Закона ома и применение его на практике. Сопротивление тока: формула

Закона ома и применение его на практике. Сопротивление тока: формула

Элементы электрической цепи можно соединить двумя способами. Последовательное соединение подразумевает подключение элементов друг к другу, а при параллельном соединении элементы являются частью параллельных ветвей. Способ соединения резисторов определяет метод вычисления общего сопротивления цепи.

Шаги

Последовательное соединение

    Определите, является ли цепь последовательной. Последовательное соединение представляет собой единую цепь без каких-либо разветвлений. Резисторы или другие элементы расположены друг за другом.

    Сложите сопротивления отдельных элементов. Сопротивление последовательной цепи равно сумме сопротивлений всех элементов, входящих в эту цепь. Сила тока в любых частях последовательной цепи одна и та же, поэтому сопротивления просто складываются.

    • Например, последовательная цепь состоит из трех резисторов с сопротивлениями 2 Ом, 5 Ом и 7 Ом. Общее сопротивление цепи: 2 + 5 + 7 = 14 Ом.
  1. Если сопротивление каждого элемента цепи не известно, воспользуйтесь законом Ома: V = IR, где V – напряжение, I – сила тока, R – сопротивление. Сначала найдите силу тока и общее напряжение.

    Подставьте известные значения в формулу, описывающую закон Ома. Перепишите формулу V = IR так, чтобы обособить сопротивление: R = V/I. Подставьте известные значения в эту формулу, чтобы вычислить общее сопротивление.

    • Например, напряжение источника тока равно 12 В, а сила тока равна 8 А. Общее сопротивление последовательной цепи: R O = 12 В / 8 А = 1,5 Ом.

    Параллельное соединение

    1. Определите, является ли цепь параллельной. Параллельная цепь на некотором участке разветвляется на несколько ветвей, которые затем снова соединяются. Ток течет по каждой ветви цепи.

      Вычислите общее сопротивление на основе сопротивления каждой ветви. Каждый резистор уменьшает силу тока, проходящего через одну ветвь, поэтому она оказывает небольшое влияние на общее сопротивление цепи. Формула для вычисления общего сопротивления: , где R 1 – сопротивление первой ветви, R 2 – сопротивление второй ветви и так далее до последней ветви R n .

      • Например, параллельная цепь состоит из трех ветвей, сопротивления которых равны 10 Ом, 2 Ом и 1 Ом.
        Воспользуйтесь формулой 1 R O = 1 10 + 1 2 + 1 1 {\displaystyle {\frac {1}{R_{O}}}={\frac {1}{10}}+{\frac {1}{2}}+{\frac {1}{1}}} , чтобы вычислить R O
        Приведите дроби к общему знаменателю : 1 R O = 1 10 + 5 10 + 10 10 {\displaystyle {\frac {1}{R_{O}}}={\frac {1}{10}}+{\frac {5}{10}}+{\frac {10}{10}}}
        1 R O = 1 + 5 + 10 10 = 16 10 = 1 , 6 {\displaystyle {\frac {1}{R_{O}}}={\frac {1+5+10}{10}}={\frac {16}{10}}=1,6}
        Умножьте обе части на R O: 1 = 1,6R O
        R O = 1 / 1,6 = 0,625 Ом.
    2. Вычислите сопротивление по известной силе тока и напряжению. Сделайте это, если сопротивление каждого элемента цепи не известно.

      Подставьте известные значения в формулу закона Ома. Если известны значения общей силы тока и напряжения в цепи, общее сопротивление вычисляется по закону Ома: R = V/I.

      • Например, напряжение в параллельной цепи равно 9 В, а общая сила тока равна 3 А. Общее сопротивление: R O = 9 В / 3 А = 3 Ом.
    3. Поищите ветви с нулевым сопротивлением. Если у ветви параллельной цепи вообще нет сопротивления, то весь ток будет течь через такую ветвь. В этом случае общее сопротивление цепи равно 0 Ом.

    Комбинированное соединение

    1. Разбейте комбинированную цепь на последовательную и параллельную. Комбинированная цепь включает элементы, которые соединены как последовательно, так и параллельно. Посмотрите на схему цепи и подумайте, как разбить ее на участки с последовательным и параллельным соединением элементов. Обведите каждый участок, чтобы упростить задачу по вычислению общего сопротивления.

      • Например, цепь включает резистор, сопротивление которого равно 1 Ом, и резистор, сопротивление которого равно 1,5 Ом. За вторым резистором схема разветвляется на две параллельные ветви – одна ветвь включает резистор с сопротивлением 5 Ом, а вторая – с сопротивлением 3 Ом. Обведите две параллельные ветви, чтобы выделить их на схеме цепи.
    2. Найдите сопротивление параллельной цепи. Для этого воспользуйтесь формулой для вычисления общего сопротивления параллельной цепи: 1 R O = 1 R 1 + 1 R 2 + 1 R 3 + . . . 1 R n {\displaystyle {\frac {1}{R_{O}}}={\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+...{\frac {1}{R_{n}}}} .

      • В нашем примере параллельная цепь включает две ветви, сопротивления которых равны R 1 = 5 Ом и R 2 = 3 Ом.
        1 R p a r = 1 5 + 1 3 {\displaystyle {\frac {1}{R_{par}}}={\frac {1}{5}}+{\frac {1}{3}}}
        1 R p a r = 3 15 + 5 15 = 3 + 5 15 = 8 15 {\displaystyle {\frac {1}{R_{par}}}={\frac {3}{15}}+{\frac {5}{15}}={\frac {3+5}{15}}={\frac {8}{15}}}
        R p a r = 15 8 = 1 , 875 {\displaystyle R_{par}={\frac {15}{8}}=1,875} Ом.
    3. Упростите цепь. После того как вы нашли общее сопротивление параллельной цепи, ее можно заменить одним элементом, сопротивление которого равно вычисленному значению.

      • В нашем примере избавьтесь от двух параллельных ветвей и замените их одним резистором с сопротивлением 1,875 Ом.
    4. Сложите сопротивления резисторов, соединенных последовательно. Заменив параллельную цепь одним элементом, вы получили последовательную цепь. Общее сопротивление последовательной цепи равно сумме сопротивлений всех элементов, которые включены в эту цепь.

      • После упрощения цепи она состоит из трех резисторов со следующими сопротивлениями: 1 Ом, 1,5 Ом и 1,875 Ом. Все три резистора соединены последовательно: R O = 1 + 1 , 5 + 1 , 875 = 4 , 375 {\displaystyle R_{O}=1+1,5+1,875=4,375} Ом.

Одной из основных характеристик электрической цепи является сила тока. Она измеряется в амперах и определяет нагрузку на токопроводящие провода, шины или дорожки плат. Эта величина отражает количество электричества, которое протекло в проводнике за единицу времени. Определить её можно несколькими способами в зависимости от известных вам данных. Соответственно студенты и начинающие электрики из-за этого часто сталкиваются с проблемами при решении учебных заданий или практических ситуаций. В этой статье мы и расскажем, как найти силу тока через мощность и напряжение или сопротивление.

Если известна мощность и напряжение

Допустим вам нужно найти силу тока в цепи, при этом вам известны только напряжение и потребляемая мощность. Тогда чтобы её определить без сопротивления воспользуйтесь формулой:

После несложных мы получаем формулу для вычислений

Следует отметить, что такое выражение справедливо для цепей постоянного тока. Но при расчётах, например, для электродвигателя учитывают его полную мощность или косинус Фи. Тогда для трёхфазного двигателя его можно рассчитать так:

Находим P с учетом КПД, обычно он лежит в пределах 0,75-0,88:

Р1 = Р2/η

Здесь P2 – активная полезная мощность на валу, η – КПД, оба этих параметра обычно указывают на шильдике.

Находим полную мощность с учетом cosФ (он также указывается на шильдике):

S = P1/cosφ

Определяем потребляемый ток по формуле:

Iном = S/(1,73·U)

Здесь 1,73 – корень из 3 (используется для расчетов трёхфазной цепи), U – напряжение, зависит от включения двигателя (треугольник или звезда) и количества вольт в сети (220, 380, 660 и т.д.). Хотя в нашей стране чаще всего встречается 380В.

Если известно напряжение или мощность и сопротивление

Но встречаются задачи, когда вам известно напряжение на участке цепи и величина нагрузки, тогда чтобы найти силу тока без мощности воспользуйтесь , с его помощью проводим расчёт силы тока через сопротивление и напряжение.

Но иногда случается так, что нужно определить силу тока без напряжения, то есть когда вам известна только мощность цепи и её сопротивление. В этом случае:

При этом согласно тому же закону Ома:

P=I 2 *R

Значит расчёт проводим по формуле:

I 2 =P/R

Или возьмем выражение в правой части выражения под корень:

I=(P/R) 1/2

Если известно ЭДС, внутреннее сопротивление и нагрузка

Ко студенческим задачам с подвохом можно отнести случаи, когда вам дают величину ЭДС и внутреннее сопротивление источника питания. В этом случае вы можете определить силу тока в схеме по закону Ома для полной цепи:

I=E/(R+r)

Здесь E – ЭДС, r – внутреннее сопротивление источника питания, R – нагрузки.

Закон Джоуля-Ленца

Еще одним заданием, которое может ввести в ступор даже более-менее опытного студента – это определить силу тока, если известно время, сопротивление и количество выделенного тепла проводником. Для этого вспомним .

Его формула выглядит так:

Q=I 2 Rt

Тогда расчет проводите так:

I 2 =QRt

Или внесите правую часть уравнения под корень:

I=(Q/Rt) 1/2

Несколько примеров

В качестве заключения предлагаем закрепить полученную информацию на нескольких примерах задач, в которых нужно найти силу тока.

Из условия ясно, что нужно привести два варианта ответа для каждого из вариантов соединений. Тогда чтобы найти ток при последовательном соединении, сначала складывают сопротивления схемы, чтобы получить общее.

I=U/R=12/3=4 Ампера

При параллельном соединении двух элементов Rобщее можно рассчитать так:

Rобщ=(R1*R2)/(R1+R2)=1*2/3=2/3=0,67

Тогда дальнейшие вычисления можно проводить так:

В первую очередь нужно найти R общее параллельно соединенных R2 и R3, по той же формуле, что мы использовали выше.

Понятие об электрическом сопротивлении и проводимости

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении.

Сопротивление обозначается латинскими буквами R или r .

За единицу электрического сопротивления принят ом.

Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм2 при температуре 0° С.

Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4ом.

Для измерения сопротивлений большой величины принята единица, называемая мегомом.

Один мегом равен одному миллиону ом.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению и называемую, проводимостью.

Электрической проводимостью называется способность материала пропускать через себя электрический ток.

Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/R ,обозначается проводимость латинской буквой g.

Влияние материала проводника, его размеров и окружающей температуры на величину электрического сопротивления

Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита р. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Например, удельное сопротивление меди равно 0,017, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,017 ом. Удельное сопротивление алюминия равно 0,03, удельное сопротивление железа - 0,12, удельное сопротивление константана - 0,48, удельное сопротивление нихрома - 1-1,1.



Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой - толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника :

R = р l / S ,

Где - R - сопротивление проводника, ом, l - длина в проводника в м, S - площадь поперечного сечения проводника, мм 2 .

Площадь поперечного сечения круглого проводника вычисляется по формуле:

S = π d 2 / 4

Где π - постоянная величина, равная 3,14; d - диаметр проводника.

А так определяется длина проводника:

l = S R / p ,

Эта формула дает возможность определить длину проводника, его сечение и удельное сопротивление, если известны остальные величины, входящие в формулу.

Если же необходимо определить площадь поперечного сечения проводника, то формулу приводят к следующему виду:

S = р l / R

Преобразуя ту же формулу и решив равенство относительно р, найдем удельное сопротивление проводника:

р = R S / l

Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Для этого надо определить удельное сопротивление проводника и, пользуясь таблицей, найти материал, обладающий таким удельным сопротивлением.

Еще одной причиной, влияющей на сопротивление проводников, является температура .

Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. Это увеличение или уменьшение сопротивления для проводников из чистых металлов почти одинаково и в среднем равно 0,4% на 1°C . Сопротивление жидких проводников и угля с увеличением температуры уменьшается.

Электронная теория строения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника. С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление - сверхпроводимость металлов .

Сверхпроводимость , т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре - 273° C , называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

На практике нередко приходится рассчитывать сопротивление различных проводов. Это можно сделать с помощью формул или по данным, приведенным в табл. 1.

Влияние материала проводника учитывается с помощью удельного сопротивления, обозначаемого греческой буквой? и представляющего собой длиной 1 м и площадью поперечного сечения 1 мм2. Наименьшим удельным сопротивлением? = 0,016 Ом мм2/м обладает серебро. Приведем среднее значение удельного соп ротивления некоторых проводников:

Серебро - 0,016, Свинец - 0,21, Медь - 0,017, Никелин - 0,42, Алюминий - 0,026, Манганин - 0,42, Вольфрам - 0,055, Константан - 0,5, Цинк - 0,06, Ртуть - 0,96, Латунь - 0,07, Нихром - 1,05, Сталь - 0,1, Фехраль - 1,2, Бронза фосфористая - 0,11, Хромаль - 1,45.

При различных количествах примесей и при разном соотношении компонентов, входящих в состав реостатных сплавов, удельное сопротивление может несколько измениться.

Сопротивление рассчитывается по формуле:

где R - сопротивление, Ом; удельное сопротивление, (Ом мм2)/м; l - длина провода, м; s - площадь сечения провода, мм2.

Если известен диаметр провода d, то площадь его сечения равна:

Измерить диаметр провода лучше всего с помощью микрометра, но если его нет, то следует намотать плотно 10 или 20 витков провода на карандаш и измерить линейкой длину намотки. Разделив длину намотки на число витков, найдем диаметр провода.

Для определения длины провода известного диаметра из данного материала, необходимой для получения нужного сопротивления, пользуются формулой

Таблица 1.


Примечание. 1. Данные для проводов, не указанных в таблице, надо брать как некоторые средние значения. Например, для провода из никелина диаметром 0,18 мм можно приблизительно считать, что площадь сечения равна 0,025 мм2, сопротивление одного метра 18 Ом, а допустимый ток равен 0,075 А.

2. Для другого значения плотности тока данные последнего столбца нужно соответственно изменить; например, при плотности тока, равной 6 А/мм2, их следует увеличить в два раза.

Пример 1. Найти сопротивление 30 м медного провода диаметром 0,1 мм.

Решение. Определяем по табл. 1 сопротивление 1 м медного провода, оно равно 2,2 Ом. Следовательно, сопротивление 30 м провода будет R = 30 2,2 = 66 Ом.

Расчет по формулам дает следующие результаты: площадь сечения провода: s= 0,78 0,12 = 0,0078 мм2. Так как удельное сопротивление меди равно 0,017 (Ом мм2)/м, то получим R = 0,017 30/0,0078 = 65,50м.

Пример 2. Сколько никелинового провода диаметром 0,5 мм нужно для изготовления реостата, имеющего сопротивление 40 Ом?

Решение. По табл. 1 определяем сопротивление 1 м этого провода: R= 2,12 Ом: Поэтому, чтобы изготовить реостат сопротивлением 40 Ом, нужен провод, длина которого l= 40/2,12=18,9 м.

Проделаем тот же расчет по формулам. Находим площадь сечения провода s= 0,78 0,52 = 0,195 мм2. А длина провода будет l = 0,195 40/0,42 = 18,6 м.

Под электрическим сопротивлением понимается любое противодействие, которое обнаруживает ток при прохождении через замкнутый контур, ослабление или торможение свободного потока электрических зарядов.

Jpg?x15027" alt="Измерение сопротивления мультиметром" width="600" height="490">

Измерение сопротивления мультиметром

Физическое понятие сопротивления

Электроны при прохождении тока циркулируют в проводнике организованным образом в соответствии с сопротивлением, с которым они сталкиваются на своем пути. Чем меньше эта сопротивляемость, тем больше существующий порядок в микромире электронов. Но когда сопротивляемость высокая, они начинают сталкиваться друг с другом и выделять тепловую энергию. В связи с этим, температура проводника всегда немного повышается, на большую величину, чем выше электроны находят противодействия своему движению.

Используемые материалы

Все известные металлы обладают большей или меньшей устойчивостью к прохождению тока, включая лучшие проводники. Наименьшей сопротивляемостью обладают золото и серебро, но они дорогие, поэтому самый часто используемый материал – медь, имеющая высокую электропроводность. В меньших масштабах применяется алюминий.

Наибольшая устойчивость к прохождению тока у нихромной проволоки (сплав никеля (80%) и хрома (20%)). Она широко применяется в резисторах.

Другим широко используемым резисторным материалом является уголь. Из него фиксированные сопротивления и реостаты изготавливаются для использования в электронных схемах. Фиксированные резисторы и потенциометры применяются для регулирования значений тока и напряжения, например, при контроле громкости и тона аудиоусилителей.

Расчет сопротивлений

Для вычисления величины нагрузочного сопротивления формулу, выведенную из закона Ома, используют, как основную, если известны значения тока и напряжения:

Единицей измерения является Ом.

Для последовательного соединения резисторов общее сопротивление находится путем суммирования отдельных значений:

R = R1 + R2 + R3 + …..

При параллельном соединении используется выражение:

1/R = 1/R1 + 1/R2 + 1/R3 + …

А как найти электрическое сопротивление для провода, учитывая его параметры и материал изготовления? Для этого существует другая формула сопротивления:

R = ρ х l/S, где:

  • l – длина провода,
  • S – размеры его поперечного сечения,
  • ρ – удельное объемное сопротивление материала провода.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/03/2-1-600x417.png?.png 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-1-768x533..png 792w" sizes="(max-width: 600px) 100vw, 600px">

Формула сопротивления

Геометрические размеры провода можно измерить. Но чтобы рассчитать сопротивление по этой формуле, надо знать коэффициент ρ.

Важно! Значения уд. объемного сопротивления уже рассчитаны для разных материалов и сведены в специальные таблицы.

Значение коэффициента позволяет сравнивать сопротивление разных типов проводников при заданной температуре в соответствии с их физическими свойствами без учета размеров. Это можно проиллюстрировать на примерах.

Пример расчета электросопротивления медного провода, длиной 500 м:

  1. Если размеры сечения провода неизвестны, можно замерить его диаметр штангенциркулем. Допустим, это 1,6 мм;
  2. При расчетах площади сечения используется формула:

Тогда S = 3,14 х (1,6/2)² = 2 мм²;

  1. По таблице нашли значение ρ для меди, равное 0,0172 Ом х м/мм²;
  2. Теперь электросопротивление рассчитываемого проводника будет:

R = ρ х l/S = 0,0172 х 500/2 = 4,3 Ом.

Другой пример нихромовая проволока сечением 0,1 мм², длиной 1 м:

  1. Показатель ρ для нихрома – 1,1 Ом х м/мм²;
  2. R = ρ х l/S = 1,1 х 1/0,1 = 11 Ом.

На двух примерах наглядно видно, что нихромовая проволока метровой длины и сечением, в 20 раз меньшим, имеет электрическое сопротивление в 2,5 раза больше, чем 500 метров медного провода.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-6-768x381..jpg 960w" sizes="(max-width: 600px) 100vw, 600px">

Удельное сопротивление некоторых металлов

Важно! На сопротивление оказывает влияние температура, с ростом которой оно увеличивается и, наоборот, уменьшается со снижением.

Импеданс

Импеданс – более общий термин сопротивления, который учитывает реактивную нагрузку. Расчет сопротивления в контуре переменного тока заключается в вычислении импеданса.

В то время, как резистор создает активное сопротивление для решения определенных задач, реактивная составляющая является неудачным побочным продуктом некоторых компонентов электроцепи.

Два типа реактивного сопротивления:

  1. Индуктивное. Создается катушками. Формула расчета:

X (L) = 2π x f x L, где:

  • f – частота тока (Гц),
  • L – индуктивность (Гн);
  1. Емкостное. Создается конденсаторами. Рассчитывается по формуле:

X (C) = 1/(2π x f x C),

где С – емкость (Ф).

Как и активный аналог, реактивное сопротивление выражается в омах и также ограничивает поток тока через контур. Если в цепи присутствует и емкость, и катушка индуктивности, то общее сопротивление равно:

X = X (L) – X (C).

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-3.jpg 622w" sizes="(max-width: 600px) 100vw, 600px">

Активное, индуктивное и емкостное сопротивление

Важно! Из формул реактивной нагрузки следуют интересные особенности. С увеличением частоты переменного тока и индуктивности растет X (L). И, наоборот, чем выше частоты и емкость, тем меньше X (С).

Нахождение импеданса (Z ) не является простым складыванием активной и реактивной составляющих:

Z = √ (R² + X²).

Пример 1

Катушка в контуре с током промышленной частоты обладает активным сопротивлением 25 Ом и индуктивностью 0,7 Гн. Вычислить импеданс можно:

  1. X (L) = 2π x f x L = 2 х 3,14 х 50 х 0,7 = 218,45 Ом;
  2. Z = √ (R² + X (L)²) = √ (25² + 218,45²) = 219,9 Ом.

tg φ = X (L)/R = 218,45/25 = 8,7.

Угол φ примерно равен 83 градуса.

Пример 2

Имеется конденсатор емкостью 100 мкФ и внутренним сопротивлением 12 Ом. Вычислить импеданс можно:

  1. X (C) =1/(2π x f x C) = 1/ 2 х 3,14 х 50 х 0, 0001 = 31,8 Ом;
  2. Z = √ (R² + X (С)²) = √ (12² + 31,8²) = 34 Ом.

В интернете можно найти калькулятор онлайн для упрощения вычисления сопротивлений и импеданса всей электроцепи или ее участков. Там нужно просто вести свои расчетные данные и зафиксировать результаты расчета.

Видео



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows