Что такое ОЗУ или RAM в компьютере. Оперативная память подробно

Что такое ОЗУ или RAM в компьютере. Оперативная память подробно

12.06.2019

Это модуль, функцией которого является хранение данных и предоставление их по требованию устройству или программе - по сути это посредник между процессором и дисковыми накопителями. RAM является энергозависимым устройством, т.е. может работать лишь пока на него подается питание, при отключении которого все данные теряются. Разберемся более подробно в характеристиках этого важнейшего устройства, без которого ваш ПК, смартфон, ноутбук или планшет будет обычной грудой железа.

Типы ОЗУ

RAM бывают нескольких типов, кардинально отличающихся характеристиками и архитектурой.

– синхронная динамическая память с произвольным доступом. Раньше была довольно популярной и использовалась почти во всех компьютерах, благодаря наличию синхронизации с системным генератором, который, в свою очередь, позволял контроллеру очень точно определять время, когда данные будут готовы. В итоге значительно уменьшилось время задержек по циклам ожидания в связи с доступностью данных на каждом такте таймера. Сегодня вытеснена более современными типами памяти.

– это динамическая синхронизированная память, в ее основе лежит принцип случайного доступа и двойная скорость обмена данными. Такой модуль обладает рядом положительных характеристик относительно SDRAM, важнейшая из которых – за 1 такт системного генератора осуществляется 2 операции, то есть при неизменной частоте пропускная способность на пике увеличивается в 2 раза.

– это следующая разработка, работает так же, как и у ОЗУ типа DDR, отличительная особенность данной модели заключается в удвоенной по объему выборке данных на такт (4 бита вместо 2х). Кроме того второе поколение стало более энергоэффективным, уменьшилось тепловыделение, а частоты выросли.

– новое поколение RAM, важнейшая отличительная особенность от DDR2 – выросшие частоты и уменьшенное потребление энергии. Также совершенно изменена конструкция ключей (специальные прорези для точного вхождения в слот).

Существуют модификации DDR3, отличающиеся еще меньшим потреблением энергии - DDR3L и LPDDR3 (напряжение у первой модели уменьшено до 1.35 В, а у второй до 1.2 В, тогда как у простых DDR3 оно равно 1.5В).

DDR4 SDRAM - новейшее поколение оперативной памяти. Характеризуется выросшей до 3,2 Гбит/с скоростью обмена данными, увеличенной до 4266 МГц частотой и значительно улучшенной стабильностью.

RIMM (RDRAM, Rambus DRAM) – память, основанная на тех же принципах, что и DDR, но с повышенным уровнем тактовой частоты, что было достигнуто за счет меньшей разрядности шины. Также при адресации ячейки номера строки и столбца предаются одновременно.

Стоимость RIMM была намного выше, а производительность лишь немногим превышала DDR, в итоге RAM этого типа просуществовали на рынке недолго.

Выбирайте тип RAM не только исходя из потенциала и характеристик вашей материнской платы, но и учитывая совместимость с другими составляющими системы.

Варианты физического расположения чипов (упаковка)

Устанавливаемые на модули ОЗУ чипы памяти располагаются либо с одной стороны (одностороннее месторасположение), либо с двух (двустороннее). В последнем варианте модули получаются достаточно толстыми, что не позволяет установить их на отдельные ПК.

Форм-фактор это

Специально разработанный стандарт в котором описаны размеры модуля ОЗУ, общее количество и месторасположение контактов. Существует несколько типов форм-факторов:

SIMM (Single in Line Memory Module) - 30 или 72 двухсторонних контакта;

RIMM – фирменный форм-фактор модулей RIMM (RDRAM). 184, 168 или 242 контакта;

DIMM (Dual in Line Memory Module) – 168, 184, 200 или 240 независимых, расположенных по обеим сторонам модуля, контактных площадок.

FB-DIMM (Fully Buffered DIMM) – исключительно серверные модули. Идентичны по форм-фактору DIMM с 240 контактами, но используют лишь 96, за счет последовательного интерфейса. Благодаря присутствующей на каждом модуле микросхеме AMB (Advanced Memory Buffer) обеспечивается высокоскоростная буферизация и конверсия всех сигналов, в том числе и адресации. Также значительно улучшены производительность и масштабируемость. Совместимы только с аналогичной полностью буферизованной памятью.

LRDIMM (Load Reduced Dual In-Line Memory Modules) – исключительно серверные модули. Оснащаются буфером iMB (Isolation Memory Buffer), снижающим нагрузку на шину памяти. Применяются для ускорения работы больших объемов памяти.

SODIMM (Small Outline Dual In-Line Memory Module) – подвид DIMM с меньшими размерами для установки в портативные устройства, в основном - ноутбуки. 144 и 200 контактов, в более редком варианте - 72 и 168.

MicroDIMM (Micro Dual In-Line Memory Module) - еще уменьшенный SODIMM. Обычно имеют 60 контактов. Возможные реализации контактов - 144 SDRAM, 172 DDR и 214 DDR2.

Отдельного упоминания заслуживает низкопрофильная (Low Profile) память - созданные специально для невысоких серверных корпусов модули с меньшей, по сравнению со стандартными, высотой.

Форм-фактор является основным параметром совместимости RAM с материнской платой, поскольку при его несовпадении модуль памяти элементарно не получится вставить в слот.

Что такое SPD?

На каждой планке форм-фактора DIMM имеется маленький чип SPD (Serial Presence Detect), в котором зашиты данные о параметрах физических чипов. Данная информация имеет критическое значение для бесперебойной работы и считывается BIOS на этапе теста для оптимизации параметров доступа к ОЗУ.

Ранки модуля памяти и их количество

Блок памяти шириной 64 бита (72 для модулей с ECC), образованный N физическими чипами. Каждый модуль может иметь от 1 до 4 ранков, причем свое ограничение на количество ранков существует и у материнских плат. Поясним - если на материнскую плату может быть установлено не более 8 ранков, то это значит что суммарное количество ранков модулей RAM не может превышать 8, например, в данном случае - 8 одноранковых или 4 двухранковых. В независимости от того остались ли еще свободные слоты - при исчерпанном лимите ранков дополнительные модули будет установить невозможно.

Определить ранк для конкретного ОЗУ довольно просто. У компании Kingston количество ранков определяется одной из 3-х букв в центре маркировочного списка: S – это одноранговая, D – друхранговая, Q – четырехранговая. Например:

  • KVR1333D3LS 4R9S/4GEC
  • KVR1333D3LD 4R9S/8GEC
  • KVR1333D3LQ 8R9S/8GEC

Прочие же производители указывают этот параметр как, например, 2Rx8, что означает:

2R - двухранковый модуль

x8 - ширина шины данных на каждом чипе

т.е. модуль 2Rx8 без ECC имеет 16 физических чипов (64х2/8).

Тайминги и латентность

Выполнение любой операции чипом памяти происходит за определенное число тактов системной шины. Требуемые для записи и считывания данных количества тактов и есть тайминги.

Латентность, если коротко - задержка обращения к страницам памяти, также измеряется в количестве циклов и записывается 3-я числовыми параметрами: CAS Latency, RAS to CAS Delay, RAS Precharge Time. Иногда добавляется четвертая цифра - «DRAM Cycle Time Tras/Trc», характеризующая общее быстродействие всей микросхемы памяти.

CAS Latency или CAS (CL) – ожидание от момента, когда данные были запрошены процессором и до начала их считывания с RAM. Одна из важнейших характеристик определяющих скорость работы ОЗУ. Маленькое CL говорит о высоком быстродействии RAM.

RAS to CAS Delay (tRCD) - задержка между передачей сигнала RAS (Row Address Strobe) и CAS (Column Address Strobe), необходимая для четкого отделения этих сигналов контроллером памяти. Проще говоря - запрос на чтение данных включает в себя номера строки и столбца страницы памяти и эти сигналы должны быть отчетливыми, в противном случае будут возникать множественные ошибки данных.

RAS Precharge Time (tRP) - определяет время задержки между деактивацией текущей строки данных и активацией новой. Иначе говоря – интервал, спустя который контроллер может снова подать сигналы RAS и CAS.

Тактовая частота, частота передачи данных (Data rate)

Частота передачи данных (Иначе - скорость передачи данных) - максимально возможное число циклов передачи данных в секунду. Измеряется в гигатрансферах (GT/s) или мегатрансферах (MT/s).

Тактовая же частота определяет максимальную частоту системного генератора. Надо помнить, что DDR расшифровывается как Double Data Rate, что означает удвоенную частоту обмена данными относительно тактовой. Так, например для модуля DDD2-800 тактовая частота будет 400.

Пропускная способность (пиковая скорость передачи данных)

В упрощенном варианте рассчитывается как частота системной шины умноженная на передаваемый за такт объем данных.

Пиковая же скорость является произведением частоты и разрядности шины на количество каналов памяти (Ч×Р×К). На модуле памяти указывается как, например, PC3200, что, очевидно, означает - пиковая скорость передачи данных для этого модуля равна 3200 Мбайт/с.

Для оптимальной работы системы суммарное значение ПСПД планок памяти не должно превышать ПС шины процессора, исключением является двухканальный режим, когда планки будут занимать шину по очереди.

Что такое поддержка ЕСС (Error Correct Code)

Память с поддержкой ECC позволяет находить и исправлять спонтанные ошибки во время передачи данных. Физически ECC исполнена в виде дополнительного 8-разрядного чипа памяти на каждые 8 основных и представляет собой значительно улучшенный "контроль четности". Суть данной технологии состоит в отслеживании одного произвольно измененного в процессе записи/считывания 64-битного машинного слова бита с последующим его исправлением.

Буферизованная (регистровая) память

Характеризуется наличием на модуле RAM специальных регистров (буферов), обрабатывающих сигналы управления и адресации от контроллера. Несмотря на возникающий благодаря буферу дополнительный такт задержки, регистровая память тем не менее широко используется в профессиональных системах из-за пониженной нагрузки на систему синхронизации и значительно повышенной надежности.

Надо помнить, что буферизированная и небуферизированная память являются несовместимыми и не могут работать в одном устройстве.

Изучая технические характеристики компьютеров, пользователи часто сталкиваются с непонятными аббревиатурами или терминами. Яркий пример, аббревиатуры ОЗУ или RAM. Обычно производители и продавцы компьютеров указывают что-то вроде «ОЗУ – 8 Гб» или «RAM – 8 Гб». При этом данные аббревиатуры никак не расшифровываются и не объясняются, предполагается, что покупатели должны знать, что они означают. Но, это далеко не всегда так. В данной статье мы расскажем о том, что такое ОЗУ или RAM в компьютере и для чего они используются.

Начнем с главного, аббревиатуры ОЗУ и RAM обозначают одно и тоже, а именно оперативную память. ОЗУ расшифровывается как оперативное запоминающее устройство, а RAM как Random Access Memory, что переводится как запоминающее устройство с произвольным доступом и означает тоже самое. Поэтому, если в характеристиках компьютера написано «ОЗУ – 8 Гб» или «RAM – 8 Гб», то это означает что объем оперативной памяти данного компьютера составляет 8 Гб.

Теперь чуть подробней о том, что такое ОЗУ в компьютере и для чего она нужна. ОЗУ или проще говоря – это энергозависимая память, в которой хранятся данные и команды, которые обрабатываются процессором. Энергозависимая означает, что она работает только при наличии электропитания. Как только питание пропадает, все данные из оперативной памяти удаляются. Именно поэтому оперативная память не может использоваться для долговременного хранения данных.

За время развития компьютеров появилось не мало различных типов ОЗУ, которые работают на основе разных физических принципов. В современных компьютерах уже достаточно давно используется или Double Data Rate Synchronous Dynamic Random Access Memory, что можно перевести как синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных. Сейчас актуальным стандартом является DDR4 – это четвертое поколение оперативной памяти DDR SD RAM и большинство новых компьютеров поставляются именно с DDR4.

Память DDR – это небольшая плата с чипами, которая подключается к специальным слотам на материнской плате компьютера. Обычно такие слоты находятся справа от процессора в количестве двух или четырех штук. На самых продвинутых материнских платах таких слотов может быть шесть или восемь и в этом случае они размещаются по обе стороны от процессора. Модули DDR разных поколений не совместимы друг с другом. Поэтому, установить DDR4 в материнскую плату с поддержкой DDR3 не получится.

На картинке внизу показаны модули оперативной памяти от DDR до DDR4. Как можно заметить, у них есть специальная прорезь (ключ), которая препятствует установке памяти в не подходящую материнскую плату.

Также нужно отметить, что оперативная память для ноутбуков конструктивно отличается от оперативной памяти для настольных компьютеров. Поэтому установить память для ноутбука в настольный компьютер или наоборот также не получится.

Немногие пользователи знают, что это такое - ОЗУ. Хотя практически все догадываются, что речь идет о каком-либо комплектующем в компьютере. Между тем, существует точная расшифровка.

ОЗУ (или RAM) - это оперативное запоминающее устройство, которое в народе часто называют "оперативкой". Данная "оперативка" есть в любом компьютере, ноутбуке и даже телефоне - без нее невозможна работа ни одного гаджета. Правда, для разных устройств она требуется в разном объеме, но об этом поговорим позже.

Отличие от постоянной

Теперь, когда известна расшифровка ОЗУ, следует отметить важный момент. Многие новички путают оперативную память с постоянной, имеющейся на жестком диске, однако делать этого нельзя. Между ними нет ничего общего. Данные виды памяти имеют абсолютно разное предназначение, работают они также иначе, отличается даже расшифровка. ОЗУ - это динамическая память, которая требует определенных затрат электроэнергии, и при исчезновении питания все хранящиеся внутри данные пропадают. Подключение к электричеству требуется также для записи и чтения данных на жестких дисках и флешках. Однако для хранения информации на устройствах выносного типа электроэнергия не нужна.

Как работает ОЗУ?

Расшифровка в некоторой степени позволяет понять принцип работы этого элемента системы. Оперативное запоминающее устройство должно мгновенно запоминать набор данных и выдавать к ним доступ при необходимости.

ОЗУ - это сложный набор микросхем и модулей. Если привести аналогию, то по структуре он напоминает соты пчел. То есть память компьютера состоит из ячеек, которые предназначаются для хранения данных (одного или четырех бит). Каждая из них наделена определенным адресом, состоящим из двух компонентов - адресом вертикального столбца и горизонтальной строки (Column и Row соответственно).

Работа памяти тесно связана с функциональностью центрального процессора и всех устройств, которые подключены к компьютеру в качестве периферии. Последние "доверяют" свою информацию ОЗУ, следовательно, данные сперва попадают в оперативную память (с жесткого диска или внешнего носителя), а уж затем происходит их обработка центральным процессором.

Между памятью и процессором обмен осуществляется напрямую. Хотя иногда имеет место вмешательство кэш-памяти, которая представляет собой временное хранилище часто запрашиваемой информации. Благодаря ее наличию время доставки информации к регистрам процессора значительно сокращается.

Управление

Управляется ОЗУ специальным контроллером, который установлен в чипсете системной платы (материнской). В частности, North Bridge обеспечивает подключение процессора к высокопроизводительной шине ОЗУ.

Итак, принцип работы всей системы с участием ОЗУ выглядит следующим образом: при включении компьютера из жесткого диска в ОЗУ записываются драйверы и другие программы операционной системы. Туда же попадают и запускаемые пользователем программы. Затем записанные данные передаются в процессор, обрабатываются и отсылаются обратно. Вся работа компьютера построена именно таким образом.

Система функционирует до тех пор, пока для нормальной работы хватает количества ячеек оперативной памяти. Если их не остается, роль ОЗУ берет на себя память жесткого диска (файл подкачки). Учитывая более низкое быстродействие накопителя, его использование значительно снижает скорость системной работы, однако это уже не относится к данной теме.

В заключение

Итак, мы рассмотрели, что это такое - ОЗУ, как оно работает и вообще какова роль указанного комплектующего в системе. Напоследок стоит отметить, что данный модуль постоянно совершенствуется, его схема работы может изменяться с выходом новых типов оперативной памяти, однако принцип один и тот же всегда. Пожалуй, все выглядит логично и понятно. Эту информацию даже рассказывают в учебных заведениях по информатике. Расшифровка ОЗУ в контексте изучения компьютерных технологий теперь ни у кого не вызовет вопросов.

Модули ОЗУ

Модули оперативной памяти изготавливаются на основе прямоугольных печатных плат с односторонним или двухсторонним расположением микросхем. Они отличаются формфактором и имеют различную конструкцию: SIMM (Single In-line Memory Module - модуль памяти с однорядными контактами); DIMM (Dual In-line Memory Module - модуль памяти с двухрядными контактами); SO DIMM (Small Outline DIMM - малый размер DIMM). Контакты разъемов модулей памяти покрывают золотом или сплавом никеля и палладия.

Модули SIMM представляет собой плату с плоскими контактами вдоль одной стороны; в разъем материнской платы их устанавливают под углом с последующим поворотом в рабочее (вертикальное) положение с помощью защелок. Существуют два типа модулей SIMM: 30-контактные с разрядностью 9 бит (8 бит данных и 1 бит контроля четности); 72-контактные с разрядностью 32 бит (без контроля) или 36 бит (с контролем четности). Поэтому для 32-битной шины требовалось использовать четыре банка 30-контактных модулей SIMM или один 72-контактный модуль; для 64-разрядной шины - два банка 72-контактных модулей.

Модули DIMM бывают двух типов: 168-контактные (для установки микросхем SDRAM) и 184-контактные DIMM (для микросхем DDR SDRAM). Они одинаковы по установочным размерам, вставляются в разъем системной платы вертикально и фиксируются защелками. В переходный период материнские платы оснащались разъемами для обоих типов DIMM-модулей, но в настоящее время в ПЭВМ модули SIMM и 168-контактные DIMM устарели и не используются.

Модули SO DIMM с 72- и 144-контактными разъемами применяются в портативных ПЭВМ. В материнскую плату их устанавливают аналогично модулям SIMM.

В настоящее время наиболее востребованы модули DIMM с микросхемами DDR SDRAM, DDR2 SDRAM и DDR3 SDRAM.

Модули DIMM на основе микросхем DDR SDRAM выпускаются со 184 контактами (рис. 1).

Рис. 1. Плата 184-контактного модуля DIMM:

1 - микросхемы DDR SDRAM; 2 - микросхема буферной памяти и контроля ошибок; 3 - вырезы для крепления платы; 4 - ключ; 5 - разъем

Ключом на модуле памяти является вырез в плате, который в сочетании с соответствующим выступом в разъеме системной платы не позволяет установить модуль не той стороной. Кроме того, ключ у несовместимых модулей ОЗУ может иметь разное размещение (сдвигаться между контактами в одну или другую сторону), указывая номинал напряжения питания (2,5 или 1,8 В) и защищая от электрического повреждения.

Микросхемы памяти типа DDR2, DDR3, приходящие на смену DDR, производятся в виде 240-контактных модулей DIMM.

Современные модули памяти для ПЭВМ поставляются в вариантах 512 Мбайт, 1,2 и 4 Гбайт.

На момент написания этой статьи на рынке доминируют модули памяти DDR третьего поколения или DDR3. Память типа DDR3 имеет более высокие тактовые частоты (до 2400 мегагерц), пониженное примерно на 30-40% (по сравнению с DDR2) энергопотребление и соответственно меньшее тепловыделение.

Однако, до сих пор, можно встретить память стандарта DDR2 и морально устаревшую (а потому местами жутко дорогую) DDR1. Все эти три типа полностью несовместимы друг с другом как по электрическим параметрам (у DDR3 меньше напряжение), так и физическим (смотрите изображение).

Необходимый и достаточный объем оперативной памяти зависит от операционной системы и прикладных программ, определяющих целевое использование ПЭВМ. Если выпланируете использовать компьютер в офисных или «мультимедийных» целях (Интернет, работа с офисными приложениями, прослушивание музыки и др.) - вам хватит 1024 Мб памяти (1 Гб). Для требовательных компьютерных игр, работы с видео, звукозаписи и сведения музыкальных композиций в домаших условиях – минимум 2 Гб (2048 Мб) ОЗУ. Желательно - 3 гигабайта. Следует также отметить, что 32-битные версии (x86) Windows не поддерживают объём оперативной памяти свыше 3 гигабайт. Также отметим, что операционные системы Windows Vista и Windows 7 для комфортной работы с ними требуют как минимум 1 Гб оперативной памяти, а при включении всех графических эффектов - до 1.5 гигабайт.

Характеристики и маркировка оперативной памяти

Рассмотрим маркировки

Объем

Первым обозначением в строке идет объем модулей памяти. В частности, в первом случае это - 4 ГБ, а во втором - 1 ГБ. Правда, 4 ГБ в данном случае реализованы не одной планкой памяти, а двумя. Это так называемый Kit of 2 - набор из двух планок. Обычно такие наборы покупаются для установки планок в двухканальном режиме в параллельные слоты. Тот факт, что они имеют одинаковые параметры, улучшит их совместимость, что благоприятно сказывается на стабильности.

Тип корпуса

DIMM/SO-DIMM - это тип корпуса планки памяти. Все современные модули памяти выпускаются в одном из двух указанных конструктивных исполнений.

Тип памяти

Тип памяти - это архитектура, по которой организованы сами микросхемы памяти. Она влияет на все технические характеристики памяти - производительность, частоту, напряжение питание и др.

Частоты передачи данных для типов памяти:

    DDR: 200-400 МГц

    DDR2: 533-1200 МГц

    DDR3: 800-2400 МГц

Цифра, указываемая после типа памяти - и есть частота: DDR400, DDR2-800.

Модули памяти всех типов отличаются напряжением питания и разъемами и не позволяют быть вставленными друг в друга.

Частота передачи данных характеризует потенциал шины памяти по передаче данных за единицу времени: чем больше частота, тем больше данных можно передать.

Однако, есть еще факторы, такие как количество каналов памяти, разрядность шины памяти. Они также влияют на производительность подсистем памяти.

Стандарт скорости модуля памяти

Для комплексной оценки возможностей RAM используется термин пропускная способность памяти. Он учитывает и частоту, на которой передаются данные и разрядность шины и количество каналов памяти.

Пропускная способность (B) = Частота (f) x разрядность шины памяти (c) x кол-во каналов (k)

Например, при использовании памяти DDR400 400 МГц и двухканального контроллера памяти пропускная способность будет: (400 МГц x 64 бит x 2)/ 8 бит = 6400 Мбайт/с

В обозначении для облегчения понимания скорости модуля указывается и стандарт пропускной способности памяти. Он как раз и показывает, какую пропускную способность имеет модуль.

Все эти стандарты начинаются с букв PC и далее идут цифры, указывающие пропускную способность памяти в Мбайтах в секунду.

Тайминги

Тайминги - это задержки при обращении к микросхемам памяти. Естественно, чем они меньше - тем быстрее работает модуль.

Дело в том, что микросхемы памяти на модуле имеют матричную структуру - представлены в виде ячеек матрицы с номером строки и номером столбца. При обращении к ячейке памяти считывается вся строка, в которой находится нужная ячейка.

Сначала происходит выбор нужной строки, затем нужного столбца. На пересечении строки и номера столбца и находится нужная ячейка. С учетом огромных объемом современной RAM такие матрицы памяти не целиковые - для более быстрого доступа к ячейкам памяти они разбиты на страницы и банки. Сначала происходит обращение к банку памяти, активизация страницы в нем, затем уже происходит работа в пределах текущей страницы: выбор строки и столбца. Все эти действия происходит с определенно задержкой друг относительно друг друга.

Основные тайминги RAM - это задержка между подачей номера строки и номера столбца, называемая временем полного доступа (RAS to CAS delay, RCD), задержка между подачей номера столбца и получением содержимого ячейки, называемая временем рабочего цикла (CAS latency, CL), задержка между чтением последней ячейки и подачей номера новой строки (RAS precharge, RP). Тайминги измеряются в наносекундах (нс).

Эти тайминги так и идут друг за другом в порядке выполнения операций и также обозначаются схематично 5-5-5-15. В данном случае все три тайминга по 5 нс, а общий рабочий цикл - 15 нс с момента активизации строки.

Главным таймингом считается CAS latency, который часто обозначается сокращенно CL=5. Именно он в наибольшей степени "тормозит" память.

Основываясь на этой информации, вы сможете грамотно выбрать подходящий модуль памяти.

Производитель и его part number

Каждый производитель каждому своему продукту или детали дает его внутреннюю производственную маркировку, называемую P/N (part number) - номер детали.

Для модулей памяти у разных производителей она выглядит примерно так:

    Kingston KVR800D2N6/1G

  • Corsair XMS2 CM2X1024-6400C5

На сайте многих производителей памяти можно изучить, как читается их Part Number. Модули Kingston семейства ValueRAM:

Последняя маркировка говорит о многом, а именно:

KVR – производитель Kingston ValueRAM

1066 – рабочая частота (Mhz)

D3 - тип памяти (DDR3)

D (Dual) – rank/ранг. Двухранговый модуль – это два логических модуля, распаянных на одном физическом и пользующихся поочерёдно одним и тем же физическим каналом (нужен для достижения максимального объёма оперативной памяти при ограниченном количестве слотов)

8 – 8 чипов памяти DRAM

R – Registered, указывает на стабильное функционирование без сбоев и ошибок в течение как можно большего непрерывного промежутка времени

7 – задержка сигнала (CAS=7)

S – термодатчик на модуле

K3 – набор (кит) из трех модулей

6G – суммарный объем кита (трех планок) равен 6 GB.

По маркировке OCZ можно понять, что это модуль DDR2 объемом 1 Гбайт, частотой 800 МГц.

По маркировке CM2X1024-6400C5 понятно, что это модуль DDR2 объемом 1024 Мбайт стандарта PC2-6400 и задержками CL=5.

Некоторые производители вместо частоты или стандарта памяти указывают время в нс доступа к чипу памяти. По этому времени можно понять, какая используется частота. Так поступает Micron: MT47H128M16HG-3. Цифра в конце обозначает, что время доступа - 3 нс (0.003 мс).

По известной форуме T=1/f частота работы чипа f=1/T: 1/0,003 = 333 МГц. Частота передачи данных в 2 раза выше - 667 МГц. Соответственно, данный модуль DDR2-667.

Диагностика возможных проблем с модулями памяти

Модуль памяти состоит из нескольких микросхем, размещенных на одной плате. Он является одним из самых надежных компонентов компьютера. К тому же, очень маловероятно поступление в продажу модулей с какими-то дефектами, так как производители перед отправкой в продажу тщательно их тестируют. Но такая вероятность все же существует, так как даже один производитель сейчас выпускает очень большое количество модулей.

В реальной ситуации повредить его очень просто. Достаточно вспомнить о статическом электричестве. Например, лучше не пробуйте, купив модуль памяти на 1ГБ, вставлять его одной рукой в компьютер, а второй - гладить своего кота. Кроме статического электричества на работоспособности микросхем негативно отражаются перепады напряжения в сети и неисправность блока питания. То же можно сказать и о необдуманном повышении питающего память напряжения при разгоне.

Если ваш компьютер находится в пыльном или влажном помещении, это может привести к порче контактов в разъемах памяти на материнской плате. Причиной неисправности может стать повышение температуры самих модулей и других компонентов внутри корпуса. При неаккуратном обращении можно просто физически повредить модуль памяти. Это одна из причин, по которой мы за радиаторы на модулях памяти, они не сильно понижают их температуру, но служат хорошую службу в повышении прочности.

Неисправность модуля памяти может проявиться множеством различных симптомов. Попробуем выделить наиболее распространенные:

    Появление синих экранов с сообщениями об ошибках во время установки Windows 98/2000/XP. Это один из самых верных признаков существования проблем с памятью.

    Периодические сбои в работе и появление синих экранов во время работы Windows. Причиной этого может быть не только память, но и повышение температуры внутри корпуса, так что стоит проверить и эту возможность.

    Сбои во время операций, интенсивно использующих память: трехмерные игры, тесты, компиляция, Photoshop и т.п.

    Невозможность загрузки компьютера. Это может сопровождаться продолжительными звуковыми сигналами, с помощью которых BIOS сообщает о проблеме с памятью. В этом случае вы не сможете проверить память с помощью диагностирующих программ. Единственный способ убедиться, что дело действительно в памяти - поменять модуль или самостоятельно, или в сервисном центре.

Чтобы это проверить, выключите компьютер, освободите разъем, открыв две защелки, достаньте модуль из разъема и аккуратно поставьте его в другой разъем, прижав защелки. После этого включите компьютер и повторите тестирование. Если снова обнаружены ошибки, то модуль неисправный, а если ошибок нет, то разъем.

– устанавливать модули памяти с одинаковым объемом;

– модули должны совпадать по частоте работы (Mhz), иначе все они будут работать на частоте самой медленной памяти;

– совмещать тайминги, латентности (задержки) памяти;

– модули памяти лучше одного производителя и одной модели.

Основные правила установка памяти:

    все работы проводите при полностью отключенном от питающей сети компьютере, сухими руками;

    не прилагайте излишних усилий – модули памяти очень хрупкие!

    системный блок располагайте на прочной и устойчивой поверхности.

Шаг 1.

откройте боковую крышку системного блока (у стандартного вертикального корпуса – это левая крышка, если смотреть на системник спереди).

Примечание. Количество слотов ОП обычно составляет 2-6 разъемов для большинства материнских плат, применяемых в домашних компьютерах. Перед установкой обратите внимание на видеокарту – она может мешать установке оперативной памяти. Если она мешает, то временно демонтируйте её.

Шаг 2.

На свободном слоте, выбранном для установки оперативки, отстегните специальные защелки на краях.

Примечание. Внутри каждого разъема имеются небольшие ключи-перемычки, а на контактной части модулей памяти соответствующие им вырезы. Их взаимное совмещение исключает неправильную установку памяти или установку модулей другого типа. У каждого типа разное расположение и количество прорезей, а следовательно, и ключей на разъемах материнской платы (об этом мы уже упоминали, когда говорили про типы памяти).

Шаг 3.

Совместите прорезь на памяти с ключом в слоте материнской платы (как показано на изображении).

Шаг 4.

Вставьте модуль DIMM в разъем, нажимая на его верхний край.

Шаг 5.

Осторожно нажимайте до тех пор, пока модуль полностью не установиться в разъем, и фиксирующие защелки по краям разъема не встанут на место.

Шаг 6.

Убедитесь, что удерживающие фиксаторы встали на место и закрылись полностью.

КОНТРОЛЬНЫЕ ВОПРОСЫ

    Сравните модули ОЗУ: SIMM, DIMM и SO DIMM.

    Схема 184-контактного модуля DIMM.

    Чем отличаются модули памяти стандартов DDR, DDR2, DDR3 (устно).

    Какой достаточный объем памяти для ПЭВМ?

    Перечислите характеристики памяти, которые можно прочитать в ее маркировке?

    Пропускная способность памяти, как рассчитать пропускную способность?

    Что такое тайминг? В чем измеряется? Как обозначается?

    Что такое part number? Расшифруйте маркировку, обозначенную рамкой на рисунке.

    Расшифруйте маркировки:

    4096Mb (2x2048Mb) DIMM DDR2 PC2-8500 Corsair XMS2 C5 BOX

    1024Mb SO-DIMM DDR2 PC6400 OCZ OCZ2M8001G (5-5-5-15) Retail

    Перечислите наиболее распространенные неисправности модуля памяти.

    Основные правила установки памяти (устно ).

ПРАКТИЧЕСКИЕ ЗАДАНИЯ:

    Для представленной системной платы подбирать соответствующий модуль оперативной памяти.

    Исследовать маркировку модуля.

    Установить модуль на системной плате.

Аббревиатура ОЗУ расшифровывается как Оперативное Запоминающее Устройство. В мире компьютеров, ноутбуков планшетов и смартфонов, оперативная память (ОЗУ) — это специальное устройство, предназначенное для хранения и текущего изменения информации при работе компьютера. Для чего она нужна?! Попробую объяснить принцип работы оперативки «на пальцах». Допустим, Вы включили компьютер и запустили какую-нибудь программу. Сначала она будет считана с жесткого диска компьютера или ноутбука, а затем — перенесена в оперативную память. Здесь она будет висеть до момента завершения работы приложения и, при необходимости, будет изменять, стирать, дописывать, переписывать значения используемых параметров и переменных, необходимых для функционирования программы.
Но зачем это нужно, если приложение уже записано в постоянной памяти (ПЗУ), то есть на жёстком диске?! А вот зачем. ОЗУ работает с очень быстрой скоростью, во много раз большей скорости считывания и изменения данных на винчестере компа. Именно поэтому, чтобы софт работал быстро, операционная система и переносит его в оперативную память. Главная особенность её работы — информация теряется после выключения питания ПК.

Конструктивно, такой вид памяти выполнен в виде небольшой платы с напаянными на неё в ряд площадками с ячейками памяти. Ячейки могут располагаться как с одной, так и с обеих сторон микросхемы. На сленге сисадминов, одна такая плата называется «банка» или «плашка».

За границей используется аббревиатура RAM — Random Access Memory — что в переводе означает «Запоминающее устройство с произвольной выборкой».

Основные характеристики работы оперативной памяти — скорость передачи данных (ГБит/с) и частота тактового сигнала шины памяти (MHz).

Со скоростью передачи информации думаю понятно. А что такое «частота оперативной памяти»?! Простыми словами — это скорость выполнения операций. Более сложным языком — скорость обмена сигналами между центральным процессором ПК и модулем RAM. Чем выше частота, тем быстрее работает ОЗУ. При этом стоит учитывать ещё и так называемые «Тайминги». Тайминг — это задержка сигнала по времени. Другое название — Латентность. Представьте себе, что два совершенно одинаковых по скорости и частоте модуля памяти могут иметь совершенно разную пропускную способность. А всё дело как раз в таймингах, которые показывают за сколько тактовых циклов процессора чип успевает выполнить определённую операцию. Чем ниже тайминги, тем быстрее работает RAM.

DIMM, SDRAM, DDR — что это?!

Эти аббревиатуры, используемые для маркировки планок оперативной памяти и означающие используемую технологию производства и тип используемых микросхем.

DIMM — это двухсторонняя плата, где контакты к ячейкам RAM расположены по обе стороны модуля — Dual In-Line Memory Module. Они пришли на смену SIMM , который на сегодняшний день не используются. Так же были модули RIMM , которые пыталась продвигать компания Intel вместе со своим процессором Pentium 4, но они так и не прижились.

SDRAM — это вид ОЗУ, который на сегодняшний день используется на всех компьютерах и ноутбуках. Расшифровывается как «Synchronous Dynamic Random Access Memory», что в переводе на великий и могучий означает: «синхронная динамическая память с произвольным доступом».

DDR, DDR2, DDR3, DDR4 — это тип используемых планок SDRAM. Под аббревиатурой подразумевается «Double Data Rate», то есть «Удвоенная скорость передачи данных». На сегодняшний день насчитывается аж 4 типа, самый современный из них на сегодняшний день — DDR4 с частотой 2800 МГц (PC22400). Этот тип только-только появился на рынке, но планируется, что к концу 2016 года полностью займёт доминирующее положение на рынке.

GDDR — тип оперативной памяти ОЗУ для видеокарт, отличающаяся от обычных ДДР, используемых на компьютерах и ноутбуках, более высокой частотой работы, а так же более низким энергопотреблением и тепловыделением. Самый современных тип ОЗУ для видеокарт — GDDR5.

Чтобы посмотреть объём установленной оперативной памяти на компьютере или ноутбуке — совершенно не обязательно его разбирать. Эту информацию можно посмотреть в информации от операционной системы. В частности в Windows 7, 8 или Виндовс 10 достаточно просто зайти в «Свойства системы» через «Панель инструментов» или нажать комбинацию клавиш Win+Pause . Откроется вот такое окно:

В разделе «Система» смотрим строчку «Установленная память (ОЗУ)», в ней как раз и указано сколько стоит оперативной памяти.

Если Вам нужно узнать более продвинутую информацию — сколько модулей ОЗУ установлено, какой объём, тайминги и частота планок — воспользуйтесь одной из специальных диагностических утилит — Aida64 , Everest , SiSoft Sandra и т.п. Интерефейс у них примерно похожий. Заходим в сводку информации по установленному оборудованию «Summary» и смотрим в раздел «Материнская плата» (Motherboard), строчка «Системная память» (System Memory):

Как увеличить объём оперативной памяти?!

Здесь ответ очень просто — идём в магазин и покупаем. Но перед тем, как отправляться в путь — запустите одну из указанных выше программ и посмотрите сколько модулей уже установлено в материнскую плату и есть ли свободные места. Затем, перепишите название, марку, модель и частоту используемых планок ОЗУ. Ну или просто сфотографируйте окно с информацией на телефон и покажите продавцу-консультанту в магазине. Далее он уже предложит выбор доступного товара.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows