифференциаторы в аналоговых вычислит. устройствах. Простейшая пассивная Д. ц. показана на рис. 1, а . Ток через ёмкость пропорционален производной приложенного к ней напряжения . Если параметры Д. ц. выбраны т. о.,

что u c =u вх, то , a . Условие u c =u вх выполняется, если на самой верхней частоте спектра входного сигнала Вариант пассивной Д. ц. показан на рис. 1, б . При условии имеем и

Рис. 1. Схемы пассивных дифференцирующих цепей: а - ёмкостной RC; б - индуктивной RL .

Следовательно, при заданных параметрах Д. ц. дифференцирование тем точнее, чем ниже частоты, на к-рых концентрируется энергия входного сигнала. Однако чем точнее дифференцирование, тем меньше коэфф. передачи цепи и, следовательно, уровень выходного сигнала. Это противоречие устраняется в активных Д. ц., где процесс дифференцирования сочетается с процессом усиления. В активных Д. ц. используют операционные усилители (ОУ), охваченные отрицательной обратной связью (рис. 2). Входное напряжение u вх (t ) дифференцируется цепочкой, образованной последоват. соединением ёмкости С и R экв - эквивалентного сопротивления схемы между зажимами 2-2", а затем усиливается ОУ. Если подать напряжение на инвертирующий вход ОУ, то при условии, что его коэффициент усиления , , получим

Рис. 2. Схема активной дифференцирующей цепи.

Рис. 3. Прохождение импульса через дифференцирующую цепь RC: а - входной импульс, u вх =Е при ; б - напряжение на ёмкости u c (t); в - выходное напряжение .

Для сравнит. оценки активных и пассивных Д. ц. при прочих равных условиях можно использовать отношение . При прохождении через Д. ц. импульсных сигналов происходит уменьшение их длительности, отсюда понятие о Д. ц. как об укорачивающих. Временные диаграммы, иллюстрирующие прохождение импульса прямоугольной формы через пассивную Д. ц., приведены на рис. 3. Предполагается, что, источник входного напряжения характеризуется нулевым внутр. сопротивлением, а Д. ц.- отсутствием паразитных ёмкостей. Наличие внутр. сопротивления приводит к уменьшению амплитуды напряжения на входных клеммах и, следовательно, к уменьшению амплитуд выходных импульсов; наличие паразитных ёмкостей - к затягиванию процессов нарастания и спада выходных импульсов. Аналогичным укорачивающим действием обладают также активные Д. ц.


RC-цепь - электрическая цепь, состоящая из конденсатора и резистора. Её можно рассматривать как делитель напряжения с одним из плеч, обладающих ёмкостным сопротивлением переменному току.

Коэффициент передачи

Интегрирующая RC-цепочка (рис 2) Диффер-ая рис 1

Анализируем RC-цепочку. Применяется как:

1. фильтр частот

Пассивный фильтр

Пассивным электрическим фильтром называется электрическая цепь, предназначенная для выделения определенной полосы частот из сигнала, поступающего на его вход.

Фильтр верхних частот (затухание сигнала)

RC-цепь + ОУ(не даёт затух.сигн,стабильн,коэф пропускания ,усил сигнал

Активный фильтр-менять избирательность фильтра.

Фильтр нижних частот

Коэф передачи


Дифференцирующей цепью называют линейный четырехполюсник, у которого выходное напряжение пропорционально производной входного напряжения. Принципиальная схема дифференцирующей rC -цепи приведена на рис. 5.13, а. Выходное напряжение u вых снимается с резистора r . По второму закону Кирхгофа

а следовательно,

Основные свойства и характеристики п/п. Собственная и примесная проводимость. Зонная энергетическая диаграмма. Уровень Ферми. Генерация и рекомбинация носителей. Время жизни и диффузионная длина. Диффузия и дрейф.

По электрическому сопротивлению полупроводники занимают промежуточное место между проводниками и изоляторами. Полупроводниковые диоды и триоды имеют ряд преимуществ: малый вес и размеры, значительно больший срок службы, большую механическую прочность.

Рассмотрим основные свойства и характеристики полупровод­ников. В отношении их электрической проводимости полупровод­ники разделяются на два типа: с электронной проводимостью и с дырочной проводимостью.

Полупроводники с электронной проводимостью имеют так на­зываемые «свободные» электроны, которые слабо связаны с ядрами атомов. Если к этому полупроводнику приложить разность потенциалов, то «свободные» электроны будут двигаться поступательно – в определенном направлении, создавая, таким образом, электри­ческий ток. Поскольку в этих типах полупроводников электрический ток представляет собой перемещение отрицательно заря­женных частиц, они получили название проводников типа п (от слова negative - отрицательный).

Полупроводники с дырочной проводимостью называются полу­проводниками типа р (от слова positive - положительный). Прохождение электрического тока в этих типах полупроводников можно рассматривать как перемещение положительных зарядов. В полупроводниках с р -проводимостью нет свободных электронов; если атом полупроводника под влиянием каких-либо причин по­теряет один электрон, то он будет заряжен положительно.

Отсутствие одного электрона в атоме, вызывающее положи­тельный заряд атома полупроводника, назвали дыркой (это зна­чит, что образовалось свободное место в атоме). Теория и опыт показывают, что дырки ведут себя как элементарные положитель­ные заряды.

Дырочная проводимость состоит в том, что под влиянием при­ложенной разности потенциалов перемещаются дырки, что равно­сильно перемещению положительных зарядов. В действительности, при дырочной проводимости происходит следующее. Предположим, что имеются два атома, один из которых снабжен дыркой (отсут­ствует один электрон на внешней орбите), а другой находящий­ся справа, имеет все электроны на своих местах (назовем его ней­тральным атомом). Если к полупроводнику приложена разность потенциалов, то под влиянием электрического поля электрон из нейтрального атома, у которого все электроны на своих местах, переместится влево на атом, снабженный дыркой. Благодаря этому атом, имевший дырку, становится нейтральным, а дырка пере­местилась вправо на атом, с которого ушел электрон. В полупровод­никовых приборах процесс «заполнения » дырки свободным электро­ном называется рекомбинацией . В результате рекомбинации исчезает и свободный электрон, и дырка, а создается нейтральный атом. И так, перемещение дырок происходит в направлении, противоположном движению электронов.

В абсолютно чистом (собственном) полупроводнике под действием тепла или света электроны и дырки рождаются парами, поэтому число электронов и дырок в собственном полупроводнике одинаково.

Для создания полупроводников с резко выраженными концентрациями электронов или дырок чистые полупроводники снабжают примесями, образуяпримесные полупроводники . Примеси бывают донорные, дающие электроны, и акцепторные , образующие дырки (т. е. отрывающие электроны от атомов). Следовательно, в полупроводнике с донорной примесью проводимость будет преимущественно электронной, или n – проводимостью. В этих полупроводниках основными носителями зарядов являются электроны, а неосновными – дырки. В полупроводнике с акцепторной примесью, наоборот, основными носителями зарядов являются дырки, а неосновными – электроны; это – полупроводники; с р -проводимостью.

Основными материалами для изготовления полупроводниковых диодов и триодов служат германий и кремний; по отношению к ним донорами являются сурьма, фосфор, мышьяк; акцепторами – индий, галлий, алюминий, бор.

Примеси, которые обычно добавляются в кристаллический полупроводник, резко изменяют физическую картину прохождения электрического тока.

При образовании полупроводника с n -проводимостью в полу­проводник добавляется донорная примесь: например, в полупро­водник германий добавляется примесь сурьмы. Атомы сурьмы, являющиеся донорными, сообщают германию много «свободных» электронов, заряжаясь при этом положительно.


Таким образом, в полупроводнике n-проводимости, образован­ного примесью, имеются следующие виды электрических заря­дов:

1 -подвижные отрицательные заряды (электроны), являющиеся основными носителями (как от донорной примеси, так и от соб­ственной проводимости);

2 -подвижные положительные заряды (дырки) – неосновные носители, возникшие от собственной проводимости;

3 -неподвижные положительные заряды – ионы донорной при­меси.

При образовании полупроводника с р-проводимостью в полупроводник добавляется акцепторная примесь: например, в полупроводник германий добавляется примесь индия. Атомы индия являющиеся акцепторными, отрывают от атомов германия элек­троны, образуя дырки. Сами атомы индия при этом заряжаются отрицательно.

Следовательно, в полупроводнике р-проводимости имеются сле­дующие виды электрических зарядов:

1 -подвижные положительные заряды (дырки) – основные но­сители, возникшие от акцепторной примеси и от собственной про­водимости;

2 -подвижные отрицательные заряды (электроны) – неоснов­ные носители, возникшие от собственной проводимости;

3 -неподвижные отрицательные заряды – ионы акцепторной примеси.

На рис. 1 показаны пластинки р -германия (а) и n -германия (б) с расположением электрических зарядов.

Собственная проводимость полупроводников . Собственным полупроводником,или же полупроводником i-типа называется идеально химически чистый полупроводник с однородной кристаллической решёткой. Ge Si

Кристаллическая структура полупроводника на плоскости может быть определена следующим образом.

Если электрон получил энергию, большую ширины запрещённой зоны, он разрывает ковалентную связь и становится свободным. На его месте образуется вакансия, которая имеет 4-хвалентный

положительный заряд, равный по величине заряду электрона и называется дыркой. В полупроводнике i-типа концентрация электронов ni равна концентрации дырок pi. То есть ni=pi.

Процесс образования пары зарядов электрон и дырка называется генерацией заряда.

Свободный электрон может занимать место дырки, восстанавливая ковалентную связь и при этом излучая избыток энергии. Такой процесс называется рекомбинацией зарядов. В процессе рекомбинации и генерации зарядов дырка как бы движется в обратную сторону от направления движения электронов, поэтому дырку принято считать подвижным положительным носителем заряда. Дырки и свободные электроны, образующиеся в результате генерации носителей заряда, называются собственными носителями заряда, а проводимость полупроводника за счёт собственных носителей заряда называется собственной проводимостью проводника.

2) Примесная проводимость проводников.

Так как у полупроводников i-типа проводимость существенно зависит от внешних условий, в

Полупроводниковых приборах применяются примесные полупроводники.

Если в полупроводник ввести пятивалентную примесь, то 4 валентных электрона восстанавливают ковалентные связи с атомами полупроводника, а пятый электрон остаётся свободным. За счёт этого концентрация свободных электронов будет превышать концентрацию дырок. Примесь, за счёт которой ni>pi, называется донорной примесью.

Полупроводник, у которого ni>pi, называется полупроводником с электронным типом

проводимости, или полупроводником n-типа.

В полупроводнике n-типа электроны называются основными носителями заряда, а дырки– неосновными носителями заряда.

При введении трёхвалентной примеси три её валентных электрона восстанавливают ковалентную связь с атомами полупроводника, а четвёртая ковалентная связь оказывается не восстановленной, т. е. имеет место дырка.

В результатеэтогоконцентрациядырокбудетбольшекон-центрацииэлектронов.

Примесь, при которой pi>ni, называется акцепторной примесью.

Полупроводник, у которого pi>ni, называется полупроводником с дырочным типом

проводимости, или полупроводником p-типа.

В полупроводнике p-типа дырки называются основными носителями заряда, а электроны– неосновными носителями заряда.

Во многих радиотехнических устройствах используются простейшие цепи, выполняющие функцию дифференцирования или интегрирования входного сигнала, либо преобразующие спектральный состав этого сигнала. Цепи первого типа называются, соответственно, дифференцирующими и интегрирующими, а цепи второго типа называются фильтрами . К фильтрам относятся цепи, способные пропускать лишь сигналы определенного диапазона частот, и не пропускать (значительно ослаблять) сигналы не принадлежащие к этому диапазону. Если цепь пропускает все сигналы с частотами, меньшими некоторой граничной частоты f гр, то ее называют фильтром нижних частот (ФНЧ). Цепь, пропускающую практически без ослабления все сигналы с частотами большими некоторой граничной частоты f гр, называют фильтром верхних частот (ФВЧ ) . Кроме них существуют еще фильтры, пропускающие только сигналы, принадлежащие определенному частотному диапазону от f гр1 до f гр2 и ослабляющие сигналы всех частот f< f гр1 и f > f гр2 . Такие фильтры называются полосовыми (ПФ). Фильтры, пропускающие сигналы всех частот, кроме заданного диапазона, ограниченного частотами f гр1 и f гр2 , называются режекторными (заградительными).

На рис.3. показаны простейшие дифференцирующие цепи.

Коэффициент передачи цепи на рис.3,а равен:

Обозначим: и (2.4)

Тогда (2.3.) можно переписать:

(2.5)

Модуль коэффициента передачи напряжения:

(2.6)

При частоте активное сопротивление цепи R и реактивное равны и , (2.7)

т.е. на этой частоте выходное напряжение по модулю в раз меньше входного.

Для цепи на рис.3,б аналогично можно получить:

(2.8)

Обозначив или , (2.9)

Выражение (2.8.) приведем к виду:

,

который полностью совпадает с (2.5.). Поэтому и модуль коэффициента передачи напряжения будет определяться тоже соотношением (2.6). На частоте , определяемой по (2.9) активное и реактивное сопротивления цепи также будут равны, следовательно, будет справедливо и соотношение (2.7).

Преобразуем выражение (2.5):

(2.10)

Комплексный коэффициент передачи напряжения , определяет соотношение не только амплитуд входного и выходного напряжений по формуле (2.6), но и сдвиг фазы между ними. Из (2.10) очевидно, что откуда

Выражение (2.6.) определяет амплитудно – частотнуюхарактеристику (АЧХ), а (2.11.) – фазо – частотную характеристику (ФЧХ) дифференцирующих цепей. Вид этих характеристик представлен на рис.4.

На частотах , как следует из рис.5, представляющего собой частотную зависимость активного и реактивного сопротивлений цепи,

, и

поэтому ток в цепи можно определить

Выходное напряжение при этом условии будет

(2.12)

Соотношение (2.12) показывает, что цепь рис.3,а действительно выполняет функцию дифференцирования входного напряжения, если выполняется условие .



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows