Скорость передачи информации выше чем. Что такое скорость интернета

Скорость передачи информации выше чем. Что такое скорость интернета

Общая информация

В большинстве случаев в сетях информация передается последовательно. Биты данных поочередно передаются по каналу связи, кабельному или беспроводному. На Рисунке 1 изображена последовательность бит, передаваемая компьютером или какой-либо другой цифровой схемой. Такой сигнал данных часто называют исходным. Данные представлены двумя уровнями напряжения, например, логической единице соответствует напряжение +3 В, а логическому нулю - +0.2 В. Могут использоваться и другие уровни. В формате кода без возврата к нулю (NRZ) (Рисунок 1) сигнал не возвращается к нейтральному положению после каждого бита, в отличие от формата с возвращением к нулю (RZ).

Битрейт

Скорость передачи данных R выражается в битах в секунду (бит/с или bps). Скорость является функцией продолжительности существования бита или времени бита (T B) (Рисунок 1):

Эту скорость называют также шириной канала и обозначают буквой C. Если время бита равно 10 нс, то скорость передачи данных определится как

R = 1/10 × 10 - 9 = 100 млн. бит/с

Обычно это записывается как 100 Мб/с.

Служебные биты

Битрейт, как правило, характеризует фактическую скорость передачи данных. Однако в большинстве последовательных протоколов данные являются только частью более сложного кадра или пакета, включающего в себя биты адреса источника, адреса получателя, обнаружения ошибок и коррекции кода, а также прочую информацию или биты управления. В кадре протокола данные называются полезной информацией (payload). Биты, не являющиеся данными, называются служебными (overhead). Иногда количество служебных бит может быть существенным - от 20% до 50%, в зависимости от общего числа полезных бит, передаваемых по каналу.

К примеру, кадр протокола Ethernet, в зависимости от количества полезных данных, может иметь до 1542 байт или октетов. Полезных данных может быть от 42 до 1500 октетов. При максимальном числе полезных октетов служебных будет только 42/1542, или 2.7%. Их было бы больше, если полезных байт было бы меньше. Это соотношение, известное также под названием эффективность протокола, обычно выражают в процентах количества полезных данных от максимального размера кадра:

Эффективность протокола = количество полезных данных/размер кадра = 1500/1542 = 0.9727 или 97.3%

Как правило, чтобы показать истинную скорость передачи данных по сети, фактическая скорость линии увеличивается на коэффициент, зависящий от количества служебной информации. В One Gigabit Ethernet фактическая скорость линии равна 1.25 Гб/с, тогда как скорость передачи полезных данных составляет 1 Гб/с. Для 10-Gbit/s Ethernet эти величины равны, соответственно, 10.3125 Гб/с и 10 Гб/с. При оценке скорости передачи данных по сети также могут использоваться такие понятия, как пропускная способность, скорость передачи полезных данных или эффективная скорость передачи данных.

Скорость передачи в бодах

Термин «бод» происходит от фамилии французского инженера Эмиля Бодо (Emile Baudot), который изобрел 5-битовый телетайпный код. Скорость передачи в бодах выражает количество изменений сигнала или символа за одну секунду. Символ - это одно из нескольких изменений напряжения, частоты или фазы.

Двоичный формат NRZ имеет два представляемых уровнями напряжения символа, по одному на каждый 0 или 1. В этом случае скорость передачи в бодах или скорость передачи символов - то же самое, что и битрейт. Однако на интервале передачи можно иметь более двух символов, в соответствии с чем на каждый символ отводится несколько бит. При этом данные по любому каналу связи могут передаваться только с помощью модуляции.

Когда средство передачи не может обработать исходный сигнал, на первый план выходит модуляция. Конечно, речь идет о беспроводных сетях. Исходные двоичные сигналы не могут передаваться непосредственно, они должны переноситься на несущую радиочастоту. В некоторых протоколах кабельной передачи данных также применяется модуляция, позволяющая повысить скорость передачи. Это называется «широкополосной передачей».
Выше: модулирующий сигнал, исходный сигнал

Используя составные символы, в каждом можно передавать по несколько бит. Например, если скорость передачи символов равна 4800 бод, и каждый символ состоит из двух бит, полная скорость передачи данных будет 9600 бит/с. Обычно количество символов представляется какой-либо степенью числа 2. Если N - количество бит в символе, то число требуемых символов будет S = 2N. Таким образом, полная скорость передачи данных:

R = скорость в бодах × log 2 S = скорость в бодах × 3.32 log 1 0 S

Если скорость в бодах равна 4800, и на символ отводится два бита, количество символов 22 = 4.

Тогда битрейт равен:

R = 4800 × 3.32log(4) = 4800 × 2 = 9600 бит/с

При одном символе на бит, как в случае с двоичным форматом NRZ, скорости передачи в битах и бодах совпадают.

Многоуровневая модуляция

Высокий битрейт можно обеспечить многими способами модуляции. Например, при частотной манипуляции (FSK) в каждом символьном интервале для представления логических 0 и 1 обычно используются две различные частоты. Здесь скорость передачи в битах равна скорости передачи в бодах. Но если каждый символ представляет два бита, то требуются четыре частоты (4FSK). В 4FSK скорость передачи в битах в два раза превышает скорость в бодах.

Еще одним распространенным примером является фазовая манипуляция (PSK). В двоичной PSK каждый символ представляет 0 или 1. Двоичному 0 соответствует 0°, а двоичной 1 - 180°. При одном бите на символ скорость в битах равна скорости в бодах. Однако соотношение числа бит и символов несложно увеличить (см. Таблицу 1).

Таблица 1. Двоичная фазовая манипуляция.

Биты

Фазовый сдвиг (градусов)

Например, в квадратурной PSK на один символ приходится два бита. При использовании такой структуры и двух бит на бод скорость передачи в битах превышает скорость в бодах в два раза. При трех битах на один бод модуляция получит обозначение 8PSK, и восемь различных фазовых сдвигов будут представлять три бита. А при 16PSK 16 фазовых сдвигов представляют 4 бита.

Одной из уникальных форм многоуровневой модуляции является квадратурная амплитудная модуляция (QAM). Для создания символов, представляющих множество битов, QAM использует комбинацию различных уровней амплитуд и смещений фаз. Например, 16QAM кодирует четыре бита на символ. Символы представляют собой сочетание различных уровней амплитуды и фазовых сдвигов.

Для наглядного отображения амплитуды и фазы несущей для каждого значения 4-битного кода используется квадратурная диаграмма, имеющая также романтическое название «сигнальное созвездие» (Рисунок 2). Каждая точке соответствует определенная амплитуда несущей и фазовый сдвиг. В общей сложности 16 символов кодируются четырьмя битами на символ, в результате чего битрейт превышает скорость передачи в бодах в 4 раза.

Почему несколько бит на бод?

Передавая больше одного бита на бод можно отправлять данные с высокой скоростью по более узкому каналу. Следует напомнить, что максимально возможная скорость передачи данных определяется пропускной способностью канала передачи.
Если рассмотреть наихудший вариант чередования нулей и единиц в потоке данных, то максимальная теоретическая скорость передачи C в битах для данной полосы пропускания B будет равна:

Или полоса пропускания при максимальной скорости:

Для передачи сигнала со скоростью 1 Мб/с требуется:

B = 1/2 = 0.5 МГц или 500 кГц

При использовании многоуровневой модуляции с несколькими битами на символ максимальная теоретическая скорость передачи данных будет равна:

Здесь N - количество символов в символьном интервале:

log 2 N = 3.32 log10N

Полоса пропускания, требуемая для обеспечения желаемой скорости при заданном количестве уровней, вычисляется следующим образом:

Например, полоса пропускания, необходимая для достижения скорости передачи 1 Мб/с при двух битах на один символ и четырех уровнях, может быть определена как:

log 2 N = 3.32 log 10 (4) = 2

B = 1/2(2) = 1/4 = 0.25 МГц

Количество символов, необходимых для получения желаемой скорости передачи данных в фиксированной полосе пропускания, может быть вычислено как:

3.32 log 10 N = C/2B

Log 10 N = C/2B = C/6.64B

N = log-1 (C/6.64B)

Используя предыдущий пример, количество символов, необходимых для передачи со скоростью 1 Мб/с по каналу 250 кГц, определится следующим образом:

log 10 N = C/6.64B = 1/6.64(0.25) = 0.60

N = log-1 (0.602) = 4 символа

Эти расчеты предполагают, что в канале отсутствуют шумы. Для учета шума нужно применить теорему Шеннона-Хартли:

C = B log 2 (S/N + 1)

C -пропускная способность канала в битах в секунду,
В - полоса пропускания канала в герцах,
S/N -отношение сигнал/шум.

В форме десятичного логарифма:

C = 3.32B log 10 (S/N + 1)

Какова максимальная скорость в канале 0.25 МГц с отношением S/N равным 30 дБ? 30 дБ переводится в 1000. Следовательно, максимальная скорость:

C = 3.32B log 10 (S/N + 1) = 3.32(0.25) log 10 (1001) = 2.5 Мб/с

Теорема Шеннона-Хартли конкретно не утверждает, что для достижения этого теоретического результата должна применяться многоуровневая модуляция. Используя предыдущую процедуру, можно узнать, сколько бит требуется на один символ:

log 10 N = C/6.64B = 2.5/6.64(0.25) = 1.5

N = log-1 (1.5) = 32 символа

Использование 32 символов подразумевает пять бит на символ (25 = 32).

Примеры измерения скорости передачи в бодах

Практически все высокоскоростные соединения используют какие-либо формы широкополосной передачи. В Wi-Fi в схемах модуляции с мультиплексированием с ортогональным частотным разделением каналов (OFDM) применяются QPSK, 16QAM и 64QAM.

То же самое верно для WiMAX и технологии сотовой связи Long-Term Evolution (LTE) 4G. Передаче сигналов аналогового и цифрового телевидения в системах кабельноого ТВ и высокоскоростного доступ в Интернет основана на 16QAM и 64QAM, в то время как в спутниковой связи используют QPSK и различные версии QAM.

Для систем наземной мобильной радиосвязи, обеспечивающих общественную безопасность, недавно были приняты стандарты модуляции речевой информации и данных с помощью 4FSK. Этот сужающий полосу пропускания способ разработан для сокращения полосы с 25 кГц на канал до 12.5 кГц, и, в конечном счете, до 6.25 кГц. В результате в том же спектральном диапазоне можно разместить больше каналов для других радиостанций.

Телевидение высокой четкости в США использует метод модуляции, называемый eight-level vestigial sideband (8-уровневая передача сигналов с частично подавленной боковой полосой), или 8VSB. В этом методе отводится три бита на символ при 8 уровнях амплитуды, что позволяет передавать 10,800 тыс. символов в секунду. При 3 битах на символ полная скорость будет равна 3 × 10,800,000 = 32.4 Мб/с. В сочетании с методом VSB, который передает только одну полную боковую полосу частот и часть другой, видео- и аудиоданные высокой четкости могут передаваться по телевизионному каналу шириной 6 МГц.

Для оценки качества каналов передачи данных можно использовать следующие характеристики:

    скорость передачи данных по каналу связи;

    пропускную способность канала связи;

    достоверность передачи информации;

    надежность канала связи.

Скорость передачи данных . Различают бодовую (модуляционную) и информационную скорости (bit rate). Информационная скорость - определяется количеством битов, передаваемых по каналу связи за одну секунду бит/с, что в англоязычном варианте обозначается как bps.

Бодовая скорость измеряется в бодах (baud). Эта единица скорости получила свое название по фамилии французского изобретателя телеграфного аппарата Emilie Baudot – Э. Бодо. Бод – это число изменений состояния среды передачи в секунду (или числом изменений сигнала в единицу времени). Именно бодовая скорость определяется полосой пропускания линии. Скорость передачи информации 2400 бод означает, что состояние передаваемого сигнала изменялось 2400 раз в секунду, что эквивалентно частоте 2400 Гц.

Для иллюстрации этих понятий обратимся к передаче цифровых данных по обычным телефонным каналам связи. В самых ранних моделях модемов, эти две скорости совпадали. Современные модемы кодируют несколько битов данных в одном изменении состояния аналогового сигнала и очевидно, что скорость передачи данных и скорость работы канала в этом случае не совпадают. Если на бодовом интервале (между соседними изменениями сигнала) передается N бит, то число значений модулируемого параметра несущей (переносчика) равно 2 N . Например, при числе градаций 16 и скорости 1200 бод одному боду соответствует 4 бит/с и информационная скорость составит 4800 бит/с, т.е. скорость в битах в секунду превышает скорость в бодах. В частности, модемы на 2 400 и 1 200 бит/с передают 600 бод, а модемы на 9 600 и 14 400 бит/с- 2 400 бод.

В аналоговых телефонных сетях скорость передачи данных определяется типом протокола который поддерживают оба модема, участвующие в соединении. Так, современные модемы работают по протоколам V.34+ со скоростью до 33600 бит/с или по протоколу асимметричного обмена данными V.90 со скоростью передачи до 56 Kbps.

Стандарт V.34+ позволяет работать по телефонным линиям практически любого качества. Первоначальное соединение модемов происходит по асинхронному интерфейсу на минимальной скорости 300 бит/с, что позволяет работать на самых плохих линиях. После тестирования линии выбираются основные параметры передачи (частота несущей 1,6-2,0 КГц, способ модуляции, переход в синхронный режим) которые в последствии могут динамически изменяться без разрыва связи, адаптируясь к изменению качества линии.

Протокол V.90 был принят Международным Союзом Электросвязи (МСЭ) в феврале 1998 г. В соответствии с этим стандартом модемы, установленные у пользователя, могут принимать данные от провайдера сети (входящий поток – Downstream) на скорости 56 Kbps, а посылать (исходящий поток – Upstream) – на скорости до 33,6 Kbps. Достигается это за счет того, что данные на узле сети, подключенному к цифровому каналу, подвергаются только цифровому кодированию, а не аналого-цифровому преобразованию, которое всегда вносит шум дискретизации и квантования. На стороне пользователя из-за "последней аналоговой мили" происходит и цифро-аналоговое (в модеме) и аналого-цифровое преобразование (на АТС), поэтому увеличение скорости невозможно. Очевидно, что применить такую схему удается только там, где один из модемов имеет доступ к цифровому каналу. Практически только провайдер сети Интернет может быть связан с АТС пользователя цифровым каналом.

Для соединений типа абонент-абонент по коммутируемой телефонной сети общего пользования новая технология непригодна и работа возможна только на скорости не выше 33,6 Kbps.

Скорости передачи цифровой информации для ЛВС различных типов приведены в таблице 2.1, а для глобальных сетей в таблице 2.2.

Таблица 2.1

Тип сети (протокол канального уровня)

Вид линии передачи данных

Толстый коаксиальный кабель (10Base-5)

Тонкий коаксиальный кабель (10base-2)

Неэкранированная витая пара UTP категории 3 (10Base-T)

Оптоволокно (10Base-F)

Оптоволокно (100Base-FX)

Gigabit Ethernet

Многомодовое оптоволокно (1000Base-SX)

Одномодовое оптоволокно (1000Base-LX)

Твинаксиальный кабель(1000Base-СX)

Token Ring (High Speed Token Ring)

Оптоволокно

FDDI (Fiber Distributed Data Interface)

Оптоволокно

Таблица 2.2

Иерархия скоростей цифровых каналов глобальных сетей

Тип сети

Тип интерфейса и линии передачи данных

Скорость передачи данных, Мбит/с

T1/E1, кабель из 2-ух витых пар

T2/E2,коаксиальный кабель

T3/E3, коаксиальный и оптический кабель или радиолинии СВЧ

STS-3, OC-3/STM-1

STS-9, OC-9/STM-3

STS-12, OC-12/STM-4

STS-18, OC-18/STM-6

STS-24, OC-24/STM-8

STS-36, OC-36/STM-12

STS-48, OC-48/STM-16

BRI (базовый)

PRI (специальный)

Абонент-сеть (Upstream)

Сеть-абонент (Downstream)

На ВОЛС достигнуты рекордные скорости передачи информации. В экспериментальной аппаратуре с использованием метода мультиплексирования с разделением каналов по длинам волн (WDM - Wavelengths Division Multiplexing) достигнута скорость 1100 Гбит/с на расстоянии 150 км. В одной из действующих систем на основе WDM передача идет со скоростью 40 Гбит/с на расстояния до 320 км. В методе WDM выделяется несколько несущих частот (каналов). Так, в последней упомянутой системе имеются 16 таких каналов вблизи частоты 4*10 5 ГГц, отстоящих друг от друга на 10 3 ГГц, в каждом канале достигается скорость 2,5 Гбит/с.

Максимально возможная информационная скорость, пропускная способность C (bandwidth ) связана с полосой пропускания F (точнее с верхней частотой полосы пропускания) канала связи формулой Хартли-Шеннона. Пусть N – число возможных дискретных значений сигнала, например число различных значений модулируемого параметра. Тогда на одно изменение величины сигнала, в соответствии с формулой Хартли, приходится не более I=log 2 N бит информации.

Максимальную информационную скорость передачи можно определить как

С = log 2 N / t,

где t - длительность переходных процессов, приблизительно равная (3-4)Т В, а Т В = 1/(2πF). Тогда

бит/с, (2.1)

В случае канала с помехами количество различимых значений модулированного сигнала N должно быть ≤ 1+A, где A - отношение мощностей сигнала и помехи.

Для пользователей вычислительных сетей значение имеют не абстрактные биты в секунду, а информация, единицей измерения которой служат байты или знаки. Поэтому более удобной характеристикой канала является его реальная или эффективная скорость , которая оценивается количеством знаков (символов), передаваемых по каналу за секунду (cps, character per second), не включая служебную (например, биты начала и конца блока, заголовки блоков и контрольные суммы).

Эффективная скорость зависит от ряда факторов, среди которых не только скорость передачи данных, но и способ передачи, и качество канала связи, и условия его эксплуатации, и структура сообщений. Например, так как в среднем, при асинхронном методе передачи данных через модем каждым 10 переданным битам соответствует 1 байт или 1 символ сообщения, то 1 cps=10 bps. Для повышения эффективной скорости передачи используются различные методы сжатия информации, реализуемые как самими модемами, так и коммуникационным ПО.

Существенной характеристикой любой коммуникационной системы является достоверность передаваемой информации. Достоверность передачи информации или уровень ошибок (error ratio) оценивают либо как вероятность безошибочной передачи блока данных, либо как отношение количества ошибочно переданных битов к общему числу переданных битов (единица измерения: количество ошибок на знак - ошибок/знак) Например, вероятность 0,999 соответствует 1 ошибке на 1000 бит (очень плохой канал). Требуемый уровень достоверности должны обеспечивать как аппаратура канала, так и состояние линии связи. Нецелесообразно использовать дорогостоящую аппаратуру, если линия связи не обеспечивает необходимых требований по помехоустойчивости.

При передаче данных в вычислительных сетях этот показатель должен лежать в пределах 10 -8 -10 -12 ошибок/знак, т.е. допускается не более одной ошибка на 100 миллионов переданных битов. Для сравнения, допустимое количество ошибок при телеграфной связи составляет примерно 3·10 -5 на знак.

Наконец, надежность коммуникационной системы определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы в часах. Вторая характеристика позволяет более эффективно оценить надежность системы.

Для вычислительных сетей среднее время безотказной работы должно быть достаточно большим и составлять, как минимум, несколько тысяч часов

Скорость передачи данных по каналу связи измеряется количеством битов информации, передаваемых за единицу времени - секунду.

Единица измерения скорости передачи данных - бит в секунду.

Примечание. Часто используется единица измерения скорости - бод. Бод - число изменений состояния среды передачи в секунду. Так как каждое изменение состояния может соответствовать нескольким битам данных, то реальная скорость в битах в секунду может превышать скорость в бодах.

Скорость передачи данных зависит от типа и качества канала связи, типа используемых модемов и принятого способа синхронизации.

Так, для асинхронных модемов и телефонного канала связи диапазон скоростей составляет 300-9600 бит/с, а для синхронных -1200- 19200 бит/с.

Для пользователей вычислительных сетей значение имеют не абстрактные биты в секунду, а информация, единицей измерения которой служат байты или знаки. Поэтому более удобной характеристикой канала является его пропускная способность, которая оценивается количеством знаков, передаваемых по каналу за единицу времени - секунду. При этом в состав сообщения включаются и все служебные символы. Теоретическая пропускная способность определяется скоростью передачи данных. Реальная пропускная способность зависит от ряда факторов, среди которых и способ передачи, и качество канала связи, и условия его эксплуатации, и структура сообщений.

Единица измерения пропускной способности канала связи - знак в секунду.

Существенной характеристикой коммуникационной системы любой сети является достоверность передаваемой информации. Так как на основе обработки информации о состоянии объекта управления принимаются решения о том или ином ходе процесса, то от достоверности информации в конечном счете может зависеть судьба объекта. Достоверность передачи информации оценивают как отношение количества ошибочно переданных знаков к общему числу переданных знаков. Требуемый уровень достоверности должны обеспечивать как аппаратура, так и канал связи. Нецелесообразно использовать дорогостоящую аппаратуру, если относительно уровня достоверности канал связи не обеспечивает необходимых требований.

Единица измерения достоверности: количество ошибок на знак - ошибок/знак.

Для вычислительных сетей этот показатель должен лежать в пределах 10-6 -10-7 ошибок/знак, т.е. допускается одна ошибка на миллион переданных знаков или на десять миллионов переданных знаков.

Наконец, надежность коммуникационной системы определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы. Вторая характеристика позволяет более эффективно оценить надежность системы.

Единица измерения надежности: среднее время безотказной работы - час.

Для вычислительных сетей среднее время безотказной работы должно быть достаточно большим и составлять, как минимум, несколько тысяч часов.


Все виды информации кодируются в последовательности электрических импульсов: есть импульс (1), нет импульса (0), то есть в последовательности нулей и единиц. Такое кодирование информации в компьютере называется двоичным кодированием, а логические последовательности нулей и единиц – машинным языком.

Эти цифры можно рассматривать как два равновероятностных состояния (события). При записи двоичной цифры реализуется выбор одного из двух возможных состояний (одной из двух цифр) и, следовательно, она несет количество информации, равное 1 биту.

Даже сама единица измерения количества информации бит (bit) получила свое название от английского словосочетания Binary digit, то есть двоичный разряд.

Важно, что каждая цифра машинного двоичного кода несет информацию в 1 бит. Таким образом две цифры несут информацию 2 бита, три разряда – 3 бита и т.д. Количество информации в битах равно количеству цифр двоичного машинного кода.

Передача информации в информационной системе.

Система состоит из отправителя информации, линии связи и получателя информации. Сообщение для передачи его в соответствующий адрес должно быть предварительно преобразовано в сигнал. Под сигналом понимается изменяющаяся физическая величина, отображающее сообщение. Сигнал – материальный переносчик сообщения, то есть изменяющаяся физическая величина, обеспечивающая передачу информации по линии связи. Физическая среда, по которой происходит передача сигналов от передатчика к приемнику, называется линией связи.

В современной технике нашли применение электрические, электромагнитные, световые, механические, звуковые, ультразвуковые сигналы. Для передачи сообщений необходимо принять тот переносчик, который способен эффективно распределяться по используемой в системе линии связи.

Преобразование сообщений в сигналы, удобные для прохождения по линии связи, осуществляется передатчиком.

В процессе преобразования дискретных сообщений в сигнал происходит кодирование сообщения. В широком смысле кодированием называется преобразование сообщений в сигнал. В узком смысле кодирование – это отображение дискретных сообщений сигналами в виде определенных сочетаний символов. Устройство, осуществляющее кодирование называется кодером.

При передаче сигналы подвергаются воздействию помех. Под помехами подразумеваются любые мешающие внешние возмущения или воздействия (атмосферные помехи, влияние посторонних источников сигналов), а также искажения сигналов в самой аппаратуре (аппаратурные помехи), вызывающие случайное отклонение принятого сообщения (сигнала) от передаваемого.

На приемной стороне осуществляется обратная операция декодирования, т.е. восстановление по принятому сигналу переданного сообщения.

Решающее устройство, помещенное после приемника, осуществляет обработку принятого сигнала с целью наиболее полного извлечения из него информации.

Декодирующее устройство, (декодер) преобразует принятый сигнал к виду удобному для восприятия получателем.

Совокупность средств, предназначенных для передачи сигнала, называется каналом связи. Одна и та же линия связи может использоваться для передачи сигналов между многими источниками и приемниками, то есть линия связи может обслуживать несколько каналов.

При синтезе систем передачи информации приходится решать две основные проблемы, связанные с передачей сообщений:

Обеспечение помехоустойчивости передачи сообщений

Обеспечение высокой эффективности передачи сообщений

Под помехоустойчивостью понимается способность информации противостоять вредному воздействию помех. При данных условиях, т.е. при заданной помехе, помехоустойчивость определяет верность передачи информации. Под верностью понимается мера соответствия принятого сообщения (сигнала) переданному сообщению (сигналу).

Под эффективностью системы передачи информации понимается способность системы обеспечивать передачу заданного количества информации наиболее экономичным способом. Эффективность характеризует способность системы обеспечить передачу данного количества информации с наименьшими затратами мощности сигнала, времени и полосы частот.

Теория информации устанавливает критерии оценки помехоустойчивости и эффективности информационных систем, а также указывает общие пути повышения помехоустойчивости и эффективности.

Скорость передачи данных - скорость, с которой передается или принимается информация в двоичной форме. Обычно скорость передачи данных измеряется количеством бит, переданных в одну секунду.

Биты в секунду - единица скорости передачи информации, равная количеству двоичных разрядов, пропускаемых каналом связи в 1 секунду с учетом и полезной и служебной информации.

Пропускная способность канала связи - максимальная скорость передачи данных от источника к получателю.

Символы в секунду - единица измерения скорости передачи (только) полезной информации.

Переход к более крупным единицам измерения

Ограничения на максимальную мощность алфавита не существует, но есть алфавит, который можно считать достаточным (на современном этапе) для работы с информацией, как для человека, так и для технических устройств. Он включает в себя: латинский алфавит, алфавит языка страны, числа, спецсимволы - всего около 200 знаков. По приведенной выше таблице можно сделать вывод, что 7 битов информации недостаточно, требуется 8 битов, чтобы закодировать любой символ такого алфавита, 256 = 28. 8 бит образуют 1 байт. То есть для кодирования символа компьютерного алфавита используется 1 байт. Укрупнение единиц измерения информации аналогично применяемому в физике - используют приставки «кило», «мега», «гига». При этом следует помнить, что основание не 10, а 2.

1 Кб (килобайт) = 210 байт = 1024 байт,

1 Мб(мегабайт) = 210 Кб = 220 байт и т. д.

Умение оценивать количество информации в сообщении поможет определить скорость информационного потока по каналам связи. Максимальную скорость передачи информации по каналу связи называют пропускной способностью канала связи. Самым совершенным средством связи на сегодня являются оптические световоды. Информация передается в виде световых импульсов, посылаемых лазерным излучателем. У этих средств связи высокая помехоустойчивость и пропускная способность более 100Мбит/с.

- Зачем вам в Решётах нубук?
- Чтоб безразмерно использовать возможности блюпупа, и коммутироваться с другими абонентами по всему региону Россия с помощью Ви-Фи!
(С) Уральские Пельмени

Впервые рабочая группа IEEE 802.11 была анонсирована в 1990 году и вот уже 25 лет идёт непрекращающаяся работа над беспроводными стандартами. Основным трендом является постоянное увеличение скоростей передачи данных. В данной статье я попробую проследить путь развития технологии и показать, за счёт чего обеспечивалось увеличение производительности и чего стоит ждать в ближайшем будущем. Предполагается, что читатель знаком с основными принципами беспроводной связи: видами модуляции, глубиной модуляции, шириной спектра и т.д. и знает основные принципы работы Wi-Fi сетей. На самом деле существует не так много способов увеличения пропускной системы связи и большинство из них было реализовано на разных этапах совершенствования стандартов группы 802.11.

Рассмотрению будут подвергнуты стандарты, определяющие физический уровень, из взаимно совместимой линейки a/b/g/n/aс. Стандарты 802.11af (Wi-Fi на частотах эфирного телевиденья), 802.11ah (Wi-Fi в диапазоне 0.9 МГц, предназначенный для реализации концепции IoT) и 802.11ad (Wi-Fi для скоростной связи периферийных устройств наподобие мониторов и внешних дисков) несовместимы друг с другом, имеют различные сферы применения и не подходят для анализа эволюции технологий передачи данных на большом интервале времени. Кроме того, вне рассмотрения останутся стандарты, определяющие стандарты безопасности (802.11i), QoS (802.11e), роуминга (802.11r) и т.д., так как они только косвенно влияют на скорость передачи данных. Здесь и далее речь идёт о канальной, так называемой брутто-скорости, которая является заведомо большей, чем фактическая скорость передачи данных из-за большого количества служебных пакетов в радиообмене.

Первым стандартом беспроводной связи был 802.11 (без буквы). Он предусматривал два типа среды передачи: радиочастота 2.4 ГГц и инфракрасный диапазон 850-950 нм. ИК-устройства не были широко распространены и в будущем развития не получили. В диапазоне 2.4 ГГц было предусмотрено два способа расширения спектра (расширение спектра является неотъемлемой процедурой в современных системах связи): расширение спектра методом скачкообразного изменения частоты (FHSS) и методом прямой последовательности (DSSS). В первом случае все сети используют одну и ту же полосу частот, но с различными алгоритмами перестроения. Во втором случае уже появляются частотные каналы от 2412 МГц до 2472 МГц с шагом 5 МГц, сохранившиеся по сей день. В качестве расширяющей последовательности используется последовательность Баркера длиной 11 чипов. При этом максимальная скорость передачи данных составляла от 1 до 2 Мбит/с. В то время даже с учётом того, что в самых идеальных условиях полезная скорость передачи данных по Wi-Fi не превышает 50% канальной, такие скорости выглядели весьма привлекательно в сравнении со скоростями модемного доступа к сети Интернет.

Для передачи сигнала в 802.11 использовалась 2-х и 4-х позиционная манипуляция, что обеспечивало работу системы даже в неблагоприятных условиях сигнал/шум и не требовало сложных приёмо-передающих модулей.
Например, для реализации информационной скорости 2 Мбит/с каждый передаваемый символ заменяется на последовательность из 11 символов.

Таким образом чиповая скорость составляет 22 Мбит/с. За один такт передачи передаются 2 бита (4 уровня сигнала). Таким образом скорость манипуляции составляет 11 бод и основной лепесток спектра при этом занимает 22 МГц, величину, которую применительно к 802.11, часто называют шириной канала (на самом деле спектр сигнала является бесконечным).

При этом согласно критерию Найквиста (число независимых импульсов в единицу времени ограничено удвоенной максимальной частотой пропускания канала) для передачи такого сигнала достаточно полосы 5.5 МГц. Теоретически устройства формата 802.11 должны удовлетворительно работать и на каналах, отстоящих друг от друга на 10 МГц (в отличии от более поздних реализаций стандарта, требующих вещания на частотах, отстоящих друг от друга не менее, чем на 20 МГц).

Очень быстро скоростей 1-2 Мбит/с стало не хватать и на смену 802.11 пришёл стандарт 802.11b, в котором скорость передачи данных была увеличена до 5.5, 11 и 22 (опционально) Мбит/с. Увеличение скорости было достигнуто путём уменьшения избыточности помехоустойчивого кодирования с 1/11 до ½ и даже 2/3 за счёт внедрения блочных (CCK) и сверхточных (PBCC) кодов. Кроме того, максимальное число ступеней модуляции было увеличено до 8-и на один передаваемый символ (3 бита на 1 бод). Ширина канала и используемые частоты не изменились. Но при уменьшении избыточности и увеличении глубины модуляции неизбежно выросли требования к соотношению сигнал/шум. Так как увеличение мощности устройств невозможно (ввиду экономии энергии мобильных устройств и законодательных ограничений), то это ограничение проявилось в небольшом сокращении зоны обслуживания на новых скоростях. Площадь обслуживания на унаследованных скоростях 1-2 Мбит/с не изменилась. От способа расширения спектра методом скачкообразной перестройки частоты было решено полностью отказаться. Больше в семействе Wi-Fi он не использовался.

Следующий шаг увеличения скорости до 54 Мбит/с был реализован в стандарте 802.11a (данный стандарт начал разрабатываться раньше, чем стандарт 802.11b, но финальная версия была выпущена позже). Увеличение скорости в основном было достигнуто за счёт увеличения глубины модуляции до 64 уровней на один символ (6 бит на 1 бод). Кроме того, была радикально пересмотрена радиочастотная часть: расширение спектра методом прямой последовательности было заменено на расширение спектра методом разделения последовательного сигнала на параллельные ортогональные поденсущие (OFDM). Использование параллельной передачи на 48 подканалах позволило снизить межсимвольную интерференцию за счёт увеличения длительности отдельных символов. Передача данных осуществлялась в диапазоне 5 ГГц. При этом ширина одного канала составляет 20 МГц.

В отличие от стандартов 802.11 и 802.11b, даже частичное перекрытие этой полосы может привести к ошибкам передачи. К счастью в диапазоне 5 ГГц расстояние между канали составляет эти самые 20 МГц.

Стандарт 802.11g не стал прорывом в плане скорости передачи данных. Фактически этот стандарт стал компиляцией 802.11a и 802.11b в диапазоне 2,4 ГГц: в нём поддерживались скорости обоих стандартов.

Однако данная технология требует высокого качества изготовления радио части устройств. Кроме того, данные скорости принципиально не реализуемы на мобильных терминалах (основной целевой группе стандарта Wi-Fi): наличие 4-х антенн на достаточном разнесении не может быть реализовано в малогабаритных устройствах как по соображениям отсутствия места, так и из-за отсутствия достаточного на 4 приёмопередатчика энергии.

В большинстве случаев скорость 600 Мбит/с является не более, чем маркетинговой уловкой и нереализуема на практике, так как фактически её можно добиться только между стационарными точками доступа, установленными в пределах одной комнаты при хорошем соотношении сигнал/шум.

Следующий шаг в скорости передачи был выполнен стандартом 802.11ac: максимальная скорость, предусмотренная стандартом, составляет до 6,93 Гбит/с, однако фактически такая скорость ещё не достигнута ни на одном оборудовании, представленном на рынке. Увеличение скорости достигнуто за счёт увеличения полосы пропускания до 80 и даже до 160 МГц. Такая полоса не может быть предоставлена в диапазоне 2,4 ГГц, поэтому стандарт 802.11ac функционирует только в диапазоне 5 ГГц. Ещё один фактор увеличения скорости – увеличение глубины модуляции до 256 уровней на один символ (8 бит на 1 бод) К сожалению, такая глубина модуляции может быть получена только вблизи точки из-за повышенных требований к соотношению сигнал/шум. Указанные улучшения позволили добиться увеличения скорости до 867 Мбит/с. Остальное увеличение получено за счёт ранее упомянутых потоков MIMO 8x8:8. 867х8=6,93 Гбит/с. Технология MIMO была усовершенствована: впервые в стандарте Wi-Fi информация в одной сети может передаваться двум абонентам одновременно с использованием различных пространственных потоков.

В более наглядном виде результаты в таблице:

В таблице перечислены основные способы увеличения пропускной способности: «-» - метод не применим, «+» - скорость была увеличена за счёт данного фактора, «=» - данный фактор остался без изменений.

Ресурсы уменьшения избыточности уже исчерпаны: максимальная скорость помехоустойчивого кода 5/6 была достигнута в стандарте 802.11a и с тех пор не увеличивалась. Увеличение глубины модуляции теоретически возможно, но следующей ступенью является 1024QAM, которая является очень требовательной к соотношению сигнал/шум, что предельно снизит радиус действия точки доступа на высоких скоростях. При этом возрастут требования к исполнению аппаратной части приёмопередатчиков. Уменьшение межсимвольного защитного интервала также вряд ли будет направлением совершенствования скорости – его уменьшение грозит увеличением ошибок, вызванных межсимвольной интерференцией. Увеличение полосы канала сверх 160 МГц так же вряд ли возможно, так как возможности по организации непересекающихся сот будут сильно ограничены. Ещё менее реальным выглядит увеличение количества MIMO-каналов: даже 2 канала являются проблемой для мобильных устройств (из-за энергопотребления и габаритов).

Из перечисленных методов увеличения скорости передачи большая часть в качестве расплаты за своё применение забирает полезную площадь покрытия: снижается пропускная способность волн (переход от 2,4 к 5 ГГц) и повышаются требования к соотношению сигнал шум (увеличение глубины модуляции, повышение скорости кода). Поэтому в своём развитии сети Wi-Fi постоянно стремятся к уменьшению площади, обслуживаемой одной точкой в пользу скорости передачи данных.

В качестве доступных направлений совершенствования могут использоваться: динамическое распределение OFDM поднесущих между абонентами в широких каналах, совершенствование алгоритма доступа к среде, направленное на уменьшение служебного траффика и использование техник компенсации помех.

Подводя итог вышесказанному попробую спрогнозировать тенденции развития сетей Wi-Fi: вряд ли в следующих стандартах удастся серьёзно увеличить скорость передачи данных (не думаю, что больше, чем в 2-3 раза), если не произойдёт качественного скачка в беспроводных технологиях: почти все возможности количественного роста исчерпаны. Обеспечить растущие потребности пользователей в передаче данных можно будет только за счёт увеличения плотности покрытия (снижения радиуса действия точек за счёт управления мощностью) и за счёт более рационального распределения существующей полосы между абонентами.

Вообще тенденция уменьшения зон обслуживания, похоже, является основным трендом в современных беспроводных коммуникациях. Некоторые специалисты считают, что стандарт LTE достиг пика своей пропускной способности и не сможет далее развиваться по фундаментальным причинам, связанным с ограниченностью частотного ресурса. Поэтому в западных мобильных сетях развиваются технологии оффлоада: при любом удобном случае телефон подключается к Wi-Fi от того же оператора. Это называют одним из основных способов спасения мобильного Интернета. Соответственно роль Wi-Fi сетей с развитием сетей 4G не только не падает, а возрастает. Что ставит перед технологией всё новые и новые скоростные вызовы.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows