Транспортные протоколы - UDP. Протокол UDP

Транспортные протоколы - UDP. Протокол UDP

18.08.2019

UDP (англ. User Datagram Protocol - протокол пользовательских датаграмм) - это транспортный протокол для передачи данных в сетях IP без установления соединения. Он является одним из самых простых протоколов транспортного уровня модели OSI. Его IP-идентификатор - 0x11.

UDP обычно используется в таких приложениях, как потоковое видео и компьютерные игры, где допускается потеря пакетов, а повторный запрос затруднён или не оправдан, либо в приложениях вида запрос-ответ (например, запросы к DNS), где создание соединения занимает больше ресурсов, чем повторная отправка. Фактически функции UDP сводятся к операциям мультиплексирования и демультиплексирования, а также несложной проверке наличия ошибок в данных. Таким образом, при использовании U DP приложение почти напрямую взаимодействует с протоколом сетевого уровня IP.

UDP получает сообщения от прикладного уровня, добавляет к ним поля номеров портов отправителя и получателя для демультиплексирования приемной стороной, а также два других специальных поля и передает полученный сегмент сетевому уровню. Сетевой уровень заключает сегмент в дейтаграмму и «по возможности» передает ее хосту назначения. Если последний успешно получает сегмент, протокол UDP с помощью поля номера порта получателя направляет данные сегмента нужному процессу. Поэтому говорят, что UDP осуществляет передачу данных без установления соединения.

Примером протокола прикладного уровня, использующего службы протокола UDP, является DNS. Когда DNS-приложение генерирует запрос, оно создает DNS-сообщение и передает его протоколу UDP.


Сравнение протоколов UDP от TCP.

Если приложению требуется подтверждение доставки сообщения, оно использует протокол TCP . TCP разбивает сообщение на фрагменты меньшего размера, именуемые сегментами. Эти сегменты последовательно нумеруются и передаются IP-протоколу, который затем осуществляет сборку пакетов. TCP отслеживает количество сегментов, отправленных на тот или иной узел тем или иным приложением. Если отправитель не получает подтверждения в течение определенного периода времени, то TCP рассматривает эти сегменты как потерянные и повторяет их отправку. Повторно отправляется только потерянная часть сообщения, а не все сообщение целиком.

Протокол TCP на принимающем узле отвечает за повторную сборку сегментов сообщений и их передачу соответствующему приложению.

FTP и HTTP – это примеры приложений, в которых для обеспечения доставки данных применяется протокол TCP.

ПротоколUDP выполняет негарантированную доставку данных и не запрашивает подтверждения от получателя. Протокол UDP более предпочтителен для передачи потокового аудио, видео и голосовой связи на основе протокола IP (VoIP). Подтверждение доставки лишь замедлит процесс передачи данных, и при этом повторная доставка нежелательна. Примером использования протокола UDP является интернет-радио.


Протокол ARP. Применение.

ARP (англ. Address Resolution Protocol - протокол определения адреса) - использующийся в компьютерных сетях протокол низкого уровня, предназначенный для определения адреса канального уровня по известному адресу сетевого уровня. Наибольшее распространение этот протокол получил благодаря повсеместности сетей IP, построенных поверх Ethernet, поскольку практически в 100 % случаев при таком сочетании используется ARP. Описание протокола было опубликовано в ноябре 1982 года в RFC 826. ARP был спроектирован для случая передачи IP-пакетов через сегмент Ethernet. При этом общий принцип, предложенный для ARP, может, и был использован и для сетей других типов.

Существуют следующие типы сообщений ARP: запрос ARP (ARP request) и ответ ARP (ARP reply). Система-отправитель при помощи запроса ARP запрашивает физический адрес системы-получателя. Ответ (физический адрес узла-получателя) приходит в виде ответа ARP.

Перед тем как передать пакет сетевого уровня через сегмент Ethernet, сетевой стек проверяет кэш ARP, чтобы выяснить, не зарегистрирована ли в нём уже нужная информация об узле-получателе. Если такой записи в кэше ARP нет, то выполняется широковещательный запрос ARP. Этот запрос для устройств в сети имеет следующий смысл: «Кто-нибудь знает физический адрес устройства, обладающего следующим IP-адресом?» Когда получатель с этим IP-адресом примет этот пакет, то должен будет ответить: «Да, это мой IP-адрес. Мой физический адрес следующий: …» После этого отправитель обновит свой кэш ARP и будет способен передать информацию получателю.

Записи в кэше ARP могут быть статическими и динамическими. Пример, данный выше, описывает динамическую запись кэша. Можно также создавать статические записи в таблице ARP.

ARP изначально был разработан не только для IP протокола, но в настоящее время в основном используется для сопоставления IP- и MAC-адресов.

Принцип работы

Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно.

Все узлы локальной сети получают ARP запрос и сравнивают указанный там IP-адрес с собственным.

В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP запросе отправитель указывает свой локальный адрес.

Всем привет сегодня расскажу чем отличается протокол TCP от UDP. Протоколы транспортного уровня, следующие в иерархии за IP, используются для передачи данных между прикладными процессами, реализующимися в сетевых узлах. Пакет данных, поступивший от одного компьютера другому через Интернет, должен быть передан процессу-обработчику, и именно по конкретному назначению. Транспортный уровень принимает на себя ответственность за это. На этом уровне два основных протокола – TCP и UDP.

Что означают TCP и UDP

TCP – транспортный протокол передачи данных в сетях TCP/IP, предварительно устанавливающий соединение с сетью.

UDP – транспортный протокол, передающий сообщения-датаграммы без необходимости установки соединения в IP-сети.

Напоминаю, что оба протокола работают на транспортном уровне модели OSI или TCP/IP, и понимание того чем они отличаются очень важно.

Разница между протоколами TCP и UDP

Разница между протоколами TCP и UDP – в так называемой “гарантии доставки”. TCP требует отклика от клиента, которому доставлен пакет данных, подтверждения доставки, и для этого ему необходимо установленное заранее соединение. Также протокол TCP считается надежным, тогда как UDP получил даже именование “протокол ненадежных датаграмм. TCP исключает потери данных, дублирование и перемешивание пакетов, задержки. UDP все это допускает, и соединение для работы ему не требуется. Процессы, которым данные передаются по UDP, должны обходиться полученным, даже и с потерями. TCP контролирует загруженность соединения, UDP не контролирует ничего, кроме целостности полученных датаграмм.

С другой стороны, благодаря такой не избирательности и бесконтрольности, UDP доставляет пакеты данных (датаграммы) гораздо быстрее, потому для приложений, которые рассчитаны на широкую пропускную способность и быстрый обмен, UDP можно считать оптимальным протоколом. К таковым относятся сетевые и браузерные игры, а также программы просмотра потокового видео и приложения для видеосвязи (или голосовой): от потери пакета, полной или частичной, ничего не меняется, повторять запрос не обязательно, зато загрузка происходит намного быстрее. Протокол TCP, как более надежный, с успехом применяется даже в почтовых программах, позволяя контролировать не только трафик, но и длину сообщения и скорость обмена трафиком.

Давайте рассмотрим основные отличия tcp от udp.

  1. TCP гарантирует доставку пакетов данных в неизменных виде, последовательности и без потерь, UDP ничего не гарантирует.
  2. TCP нумерует пакеты при передаче, а UDP нет
  3. TCP работает в дуплексном режиме, в одном пакете можно отправлять информацию и подтверждать получение предыдущего пакета.
  4. TCP требует заранее установленного соединения, UDP соединения не требует, у него это просто поток данных.
  5. UDP обеспечивает более высокую скорость передачи данных.
  6. TCP надежнее и осуществляет контроль над процессом обмена данными.
  7. UDP предпочтительнее для программ, воспроизводящих потоковое видео, видеофонии и телефонии, сетевых игр.
  8. UPD не содержит функций восстановления данных

Примерами UDP приложений, например можно привести, передачу DNS зон, в Active Directory, там не требуется надежность. Очень часто такие вопросы любят спрашивать на собеседованиях, так, что очень важно знать tcp и udp отличия.

Заголовки TCP и UDP

Давайте рассмотрим как выглядят заголовки двух транспортных протоколов, так как и тут отличия кардинальные.

Заголовок UDP

  • 16 битный порт источника > Указание порта источника для UDP необязательно. Если это поле используется, получатель может отправить ответ этому порту.
  • 16 битный порт назначения > Номер порта назначения
  • 16 битная длина UDP > Длина сообщения, включая заголовок и данные.
  • 16 битная контрольная сумма > Контрольная сумма заголовка и данных для проверки

Заголовок TCP

  • 16 битный порт источника > Номер порта источника
  • 16 битный порт назначения > Номер порта назначения
  • 32 битный последовательный номер > Последовательный номер генерируется источником и используется назначением, чтобы переупорядочить пакеты для создания исходного сообщения и отправить подтверждение источнику.
  • 32 битный номер подтверждения > Если установлен бит АСК поля "Управление", в данном поле содержит следующий ожидаемый последовательный номер.
  • 4 бита длина заголовка > Информация о начале пакета данных.
  • резерв > Резервируются для будущего использования.
  • 16 битная контрольная сумма > Контрольная сумма заголовка и данных; по ней определяется, был ли искажен пакет.
  • 16 битный указатель срочности > В этом поле целевое устройство получает информацию о срочности данных.
  • Параметры > Необязательные значения, которые указываются при необходимости.

Размер окна позволяет экономить трафик, рассмотрим когда его значение равно 1, тут на каждый отправленный ответ, отправитель ждет подтверждения, не совсем рационально.

При размере окна 3, отправитель отправляет уже по 3 кадра, и ждет от 4, который подразумевает, что все три кадра у него есть, +1.

Надеюсь у вас теперь есть представления об отличиях tcp udp протоколов.

Протоколы TCP и UDP

TCP- Transmission Control Protocol

Обмен данными, ориентированный на соединения, может использовать надежную связь, для обеспечения которой протокол уровня 4 посылает подтверждения о получении данных и запрашивает повторную передачу, если данные не получены или искажены. Протокол TCP использует именно такую надежную связь. TCP используется в таких прикладных протоколах, как HTTP, FTP, SMTP и Telnet.

Протокол TCP требует, чтобы перед отправкой сообщения было открыто соединение. Серверное приложение должно выполнить так называемое пассивное открытие (passive open) , чтобы создать соединение с известным номером порта, и, вместо того чтобы отправлять вызов в сеть, сервер переходит в ожидание поступления входящих запросов. Клиентское приложение должно выполнить активное открытие (active open) , отправив серверному приложению синхронизирующий порядковый номер (SYN), идентифицирующий соединение. Клиентское приложение может использовать динамический номер порта в качестве локального порта.

Сервер должен отправить клиенту подтверждение (ACK) вместе с порядковым номером (SYN) сервера. В свою очередь клиент отвечает АСК, и соединение устанавливается.

После этого может начаться процесс отправки и получения сообщений. При получении сообщения в ответ всегда отправляется сообщение АСК. Если до получения АСК отправителем истекает тайм-аут, сообщение помещается в очередь на повторную передачу.

Поля заголовка TCP перечислены в следующей таблице:

Заголовок TCP
Поле Длина Описание
Порт источника 2 байта Номер порта источника
Порт назначения 2 байта Номер порта назначения
Последовательный номер 4 байта Последовательный номер генерируется источником и используется назначением, чтобы переупорядочить пакеты для создания исходного сообщения и отправить подтверждение источнику.
Номер подтверждения 4 байта Если установлен бит АСК поля "Управление", в данном поле содержится следующий ожидаемый последовательный номер.
Смещение данных 4 бита Информация о начале пакета данных.
Резерв 6 битов Резервируются для будущего использования.
Управление 6 битов Биты управления содержат флаги, указывающие, верны ли поля подтверждения (АСК), указателя срочности (URG), следует ли сбрасывать соединение (RST), послан ли синхронизирующий последовательный номер (SYN) и т. д.
Размер окна 2 байта В этом поле указывается размер приемного буфера. Используя подтверждающие сообщения, получатель может информировать отправителя о максимальном размере данных, которые тот может отправить.
Контрольная сумма 2 байта Контрольная сумма заголовка и данных; по ней определяется, был ли искажен пакет.
Указатель срочности 2 байта В этом поле целевое устройство получает информацию о срочности данных.
Опции переменная Необязательные значения, которые указываются при необходимости.
Дополнение переменная В поле дополнения добавляется столько нулей, чтобы заголовок заканчивался на 32-битной границе.

TCP - это сложный, требующий больших затрат времени протокол, что объясняется его механизмом установления соединения, но он берет на себя заботу о гарантированной доставке пакетов, избавляя нас от необходимости включать эту функциональную возможность в прикладной протокол.

Протокол TCP имеет встроенную возможность надежной доставки. Если сообщение не отправлено корректно, мы получим сообщение об ошибке. Протокол TCP определен в RFC 793.

UDP - User Datagram Protocol

В отличие от TCP UDP - очень быстрый протокол, поскольку в нем определен самый минимальный механизм, необходимый для передачи данных. Конечно, он имеет некоторые недостатки. Сообщения поступают в любом порядке, и то, которое отправлено первым, может быть получено последним. Доставка сообщений UDP вовсе не гарантируется, сообщение может потеряться, и могут быть получены две копии одного и того же сообщения. Последний случай возникает, если для отправки сообщений в один адрес использовать два разных маршрута.

UDP не требует открывать соединение, и данные могут быть отправлены сразу же, как только они подготовлены. UDP не отправляет подтверждающие сообщения, поэтому данные могут быть получены или потеряны. Если при использовании UDP требуется надежная передача данных, ее следует реализовать в протоколе более высокого уровня.

Так в чем же преимущества UDP, зачем может понадобиться такой ненадежный протокол? Чтобы понять причину использования UDP, нужно различать однонаправленную передачу, широковещательную передачу и групповую рассылку.

Однонаправленное (unicast) сообщение отправляется из одного узла только в один другой узел. Это также называется связью "точка-точка". Протокол TCP поддерживает лишь однонаправленную связь. Если серверу нужно с помощью TCP взаимодействовать с несколькими клиентами, каждый клиент должен установить соединение, поскольку сообщения могут отправляться только одиночным узлам.

Широковещательная передача (broadcast) означает, что сообщение отправляется всем узлам сети. Групповая рассылка (multicast) - это промежуточный механизм: сообщения отправляются выбранным группам узлов.

UDP может использоваться для однонаправленной связи, если требуется быстрая передача, например для доставки мультимедийных данных, но главные преимущества UDP касаются широковещательной передачи и групповой рассылки.

Протоколы транспортного уровня осуществляют передачу данных между «прикладными процессами», выполняющимися на машинах, подключенных к сети. Данные с сетевого уровня направляются сетевым ПО конкретному процессу получателю и наоборот. На каждом компьютере может выполняться множество процессов, более того, прикладной процесс может иметь несколько точек входа, выступающих в качестве адреса назначения для пакетов данных.

Для однозначной идентификации сетевого приложения, работающего на машине сети, для протоколов транспортного уровня реализована концепция т.н. портов . Порт вместе с IP-адресом однозначно определяют прикладной процесс на любой машине сети. Данный набор идентификационных параметров называетсясокетом (socket ) . Порты задаются 16-битным числом от 0 до 65535.

Существует три типа номеров портов: назначенные (assigned ), зарегистрированные (registered ) идинамические (dynamic ) . Назначенные номера портов располагаются в диапазоне 0 – 1023 и полностью контролируются Комиссией по константамInternet. Они применяются для общеизвестных и стандартизированных сетевых служб. Зарегистрированные номера портов от 1024 до 65535 предназначены для регистрации производителями сетевого ПО своих приложений, работающих с данными портами. Динамические номера портов присваиваются сетевым ПО на локальной машине и могут повторяться от станции к станции для различных приложений.

Протокол udp

Протокол UDP(UserDatagramProtocol– протокол дейтаграмм пользователя) является не ориентированным на соединение транспортным протоколом с ненадежной доставкой данных. Т.е. он не обеспечивает подтверждение доставки пакетов, не сохраняет порядок входящих пакетов, может терять пакеты или дублировать их. ФункционированиеUDPпохоже наIP, за исключением введения понятия портов.UDPобычно работает быстрееTCPза счет меньших «накладных расходов». Он применяется приложениями, которые не нуждаются в надежной доставке, либо реализуют их сами. Например, сервера имен (NameServers), службаTFTP(TrivialFileTransferProtocol, тривиальный протокол передачи данных),SNMP(SimpleNetworkManagementProtocol, простой протокол управления сетью), системы аутентификации. ИдентификаторUDPпротокола в полеProtocol заголовкаIP– число 17.

Любая прикладная программа, использующая UDPв качестве своей службы транспортного уровня, должна сама обеспечить механизмы подтверждения и систему последовательной нумерации, чтобы гарантировать доставку пакетов в том же порядке, в котором они были высланы.

Destination Port

Рис. Формат заголовка UDP-пакета

Назначение полей udp пакета:

Номер порта отправителя – Source Port (16 бит) – содержит номер порта, с которого был отправлен пакет, когда это имеет значение (например, отправитель ожидает ответа). Если это поле не используется, оно заполняется нулями.

Номер порта назначения – Destination Port (16 бит) – содержит номер порта, на который будет доставлен пакет.

Длина – Length (16 бит) – содержит длину данной дейтаграммы в байтах, включая заголовок и данные.

Поле контрольной суммы – Checksum (16 бит) – представляет собой побитное дополнение 16-битной суммы 16-битных слов. В вычислении суммы участвуют: данные пакета с полями выравнивания по 16-битной границе (нулевые), заголовокUDP-пакета, псевдозаголовок (информация отIP-протокола).

UDP использует простую модель передачи, без неявных "рукопожатий" для обеспечения надежности, упорядочивания или целостности данных. Таким образом, UDP предоставляет ненадежный сервис, и датаграммы могут прийти не по порядку, дублироваться или вовсе исчезнуть без следа. UDP подразумевает, что проверка ошибок и исправление либо не необходимы, либо должны исполняться в приложении. Чувствительные ко времени приложения часто используют UDP, так как предпочтительнее сбросить пакеты, чем ждать задержавшиеся пакеты, что может оказаться невозможным в системах реального времени . При необходимости исправления ошибок на сетевом уровне интерфейса приложение может задействовать TCP или SCTP , разработанные для этой цели.

Природа UDP как протокола без сохранения состояния также полезна для серверов, отвечающих на небольшие запросы от огромного числа клиентов, например DNS и потоковые мультимедийные приложения вроде IPTV , Voice over IP , протоколы туннелирования IP и многие онлайн-игры .

Служебные порты

UDP не предоставляет никаких гарантий доставки сообщения для протокола верхнего уровня и не сохраняет состояния отправленных сообщений. По этой причине UDP иногда называют Unreliable Datagram Protocol (англ. - Ненадежный протокол датаграмм).

Перед расчетом контрольной суммы UDP-сообщение дополняется в конце нулевыми битами до длины, кратной 16 битам (псевдозаголовок и добавочные нулевые биты не отправляются вместе с сообщением). Поле контрольной суммы в UDP-заголовке во время расчета контрольной суммы отправляемого сообщения принимается нулевым.

Для расчета контрольной суммы псевдозаголовок и UDP-сообщение разбивается на слова (1 слово = 2 байта (октета) = 16 бит). Затем рассчитывается поразрядное дополнение до единицы суммы всех слов с поразрядным дополнением. Результат записывается в соответствующее поле в UDP-заголовке.

Нулевое значение контрольной суммы зарезервировано, и означает что датаграмма не имеет контрольной суммы. В случае, если вычисленная контрольная сумма получилась равной нулю, поле заполняют двоичнымим единицами.

При получении сообщения получатель считает контрольную сумму заново (уже учитывая поле контрольной суммы), и, если в результате получится двоичное число из шестнадцати единиц (то есть 0xffff), то контрольная сумма считается сошедшейся. Если сумма не сходится (данные были повреждены при передаче), датаграмма уничтожается.

Пример расчёта контрольной суммы

Для примера рассчитаем контрольную сумму нескольких 16-битных слов: 0x398a, 0xf802, 0x14b2, 0xc281 . Находим их сумму с поразрядным дополнением.
0x398a + 0xf802 = 0x1318c → 0x318d
0x318d + 0x14b2 = 0x0463f → 0x463f
0x463f + 0xc281 = 0x108c0 → 0x08c1
Теперь находим поразрядное дополнение до единицы полученного результата:

0x08c1 = 0000 1000 1100 0001 → 1111 0111 0011 1110 = 0xf73e или, иначе - 0xffff − 0x08c1 = 0xf73e . Это и есть искомая контрольная сумма.

При вычислении контрольной суммы опять используется псевдозаголовок, имитирующий реальный IPv6-заголовок:

Биты 0 – 7 8 – 15 16 – 23 24 – 31
0 Адрес источника
32
64
96
128 Адрес получателя
160
192
224
256 Длина UDP
288 Нули Следующий заголовок
320 Порт источника Порт получателя
352 Длина Контрольная сумма
384+
Данные

Адрес источника такой же, как и в IPv6-заголовке. Адрес получателя - финальный получатель; если в IPv6-пакете не содержится заголовка маршрутизации (Routing), то это будет адрес получателя из IPv6-заголовка, в противном случае, на начальном узле, это будет адрес последнего элемента заголовка маршрутизации, а на узле-получателе - адрес получателя из IPv6-заголовка. Значение "Следующий заголовок" равно значению протокола - 17 для UDP. Длина UDP - длина UDP-заголовка и данных.

Надежность и решения проблемы перегрузок

Из-за недостатка надежности, приложения UDP должны быть готовыми к некоторым потерям, ошибкам и дублированиям. Некоторые из них (например, TFTP) могут при необходимости добавить элементарные механизмы обеспечения надежности на прикладном уровне.

Но чаще такие механизмы не используются UDP-приложениями и даже мешают им. Потоковые медиа , многопользовательские игры в реальном времени и VoIP - примеры приложений, часто использующих протокол UDP. В этих конкретных приложениях потеря пакетов обычно не является большой проблемой. Если приложению необходим высокий уровень надежности, то можно использовать другой протокол (TCP) или erasure codes.

Более серьезной потенциальной проблемой является то, что в отличие от TCP, основанные на UDP приложения не обязательно имеют хорошие механизмы контроля и избежания перегрузок. Чувствительные к перегрузкам UDP-приложения, которые потребляют значительную часть доступной пропускной способности, могут поставить под угрозу стабильность в Интернете.

Сетевые механизмы были предназначены для того, чтобы свести к минимуму возможные эффекты от перегрузок при неконтролируемых, высокоскоростных нагрузках. Такие сетевые элементы, как маршрутизаторы, использующие пакетные очереди и техники сброса, часто являются единственным доступным инструментом для замедления избыточного UDP-трафика. DCCP (англ. Datagram Congestion Control Protocol - протокол контроля за перегрузками датаграмм) разработан как частичное решение этой потенциальной проблемы с помощью добавления конечному хосту механизмов для отслеживания перегрузок для высокоскоростных UDP-потоков вроде потоковых медиа.

Приложения

Многочисленные ключевые Интернет-приложения используют UDP, в их числе - DNS (где запросы должны быть быстрыми и состоять только из одного запроса, за которым следует один пакет ответа), Простой Протокол Управления Сетями (SNMP), Протокол Маршрутной Информации (RIP), Протокол Динамической Конфигурации Узла (DHCP).

Голосовой и видеотрафик обычно передается с помощью UDP. Протоколы потокового видео в реальном времени и аудио разработаны для обработки случайных потерь пакетов так, что качество лишь незначительно уменьшается вместо больших задержек при повторной передаче потерянных пакетов. Поскольку и TCP, и UDP работают с одной и той же сетью, многие компании замечают, что недавнее увеличение UDP-трафика из-за этих приложений реального времени мешает производительности TCP-приложений вроде систем баз данных или бухгалтерского учета . Так как и бизнес-приложения, и приложения в реальном времени важны для компаний, развитие качества решений проблемы некоторыми рассматривается в качестве важнейшего приоритета.

Сравнение UDP и TCP

TCP - ориентированный на соединение протокол, что означает необходимость "рукопожатия" для установки соединения между двумя хостами. Как только соединение установлено, пользователи могут отправлять данные в обоих направлениях.

  • Надежность - TCP управляет подтверждением, повторной передачей и тайм-аутом сообщений. Производятся многочисленные попытки доставить сообщение. Если оно потеряется на пути, сервер вновь запросит потерянную часть. В TCP нет ни пропавших данных, ни (в случае многочисленных тайм-аутов) разорванных соединений.
  • Упорядоченность - если два сообщения последовательно отправлены, первое сообщение достигнет приложения-получателя первым. Если участки данных прибывают в неверном порядке, TCP отправляет неупорядоченные данные в буфер до тех пор, пока все данные не могут быть упорядочены и переданы приложению.
  • Тяжеловесность - TCP необходимо три пакета для установки сокет-соединения перед тем, как отправить данные. TCP следит за надежностью и перегрузками.
  • Потоковость - данные читаются как поток байтов , не передается никаких особых обозначений для границ сообщения или сегментов.

UDP - более простой, основанный на сообщениях протокол без установления соединения. Протоколы такого типа не устанавливают выделенного соединения между двумя хостами. Связь достигается путем передачи информации в одном направлении от источника к получателю без проверки готовности или состояния получателя. Однако, основным преимуществом UDP над TCP являются приложения для голосовой связи через интернет-протокол (Voice over IP, VoIP), в котором любое "рукопожатие" помешало бы хорошей голосовой связи. В VoIP считается, что конечные пользователи в реальном времени предоставят любое необходимое подтверждение о получении сообщения.

  • Ненадежный - когда сообщение посылается, неизвестно достигнет ли оно своего назначения - оно может потеряться по пути. Нет таких понятий, как подтверждение, повторная передача, тайм-аут.
  • Неупорядоченность - если два сообщения отправлены одному получателю, то порядок их достижения цели не может быть предугадан.
  • Легковесность - никакого упорядочивания сообщений, никакого отслеживания соединений и т.д. Это небольшой транспортный уровень, разработанный на IP.
  • Датаграммы - пакеты посылаются по отдельности и проверяются на целостность только если они прибыли. Пакеты имеют определенные границы, которые соблюдаются после получения, то есть операция чтения на сокете-получателе выдаст сообщение таким, каким оно было изначально послано.
  • Нет контроля перегрузок - UDP сам по себе не избегает перегрузок. Для приложений с большой пропускной способностью возможно вызвать коллапс перегрузок, если только они не реализуют меры контроля на прикладном уровне.

Ссылки на RFC

  • RFC 768 – Протокол Пользовательских Датаграмм
  • RFC 2460 – Интернет протокол, спецификация версии 6 (IPv6)
  • RFC 2675 - IPv6 Jumbograms
  • RFC 4113 – Management Information Base for the UDP
  • RFC 5405 – Unicast UDP Usage Guidelines for Application Designers

См. также

Ссылки

  • Kurose, J. F.; Ross, K. W. (2010). Computer Networking: A Top-Down Approach (5th ed.). Boston, MA: Pearson Education. ISBN 978-0-13-136548-3 .
  • Forouzan, B.A. (2000). TCP/IP: Protocol Suite, 1st ed. New Delhi, India: Tata McGraw-Hill Publishing Company Limited.
  • [email protected]. "UDP Protocol Overview". Ipv6.com. Retrieved 17 August 2011.
  • Clark, M.P. (2003). Data Networks IP and the Internet, 1st ed. West Sussex, England: John Wiley & Sons Ltd.
  • Postel, J. (August 1980). RFC 768 : User Datagram Protocol. Internet Engineering Task Force. Retrieved from http://tools.ietf.org/html/rfc768
  • Deering S. & Hinden R. (December 1998). RFC 2460 : Internet Protocol, Version 6 (IPv6) Specification. Internet Engineering Task Force. Retrieved from http://tools.ietf.org/html/rfc2460
  • "The impact of UDP on Data Applications". Networkperformancedaily.com. Retrieved 17 August 2011.
  • Д. Комер. Межсетевой обмен с помощью TCP/IP. Глава 11. Протокол UDP.


© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows