Что такое tcp ip для чайников. Что такое протокол TCP-IP

Что такое tcp ip для чайников. Что такое протокол TCP-IP

24.08.2019

Когда статья начинала формироваться, планировалось уложиться в одну, но к завершению, размеры статьи стали неподъемные, было решено разделить статью на две: теория сетей и работа сетевой подсистемы в линукс. Ну что ж, начнем с теории...

Стек протоколов TCP/IP

Собственно, что есть сеть ? Сеть - это более 2х компьютеров, объединенных между собой какими-то проводами каналами связи, в более сложном примере - каким-то сетевым оборудованием и обменивающиеся между собой информацией по определенным правилам. Эти правила "диктуются" стеком протоколов TCP/IP.

Transmission Control Protocol/Internet Protocol (Стек протоколов TCP/IP) - если сказать простым языком, это набор взаимодействующих протоколов разных уровней (можно дополнить, что каждый уровень взаимодействует с соседним, то есть состыковывается, поэтому и стек , имхо, так проще понять), согласно которым происходит обмен данными в сети. Каждый протокол - это набор правил, согласно которым происходит обмен данными. Итого, стек протоколов TCP/IP - это набор наборов правил Тут может возникнуть резонный вопрос: а зачем же иметь много протоколов? Неужели нельзя обмениваться всем по одному протоколу?

Все дело в том, что каждый протокол описывает строго отведенные ему правила. Кроме того, протоколы разделены по уровням функциональности, что позволяет работе сетевого оборудования и программного обеспечения становится гораздо проще, прозрачнее и выполнять "свой" круг задач. Для разделения данного набора протоколов по уровням была разработана модель сетевого взаимодействия OSI (англ. Open Systems Interconnection Basic Reference Model, 1978 г., она же - базовая эталонная модель взаимодействия открытых систем). Модель OSI состоит из семи различных уровней. Уровень отвечает за отдельный участок в работе коммуникационных систем, не зависит от рядом стоящих уровней – он только предоставляет определённые услуги. Каждый уровень выполняет свою задачу в соответствии с набором правил, называемым протоколом. Проиллюстрировать работу модели OSI можно следующим рисунком: Как передаются данные?

Из рисунка видно, что существует 7 уровней сетевого взаимодействия , которые делятся на: прикладной, представлений, сеансовый, транспортный, сетевой, канальный, физический . Каждый из уровней содержит свой набор протоколов. Список протоколов по уровням взаимодействия хорошо представлен в Википедии:

Сам стек протоколов TCP/IP развивался параллельно с принятием модели OSI и "не пересекался" с ней, в результате получилось небольшое разногласие в несоответствии стека протоколов и уровней модели OSI. Обычно, в стеке TCP/IP верхние 3 уровня (прикладной, представления и сеансовый ) модели OSI объединяют в один - прикладной . Поскольку в таком стеке не предусматривается унифицированный протокол передачи данных, функции по определению типа данных передаются приложению. Упрощенно интерпретацию стека TCP/IP относительно модели OSI можно представить так:

Данную модель сетевого взаимодействия еще называют модель DOD (от бурж. Department of Defense - Министерство обороны США). Итак, общее представление о сетевом взаимодействии рассмотрели. Для более глубокого понимания сути вопроса, могу посоветовать скачать и почитать книгу (Вито Амато "Основы организации сетей Cisco Т1 и Т2" ), ниже.

Адресация

В сети, построенной на стеке протоколов TCP/IP каждому хосту (компьютеру или устройству подключенному к сети) присвоен представляет собой 32-битовое двоичное число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками, например, 192.168.0.1. В общем случае, IP-адрес делиться на две части : адрес сети (подсети) и адрес хоста :

Как видно из иллюстрации, есть такое понятие как сеть и подсеть . Думаю, что из значений слов понятно, что IP адреса делятся на сети, а сети в свою очередь делятся на подсЕти с помощью маски подсетИ (корректнее будет сказать: адрес хоста может быть разбит на подсЕти ). Изначально, все IP адреса были поделены на определенные группы (классы адресов/сети). И существовала классовая адресация, согласно которой сети делились на строго определенные изолированные сети:

Нетрудно посчитать, что всего в пространстве адресов IP - 128 сетей по 16 777 216 адресов класса A, 16384 сети по 65536 адресов класса B и 2 097 152 сети по 256 адресов класса C, а также 268 435 456 адресов многоадресной рассылки и 134 317 728 зарезервированных адресов. С ростом сети Интернет эта система оказалась неэффективной и была вытеснена CIDR (бесклассовой адресацией), при которой количество адресов в сети определяется маской подсети.

Существует так же классификация IP адресов, как "частные" и "публичные". Под частные (они же локальные сети) сети зарезервированы следующие диапазоны адресов:

  • 10.0.0.0 - 10.255.255.255 (10.0.0.0/8 или 10/8),
  • 172.16.0.0 - 172.31.255.255 (172.16.0.0/12 или 172.16/12),
  • 192.168.0.0 - 192.168.255.255 (192.168.0.0/16 или 192.168/16).
  • 127.0.0.0 - 127.255.255.255 зарезервировано для петлевых интерфейсов (не используется для обмена между узлами сети), т.н. localhost

Кроме адреса хоста в сети TCP/IP есть такое понятие как порт. Порт является числовой характеристикой какого-то системного ресурса. Порт выделяется приложению, выполняемому на некотором сетевом хосте, для связи с приложениями, выполняемыми на других сетевых хостах (в том числе c другими приложениями на этом же хосте). С программной точки зрения, порт есть область памяти, которая контролируется каким-либо сервисом.

Для каждого из протоколов TCP и UDP стандарт определяет возможность одновременного выделения на хосте до 65536 уникальных портов, идентифицирующихся номерами от 0 до 65535. Соответствие номера порта и службы, использующей этот номер можно посмотреть в файле /etc/services или на сайте http://www.iana.org/assignments/port-numbers. Весь диапазон портов делиться на 3 группы:

  • 0 до 1023, называемые привилегированными или зарезервированными (используются для системных и некоторых популярных программ)
  • 1024 - 49151 называются зарегистрированными портами.
  • 49151 - 65535 называются динамическими портами.

IP протокол , как видно из иллюстраций находится ниже TCP и UDP в иерархии протоколов и отвечает за передачу и маршрутизацию информации в сети. Для этого, протокол IP заключает каждый блок информации (пакет TCP или UDP) в другой пакет - IP пакет или дейтаграмма IP, который хранит заголовок о источнике, получателе и маршруте.

Если провести аналогию с реальным миром, сеть TCP/IP - это город. Названия улиц и проулков - это сети и подсети. Номера строений - это адреса хостов. В строениях, номера кабинетов/квартир - это порты. Точнее, порты - это почтовые ящики, в которые ожидают прихода корреспонденции получатели (службы). Соответственно, номера портов кабинетов 1,2 и т.п. обычно отдаются директорам и руководителям, как привилегированным, а рядовым сотрудникам достаются номера кабинетов с большими цифрами. При отправке и доставке корреспонденции, информация упаковывается в конверты (ip-пакеты ), на которых указывается адрес отправителя (ip и порт ) и адрес получателя (ip и порт ). Простым языком как-то так...

Следует отметить, что протокол IP не имеет представления о портах, за интерпретацию портов отвечает TCP и UDP, по аналогии TCP и UDP не обрабатывают IP-адреса.

Для того чтобы не запоминать нечитаемые наборы цифр в виде IP-адресов, а указывать имя машины в виде человекопонятного имени "придумана" такая служба как DNS (Domain Name Service) , которая заботится о преобразовании имен хостов в IP адрес и представляет собой огромную распределенную базу данных. Об этой службе я обязательно напишу в будущих постах, а пока нам достаточно знать, что для корректного преобразования имен в адреса на машине должен быть запущен демон named или система должна быть настроена на использование службы DNS провайдера.

Маршрутизация

Давайте рассмотрим (на иллюстрации) пример инфраструктуры с несколькими подсетями. Может возникнуть вопрос, а как же один компьютер соединиться с другим? Откуда он знает, куда посылать пакеты?

Для разрешения этого вопроса, сети между собой соединены шлюзами (маршрутизаторами ). Шлюз - это тот же хост, но имеющий соединение с двумя и более сетями, который может передавать информацию между сетями и направлять пакеты в другую сеть. На рисунке роль шлюза выполняет pineapple и papaya , имеющих по 2 интерфейса, подключенные к разным сетям.

Чтобы определить маршрут передачи пакетов , IP использует сетевую часть адреса (маску подсети ). Для определения маршрута, на каждой машине в сети имеется таблица маршрутизации (routing table), которая хранит список сетей и шлюзов для этих сетей. IP "просматривает" сетевую часть адреса назначения в проходящем пакете и если для этой сети есть запись в таблице маршрутизации, то пакет отправляется на соответствующий шлюз.

В Linux ядро операционной системы хранит таблицу маршрутизации в файле /proc/net/route . Просмотреть текущую таблицу маршрутизации можно командой netstat -rn (r - routing table, n - не преобразовывать IP в имена) или route . Первая колонка вывода команды netstat -rn (Destination - назначение) содержит адреса сетей (хостов) назначения . При этом, при указании сети, адрес обычно заканчивается на ноль. Вторая колонка (Gateway) - адрес шлюза для указанного в первой колонке хоста/сети. Третья колонка (Genmask) - маска подсети, для которой работает данный маршрут. Колонка Flags дает информацию об адресе назначения (U - маршрут работает (Up), N - маршрут для сети (network), H - маршрут для хоста и т.п.). Колонка MSS показывает число байтов, которое может быть отправлено за 1 раз, Window - количество фреймов, которое может быть отправлено до получения подтверждения, irtt - статистика использования маршрута, Iface - указывает сетевой интерфейс, используемый для маршрута (eth0, eth1 и т.п.)

Как видно в примере ниже, первая запись (строка) указана для сети 128.17.75, все пакеты для данной сети будут отправлены на шлюз 128.17.75.20, который является IP адресом самого хоста. Вторая запись - это маршрут по умолчанию , который применяется ко всем пакетам, посылаемым в сети, не указанные в данной таблице маршрутизации. Здесь маршрут лежит через хост papaya (IP 128.17.75.98), который можно считать дверью во внешний мир. Данный маршрут должен быть прописан на всех машинах сети 128.17.75, которые должны иметь доступ к другим сетям. Третья запись создана для петлевого интерфейса . Данный адрес используется, если машине необходимо подключиться к самой себе по протоколу TCP/IP. Последняя запись в таблице маршрутизации сделана для IP 128.17.75.20 и направляется на интерфейс lo, т.о. при подключении машины к самой себе на адрес 128.17.75.20, все пакеты будут посылаться на интерфейс 127.0.0.1.

Если хост eggplant пожелает послать пакет хосту zucchini , (соответственно, в пакете будет указан отправитель - 128.17.75.20 и получатель - 128.17.75.37), протокол IP определит на основании таблицы маршрутизации, что оба хоста принадлежат одной сети и пошлет пакет прямо в сеть, где zucchini его получит. Если более подробно сказать.. сетевая карта широковещательно кричит ARP-запросом "Кто такой IP 128.17.75.37, это кричит 128.17.75.20?" все машины, получившие данное послание - игнорируют его, а хост с адресом 128.17.75.37 отвечает "Это я и мой MAC - адрес такой-то...", далее происходит соединение и обмен данными на основе arp таблиц , в которых занесено соответствие IP-MAC адресов. "Кричит", то есть этот пакет посылается всем хостам, это происходит потому что, MAC-адрес получателя указан широковещательный адрес (FF:FF:FF:FF:FF:FF). Такие пакеты получают все хосты сети.

Пример таблицы маршрутизации для хоста eggplant :

# netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 128.17.75.0 128.17.75.20 255.255.255.0 UN 1500 0 0 eth0 default 128.17.75.98 0.0.0.0 UGN 1500 0 0 eth0 127.0.0.1 127.0.0.1 255.0.0.0 UH 3584 0 0 lo 128.17.75.20 127.0.0.1 255.255.255.0 UH 3584 0 0 lo

Давайте рассмотрим ситуацию, когда хост eggplant хочет послать пакет хосту, например, pear или еще дальше?.. В таком случае, получатель пакета будет - 128.17.112.21, протокол IP попытается найти в таблице маршрутизации маршрут для сети 128.17.112, но данного маршрута в таблице нет, по этому будет выбран маршрут по умолчанию , шлюзом которого является papaya (128.17.75.98). Получив пакет, papaya отыщет адрес назначения в своей таблице маршрутизации:

# netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 128.17.75.0 128.17.75.98 255.255.255.0 UN 1500 0 0 eth0 128.17.112.0 128.17.112.3 255.255.255.0 UN 1500 0 0 eth1 default 128.17.112.40 0.0.0.0 UGN 1500 0 0 eth1 127.0.0.1 127.0.0.1 255.0.0.0 UH 3584 0 0 lo 128.17.75.98 127.0.0.1 255.255.255.0 UH 3584 0 0 lo 128.17.112.3 127.0.0.1 255.255.255.0 UH 3584 0 0 lo

Из примера видно, что papaya подключена к двум сетям 128.17.75, через устройство eth0 и 128.17.112 через устройство eth1 . Маршрут по умолчанию , через хост pineapple , который в свою очередь, является шлюзом во внешнюю сеть.

Соответственно, получив пакет для pear , маршрутизатор papaya увидит, что адрес назначения принадлежит сети 128.17.112 и направит пакет в соответствии со второй записью в таблице маршрутизации.

Таким образом, пакеты передаются от маршрутизатора к маршрутизатору, пока не достигнут адреса назначения.

Стоит отметить, что в данных примерах маршруты

128.17.75.98 127.0.0.1 255.255.255.0 UH 3584 0 0 lo 128.17.112.3 127.0.0.1 255.255.255.0 UH 3584 0 0 lo

Не стандартные. И в современном linux вы такого не увидите.

Резюме

В данной статье я постарался как можно коротко и понятно описать основные понятия взаимодействия сетевой инфраструктуры на примере нескольких взаимосвязанных сетей, в следующей части я опишу работу сети в операционной системе Linux. Буду рад Вашим комментариям и дополнениям.


Протоколы TCP/IP основа работы глобальной сети Интернет. Если быть более точным, то TCP/IP это список или стек протоколов, а по сути, набор правил по которым происходит обмен информации (реализуется модель коммутации пакетов).

В этой статье разберем принципы работы стека протоколов TCP/IP и попробуем понять принципы их работы.

Примечание: Зачастую, обревиатурой TCP/IP называют всю сеть, работающую на основе этих двух протоколов, TCP и IP.

В модель такой сети кроме основных протоколов TCP (транспортный уровень) и IP (протокол сетевого уровня) входят протоколы прикладного и сетевого уровней (смотри фото). Но вернемся непосредственно к протоколам TCP и IP.

Что такое протоколы TCP/IP

TCP — Transfer Control Protocol . Протокол управления передачей. Он служит для обеспечения и установление надежного соединения между двумя устройствами и надежную передачу данных. При этом протокол TCP контролирует оптимальный размер передаваемого пакета данных, осуществляя новую посылку при сбое передачи.

IP — Internet Protocol. Интернет протокол или адресный протокол — основа всей архитектуры передачи данных. Протокол IP служит для доставки сетевого пакета данных по нужному адресу. При этом информация разбивается на пакеты, которые независимо передвигаются по сети до нужного адресата.

Форматы протоколов TCP/IP

Формат IP протокола

Существуют два формата для IP адресов IP протокола.

Формат IPv4. Это 32-битовое двоичное число. Удобная форма записи IP-адреса (IPv4) это запись в виде четырёх групп десятичных чисел (от 0 до 255), разделённых точками. Например: 193.178.0.1.

Формат IPv6. Это 128-битовое двоичное число. Как правило, адреса формата IPv6 записываются в виде уже восьми групп. В каждой группе по четыре шестнадцатеричные цифры разделенные двоеточием. Пример адреса IPv6 2001:0db8:85a3:08d3:1319:8a2e:0370:7889.

Как работают протоколы TCP/IP

Если удобно представьте передаче пакетов данных в сети, как отправку письма по почте.

Если неудобно, представьте два компьютера соединенных сетью. Причем сеть соединения может быть любой как локальной, так и глобальной. Разницы в принципе передачи данных нет. Компьютер в сети также можно считать хостом или узлом.

Протокол IP

Каждый компьютер в сети имеют свой уникальный адрес. В глобальной сети Интернет, компьютер имеет этот адрес, который называется IP-адрес (Internet Protocol Address).

По аналогии с почтой, IP- адрес это номер дома. Но номера дома для получения письма недостаточно.

Передаваемая по сети информация передается не компьютером, как таковым, а приложениями, установленными на него. Такими приложениями являются сервер почты, веб-сервер, FTP и т.п. Для идентификации пакета передаваемой информации, каждое приложение прикрепляется к определенному порту. Например: веб-сервер слушает порт 80, FTP слушает порт 21, почтовый SMTP сервер слушает порт 25, сервер POP3 читает почту почтовых ящиков на порте 110.

Таким образом, в адресном пакете в протоколе TCP/IP, в адресатах появляется еще одна строка: порт. Аналог с почтой — порт это номер квартиры отправителя и адресата.

Пример:

Source address (Адрес отправителя):

IP: 82.146.47.66

Destination address (Адресполучателя):

IP: 195.34.31.236

Стоит запомнить: IP адрес + номер порта — называется «сокет». В примере выше: с сокета 82.146.47.66:2049 пакет отправляется на сокет 195.34.31.236: 53.

Протокол TCP

Протокол TCP это протокол следующего после протокола IP уровня. Предназначен этот протокол для контроля передачи информации и ее целостности.

Например, Передаваемая информация разбивается на отдельные пакеты. Пакеты доставят получателю независимо. В процессе передачи один из пакетов не передался. Протокол TCP обеспечивает повторные передачи, до получения этого пакета получателем.

Транспортный протокол TCP скрывает от протоколов высшего уровня (физического, канального, сетевого IP все проблемы и детали передачи данных).

13.10.06 5.6K

Большинство из нас знает TCP/IP как "клей", связующий Internet. Но не многие способны дать убедительное описание того, что этот протокол представляет собой и как работает. Итак, что же такое TCP/IP в действительности?

TCP/IP — это средство для обмена информацией между компьютерами, объединенными в сеть. Не имеет значения, составляют ли они часть одной и той же сети или подключены к отдельным сетям. Не играет роли и то, что один из них может быть компьютером Cray, а другой Macintosh. TCP/IP — это не зависящий от платформы стандарт, который перекидывает мосты через пропасть, лежащую между разнородными компьютерами, операционными системами и сетями. Это протокол, который глобально управляет Internet, и в значительной мере благодаря сети TCP/IP завоевал свою популярность.

Понимание TCP/IP главным образом подразумевает способность разбираться в наборах таинственных протоколов, которые используются главными компьютерами TCP/IP для обмена информацией. Давайте рассмотрим некоторые из этих протоколов и выясним, что составляет оболочку TCP/IP.

Основы TCP/IP

TCP/IP — это аббревиатура термина Transmission Control Protocol/Internet Protocol (Протокол управления передачей/Протокол Internet). В терминологии вычислительных сетей протокол — это заранее согласованный стандарт, который позволяет двум компьютерам обмениваться данными. Фактически TCP/IP не один протокол, а несколько. Именно поэтому вы часто слышите, как его называют набором, или комплектом протоколов, среди которых TCP и IP — два основных.

Программное обеспечение для TCP/IP, на вашем компьютере, представляет собой специфичную для данной платформы реализацию TCP, IP и других членов семейства TCP/IP. Обычно в нем также имеются такие высокоуровневые прикладные программы, как FTP (File Transfer Protocol, Протокол передачи файлов), которые дают возможность через командную строку управлять обменом файлами по Сети.

TCP/IP — зародился в результате исследований, профинансированных Управлением перспективных научно-исследовательских разработок (Advanced Research Project Agency, ARPA) правительства США в 1970-х годах. Этот протокол был разработан с тем, чтобы вычислительные сети исследовательских центров во всем мире могли быть объединены в форме виртуальной "сети сетей" (internetwork). Первоначальная Internet была создана в результате преобразования существующего конгломерата вычислительных сетей, носивших название ARPAnet, с помощью TCP/IP.

Причина, по которой TCP/IP столь важен сегодня, заключается в том, что он позволяет самостоятельным сетям подключаться к Internet или объединяться для создания частных интрасетей. Вычислительные сети, составляющие интрасеть, физически подключаются через устройства, называемые маршрутизаторами или IP-маршрутизаторами. Маршрутизатор — это компьютер, который передает пакеты данных из одной сети в другую. В интрасети, работающей на основе TCP/IP, информация передается в виде дискретных блоков, называемых IP-пакетами (IP packets) или IP-дейтаграммами (IP datagrams). Благодаря программному обеспечению TCP/IP все компьютеры, подключенные к вычислительной сети, становятся "близкими родственниками". По существу оно скрывает маршрутизаторы и базовую архитектуру сетей и делает так, что все это выглядит как одна большая сеть. Точно так же, как подключения к сети Ethernet распознаются по 48-разрядным идентификаторам Ethernet, подключения к интрасети идентифицируются 32-разрядными IP-адресами, которые мы выражаем в форме десятичных чисел, разделенных точками (например, 128.10.2.3). Взяв IP-адрес удаленного компьютера, компьютер в интрасети или в Internet может отправить данные на него, как будто они составляют часть одной и той же физической сети.

TCP/IP дает решение проблемы данными между двумя компьютерами, подключенными к одной и той же интрасети, но принадлежащими различным физическим сетям. Решение состоит из нескольких частей, причем каждый член семейства протоколов TCP/IP вносит свою лепту в общее дело. IP — самый фундаментальный протокол из комплекта TCP/IP — передает IP-дейтаграммы по интрасети и выполняет важную функцию, называемую маршрутизацией, по сути дела это выбор маршрута, по которому дейтаграмма будет следовать из пункта А в пункт B, и использование маршрутизаторов для "прыжков" между сетями.

TCP — это протокол более высокого уровня, который позволяет прикладным программам, запущенным на различных главных компьютерах сети, обмениваться потоками данных. TCP делит потоки данных на цепочки, которые называются TCP-сегментами, и передает их с помощью IP. В большинстве случаев каждый TCP-сегмент пересылается в одной IP-дейтаграмме. Однако при необходимости TCP будет расщеплять сегменты на несколько IP-дейтаграмм, вмещающихся в физические кадры данных, которые используют для передачи информации между компьютерами в сети. Поскольку IP не гарантирует, что дейтаграммы будут получены в той же самой последовательности, в которой они были посланы, TCP осуществляет повторную "сборку" TCP-сегментов на другом конце маршрута, чтобы образовать непрерывный поток данных. FTP и telnet — это два примера популярных прикладных программ TCP/IP, которые опираются на использование TCP.

Другой важный член комплекта TCP/IP — User Datagram Protocol (UDP, протокол пользовательских дейтаграмм), который похож на TCP, но более примитивен. TCP — "надежный" протокол, потому что он обеспечивает проверку на наличие ошибок и обмен подтверждающими сообщениями чтобы данные достигали своего места назначения заведомо без искажений. UDP — "ненадежный" протокол, ибо не гарантирует, что дейтаграммы будут приходить в том порядке, в котором были посланы, и даже того, что они придут вообще. Если надежность — желательное условие, для его реализации потребуется программное обеспечение. Но UDP по-прежнему занимает свое место в мире TCP/IP, и испльзуется во многих программах. Прикладная программа SNMP (Simple Network Management Protocol, простой протокол управления сетями), реализуемый во многих воплощениях TCP/IP, — это один из примеров программ UDP.

Другие TCP/IP протоколы играют менее заметные, но в равной степени важные роли в работе сетей TCP/IP. Например, протокол определения адресов (Address Resolution Protocol, ARP) ппреобразует IP-адреса в физические сетевые адреса, такие, как идентификаторы Ethernet. Родственный протокол — протокол обратного преобразования адресов (Reverse Address Resolution Protocol, RARP) — выполняет обеспечивает обратное действие, преобразуя физические сетевые адреса в IP-адреса. Протокол управления сообщениями Internet (Internet Control Message Protocol, ICMP) представляет собой протокол сопровождения, который использует IP для обмена управляющей информацией и контроля над ошибками, относящимися к передаче пакетов IP. Например, если маршрутизатор не может передать IP-дейтаграмму, он использует ICMP, с тем чтобы информировать отправителя, что возникла проблема. Краткое описание некоторых других протоколов, которые "прячутся под зонтиком" TCP/IP, приведено во врезке.

Краткое описание протоколов семейства TCP/IP с расшифровкой аббревиатур
ARP (Address Resolution Protocol, протокол определения адресов): конвертирует 32-разрядные IP-адреса в физические адреса вычислительной сети, например, в 48-разрядные адреса Ethernet.

FTP (File Transfer Protocol, протокол передачи файлов): позволяет передавать файлы с одного компьютера на другой с использованием TCP-соединений. В родственном ему, но менее распространенном протоколе передачи файлов — Trivial File Transfer Protocol (TFTP) — для пересылки файлов применяется UDP, а не TCP.

ICMP (Internet Control Message Protocol, протокол управляющих сообщений Internet): позволяет IP-маршрутизаторам посылать сообщения об ошибках и управляющую информацию другим IP-маршрутизаторам и главным компьютерам сети. ICMP-сообщения "путешествуют" в виде полей данных IP-дейтаграмм и обязательно должны реализовываться во всех вариантах IP.

IGMP (Internet Group Management Protocol, протокол управления группами Internet): позволяет IP-дейтаграммам распространяться в циркулярном режиме (multicast) среди компьютеров, которые принадлежат к соответствующим группам.

IP (Internet Protocol, протокол Internet): низкоуровневый протокол, который направляет пакеты данных по отдельным сетям, связанным вместе с помощью маршрутизаторов для формирования Internet или интрасети. Данные "путешествуют" в форме пакетов, называемых IP-дейтаграммами.

RARP (Reverse Address Resolution Protocol, протокол обратного преобразования адресов): преобразует физические сетевые адреса в IP-адреса.

SMTP (Simple Mail Transfer Protocol, простой протокол обмена электронной почтой): определяет формат сообщений, которые SMTP-клиент, работающий на одном компьютере, может использовать для пересылки электронной почты на SMTP-сервер, запущенный на другом компьютере.

TCP (Transmission Control Protocol, протокол управления передачей): протокол ориентирован на работу с подключениями и передает данные в виде потоков байтов. Данные пересылаются пакетами — TCP-сегментами, — которые состоят из заголовков TCP и данных. TCP — "надежный" протокол, потому что в нем используются контрольные суммы для проверки целостности данных и отправка подтверждений, чтобы гарантировать, что переданные данные приняты без искажений.

UDP (User Datagram Protocol, протокол пользовательских дейтаграмм): протокол, не зависящий от подключений, который передает данные пакетами, называемыми UDP-дейтаграммами. UDP — "ненадежный" протокол, поскольку отправитель не получает информацию, показывающую, была ли в действительности принята дейтаграмма.

Архитектура TCP/IP

Проектировщики вычислительных сетей часто используют семиуровневую модель ISO/OSI (International Standards Organization/Open Systems Interconnect, Международная организация по стандартизации/ Взаимодействие открытых систем), которая описывает архитектуру сетей. Каждый уровень в этой модели соответствует одному уровню функциональных возможностей сети. В самом основании располагается физический уровень, представляющий физическую среду, по которой "путешествуют" данные, — другими словами, кабельную систему вычислительной сети. Над ним имеется канальный уровень, или уровень звена данных, функционирование которого обеспечивается сетевыми интерфейсными платами. На самом верху размещается уровень прикладных программ, где работают программы, использующие служебные функции сетей.

На рисунке показано, как TCP/IP согласуется с моделью ISO/OSI. Этот рисунок также иллюстрирует уровневое строение TCP/IP и показывает взаимосвязи между основными протоколами. При переносе блока данных из сетевой прикладной программы в плату сетевого адаптера он последовательно проходит через ряд модулей TCP/IP. При этом на каждом шаге он доукомплектовывается информацией, необходимой для эквивалентного модуля TCP/IP на другом конце цепочки. К тому моменту, когда данные попадают в сетевую плату, они представляют собой стандартный кадр Ethernet, если предположить, что сеть основана именно на этом интерфейсе. Программное обеспечение TCP/IP на приемном конце воссоздает исходные данные для принимающей программы путем захвата кадра Ethernet и прохождения его в обратном порядке по набору модулей TCP/IP. (Один из наилучших способов разобраться во внутреннем устройстве TCP/IP стоит в использовании программы-"шпиона", чтобы найти внутри кадров, "пролетающих" по сети, информацию, добавленную различными модулями TCP/IP.)

Уровни сетей и протоколы TCP/IP

ISO/OSI TCP/IP _____________________________ __________________________ | Уровень прикладных программ | | | |_____________________________| | _________ _________ | _____________________________ | |Сетевая | |Сетевая | | Уровень | Уровень представления | | |программа| |программа| | прикладных |_____________________________| | |_________| |_________| | программ _____________________________ | | | Уровень сеанса | | | |_____________________________| |__________________________| | | _____________________________ _____|_____________|______ | Транспортный уровень | | TCP UDP | Транспортный |_____________________________| |_____|_____________|______| уровень | | _____________________________ _____|_____________|______ | Сетевой уровень | | | | | Сетевой |_____________________________| | ----> IP <--- | уровень |__________________________| _________ _____________________________ _______| Сетевая |________ | Уровень звена данных | | ARP<->| плата |<->RARP | Уровень |_____________________________| |_______|_________|________| звена | данных _____________________________ | | Физический уровень | _____________|______________ Физический |_____________________________| Кабельные соединения сети уровень

В левой части этой диаграммы показаны уровни модели ISO/OSI. Правая часть диаграммы иллюстрирует корреляцию TCP/IP с этой моделью.

Для иллюстрации роли, которую TCP/IP играет в вычислительных сетях в реальном мире, рассмотрим, что происходит, когда Web-браузер использует HTTP (HyperText Transfer Protocol, протокол передачи гипертекста) для извлечения страницы HTML-данных из Web-сервера, подключенного к Internet. Для формирования виртуального подключения к серверу браузер использует абстракцию программного обеспечения высокого уровня, называемую гнездом (socket). А чтобы извлечь страницу Web, он посылает на сервер команду GET HTTP, записывая ее в гнездо. Программное обеспечение гнезда, в свою очередь, применяет TCP для пересылки битов и байтов, составляющих команду GET на Web-сервер. TCP сегментирует данные и передает отдельные сегменты модулю IP, который пересылает сегменты в дейтаграммах на Web-сервер.

Если браузер и сервер работают на компьютерах, подключенных к различным физическим сетям (как это обычно бывает), дейтаграммы передаются от сети к сети до тех пор, пока не достигнут той, к которой физически подключен сервер. В конце концов дейтаграммы достигают пункта своего назначения и вновь собираются таким образом, чтобы Web-сервер, который считывает цепочки данных из своего гнезда, получал непрерывный поток данных. Для браузера и сервера данные, записанные в гнездо на одном конце, как по волшебству, "всплывают" на другом конце. Но между этими событиями происходят все виды сложных взаимодействий для создания иллюзии непрерывной передачи данных между вычислительными сетями.

И это практически все, чем занимается TCP/IP: превращением множества небольших сетей в одну большую и предоставлением услуг, которые нужны прикладным программам для обмена информацией друг с другом по получающейся в итоге Internet.

Краткое заключение

О TCP/IP можно было бы рассказать много больше, но есть три ключевых момента:

* TCP/IP — это набор протоколов, которые позволяют физическим сетям объединяться вместе для образования Internet. TCP/IP соединяет индивидуальные сети для образования виртуальной вычислительной сети, в которой отдельные главные компьютеры идентифицируются не физическими адресами сетей, а IP-адресами.
* В TCP/IP используется многоуровневая архитектура, которая четко описывает, за что отвечает каждый протокол. TCP и UDP обеспечивают высокоуровневые служебные функции передачи данных для сетевых программ, и оба опираются на IP при передаче пакетов данных. IP отвечает за маршрутизацию пакетов до их пункта назначения.
* Данные, перемещающиеся между двумя прикладными программами, работающими на главных компьютерах Internet, "путешествуют" вверх и вниз по стекам TCP/IP на этих компьютерах. Информация, добавленная модулями TCP/IP на стороне отправителя, "разрезается" соответствующими TCP/IP-модулями на принимающем конце и используется для воссоздания исходных данных.

Хорошо Плохо

Взаимодействие между компьютерами в интернете осуществляется посредством сетевых протоколов, представляющих собой согласованный набор определенных правил, в соответствии с которыми разные устройства передачи данных обмениваются информацией. Существуют протоколы для форматов для контроля ошибок и другие виды протоколов. В глобальном межсетевом взаимодействии чаще всего используется протокол TCP-IP.

Что же это за технология? Название TCP-IP произошло от двух сетевых протоколов: TCP и IP. Конечно, этими двумя протоколами построение сетей не ограничивается, но они являются базовыми в том, что касается именно организации передачи данных. Фактически, TCP-IP есть набор протоколов, позволяющих индивидуальным сетям объединяться для образования

Протокол TCP-IP, описание которого невозможно обозначить только определениями IP и TCP, включает в себя также протоколы UDP, SMTP, ICMP, FTP, telnet, и не только. Эти и другие протоколы TCP-IP обеспечивают наиболее полноценную работу сети Интернет.

Ниже приведем развернутую характеристику каждому протоколу, входящему в общее понятие TCP-IP.

. Интернет-протокол (IP) отвечает за непосредственную передачу информации в сети. Информация делится на части (другими словами, пакеты) и передается получателю от отправителя. Для точной адресации нужно задать точный адрес или координаты получателя. Такие адреса состоят из четырех байт, которые отделены друг от друга точками. Адрес каждого компьютера уникален.

Однако использования одного лишь IP-протокола может быть недостаточно для корректной передачи данных, так как объем большей части пересылаемой информации более 1500 символов, что уже не вписывается в один пакет, а некоторые пакеты могут быть потеряны в процессе передачи или присланы не в том порядке, что требуется.

. Протокол управления передачей (TCP) используется на более высоком уровне, чем предыдущий. Основываясь на способности IP-протокола переносить информацию от одного узла другому, TCP-протокол позволяет пересылать большие объемы информации. TCP отвечает также за разделение передаваемой информации на отдельные части - пакеты - и правильное восстановление данных из пакетов, полученных после передачи. При этом данный протокол автоматически повторяет передачу пакетов, которые содержат ошибки.

Управление организацией передачи данных в больших объемах может осуществляться с помощью ряда протоколов, имеющих специальное функциональное назначение. В частности, существуют следующие виды TCP-протоколов.

1. FTP (File Transfer Protocol) организует перенос файлов и используется для передачи информации между двумя узлами Internet с использованием TCP-соединений в виде бинарного или же простого текстового файла, как поименованной области в памяти компьютера. При этом не имеет никакого значения, где данные узлы расположены и как соединяются между собой.

2. Протокол пользовательских дейтаграмм , или User Datagram Protocol, не зависит от подключений, он передает данные пакетами, которые называют UDP-дейтаграммами. Однако этот протокол не так надежен, как TCP, потому что отравитель не получает данных о том, был ли принят пакет в действительности.

3. ICMP (Internet Control Message Protocol) существует для того, чтобы передавать сообщения об ошибках, возникающих в процессе обмена данными в сети Internet. Однако при этом ICMP-протокол только лишь сообщает об ошибках, но не устраняет причины, которые привели к возникновению этих ошибок.

4. Telnet - который используется для реализации текстового интерфейса в сети с помощью транспорта TCP.

5. SMTP (Simple Mail Transfer Protocol) - это специальный электронными сообщениями, определяющий формат сообщений, которые пересылаются с одного компьютера, называемого SMTP-клиентом, на другой компьютер, на котором запущен SMTP-сервер. При этом данная пересылка может быть отложена на некоторое время до тех пор, пока не активируется работа как клиента, так и сервера.

Схема передачи данных по протоколу TCP-IP

1. Протокол TCP разбивает весь объем данных на пакеты и нумерует их, упаковывая в TCP-конверты, что позволяет восстановить порядок получения частей информации. При помещении данных в такой конверт происходит вычисление контрольной суммы, которая записывается потом в TCP-заголовок.

3. Затем с помощью протокола TCP происходит проверка того, все ли пакеты получены. Если во время приема вычисленная заново не совпадает с указанной на конверте, это свидетельствует о том, что часть информации была утеряна или искажена при передаче, протокол TCP-IP заново запрашивает пересылку этого пакета. Также требуется подтверждение прихода данных от получателя.

4. После подтверждения получения всех пакетов протокол TCP упорядочивает их соответствующим образом и собирает заново в единое целое.

Протоколом TCP используются повторные передачи данных, периоды ожидания (или таймауты), что обеспечивает надежность доставки информации. Пакеты могут передаваться в двух направлениях одновременно.

Тем самым протокол TCP-IP снимает необходимость использования повторных передач и ожиданий для прикладных процессов (таких, как Telnet и FTP).

Протокол TCP/IP (Transmission Control Protocol/Internet Protocol ) представляет собой стек сетевых протоколов, повсеместно используемый для Интернета и других подобных сетей (например, данный протокол используется и в ЛВС). Название TCP/IP произошло от двух наиболее важных протоколов:

  • IP (интернет протокол) - отвечает за передачу пакета данных от узла к узлу. IP пересылает каждый пакет на основе четырехбайтного адреса назначения (IP-адрес).
  • TCP (протокол управления передачей) - отвечает за проверку корректной доставки данных от клиента к серверу. Данные могут быть потеряны в промежуточной сети. TCP добавлена возможность обнаружения ошибок или потерянных данных и, как следствие, возможность запросить повторную передачу, до тех пор, пока данные корректно и полностью не будут получены.

Основные характеристики TCP/IP:

  • Стандартизованные протоколы высокого уровня, используемые для хорошо известных пользовательских сервисов.
  • Используются открытые стандарты протоколов, что дает возможность разрабатывать и дорабатывать стандарты независимо от программного и аппаратного обеспечения;
  • Система уникальной адресации;
  • Независимость от используемого физического канала связи;

Принцип работы стека протоколов TCP/IP такой же как и в модели OSI, данные верхних уровней инкапсулируются в пакеты нижних уровней.

Если пакет продвигается по уровню сверху вниз - на каждом уровне добавляется к пакету служебная информация в виде заголовка и возможно трейлера (информации помещенной в конец сообщения). Этот процесс называется . Служебная информация предназначается для объекта того же уровня на удаленном компьютере. Ее формат и интерпретация определяются протоколами данного уровня.

Если пакет продвигается по уровню снизу вверх - он разделяется на заголовок и данные. Анализируется заголовок пакета, выделяется служебная информация и в соответствии с ней данные перенаправляются к одному из объектов вышестоящего уровня. Вышестоящий уровень, в свою очередь, анализирует эти данные и также их разделяет их на заголовок и данные, далее анализируется заголовок и выделяется служебная информация и данные для вышестоящего уровня. Процедура повторяется заново пока пользовательские данные, освобожденные от всей служебной информации, не дойдут до прикладного уровня.

Не исключено, что пакет так и не дойдет до прикладного уровня. В частности, если компьютер работает в роли промежуточной станции на пути между отправителем и получателем, тогда объект, на соответствующем уровне, при анализе служебной информации определит, что пакет на этом уровня адресован не ему, в следствии чего, объект проведет необходимые мероприятия для перенаправления пакета к пункту назначения или возврата отправителю с сообщением об ошибке. Но так или иначе не будет осуществлять продвижение данных на верхний уровень.

Пример инкапсуляции можно представить следующим образом:

Рассмотрим каждые функции уровней

Прикладной уровень

Приложения, работающие со стеком TCP/IP, могут также выполнять функции представительного уровня и частично сеансового уровня модели OSI.

Распространенными примерами приложений являются программы:

  • Telnet
  • HTTP
  • Протоколы электронной почты (SMTP, POP3)

Для пересылки данных другому приложению, приложение обращается к тому или иному модулю транспортного модуля.

Транспортный уровень

Протоколы транспортного уровня обеспечивают прозрачную доставку данных меду двумя прикладными процессами. Процесс, получающий или отправляющий данные, с помощью транспортного уровня идентифицируется на этом уровне номером, который называется номером порта.

Таким образом, роль адреса отправителя и получателя на транспортном уровне выполняется номером порта. Анализируя заголовок своего пакета, полученного от межсетевого уровня, транспортный модуль определяет по номеру порта получателя по какому из прикладных процессов направленны данные и передает эти данные к соответствующему прикладному процессу.

Номер порта получателя и отправителя записывается в заголовок транспортным модулем отправляющим данные. Заголовок транспортного уровня содержит также и некоторую другую служебную информацию, и формат заголовка зависит от используемого транспортного протокола.

Средства транспортного уровня представляют собой функциональную надстройку над сетевым уровнем и решают две основных задачи:

  • обеспечение доставки данных между конкретными программами, функционирующими, в общем случае, на разных узлах сети;
  • обеспечение гарантированной доставки массивов данных произвольного размера.

В настоящее время в Интернет используются два транспортных протокола – UDP , обеспечивающий негарантированную доставку данных между программами, и TCP , обеспечивающий гарантированную доставку с установлением виртуального соединения.

Сетевой (межсетевой) уровень

Основным протоколом этого уровня является протокол IP, который доставляет блоки данных (дейтаграммы) от одного IP-адреса к другому. IP-адрес является уникальным 32-х битным идентификатором компьютера, точнее его сетевого интерфейса. Данные для дейтаграммы передаются IP модулю транспортным уровнем. IP модуль добавляет к этим данным заголовок, содержащий IP-адрес отправителя и получателя, и другую служебную информацию.

Таким образом, сформированная дейтаграмма передается на уровень доступа к среде передачи, для отправки по каналу передачи данных.

Не все компьютеры могут непосредственно связаться друг с другом, часто чтобы передать дейтаграмму по назначению требуется направить ее через один или несколько промежуточных компьютеров по тому или ному маршруту. Задача определения маршрута для каждой дейтаграммы решается протоколом IP.

Когда модуль IP получает дейтаграмму с нижнего уровня, он проверяет IP адрес назначения, если дейтаграмма адресована данному компьютеру, то данные из нее передаются на обработку модулю вышестоящего уровня, если же адрес назначения дейтаграммы чужой, то модуль IP может принять два решения:

  • Уничтожит дейтаграмму;
  • Отправить ее дальше к месту назначения, определив маршрут следования, так поступают промежуточные станции – маршрутизаторы .

Также может потребоваться на границе сетей, с различными характеристиками, разбить дейтаграмму на фрагменты, а потом собрать их в единое целое на компьютере получателя. Это также задача протокола IP.

Также протокол IP может отправлять сообщения – уведомления с помощью протокола ICMP , например, в случае уничтожения дейтаграммы. Более никаких средств контроля корректности данных, подтверждения или доставки, предварительного соединения в протоколе нет, эти задачи возложены на транспортный уровень.

Уровень доступа к среде

Функции этого уровня следующие:

  • Отображение IP-адресов в физические адреса сети. Эту функцию выполняет протокол ARP ;
  • Инкапсуляция IP-дейтаграмм в кадры для передачи по физическому каналу и извлечение дейтаграмм из кадров, при этом не требуется какого-либо контроля безошибочной передачи, поскольку в стеке TCP/IP такой контроль возложен на транспортный уровень или на само приложение. В заголовке кадров указывается точка доступа к сервису SAP, это поле содержащее код протокола;
  • Определение метода доступа к среде передачи, т.е. способа, с помощью которого компьютеры устанавливает свое право на передачу данных;
  • Определение представления данных в физической среде;
  • Пересылка и прием кадра.

Рассмотрим инкапсуляцию на примере перехвата пакета протокола HTTP с помощью сниффера wireshark, который работает на прикладном уровне протокола TCP/IP:


Помимо самого перехваченного протокола HTTP, на основании стека TCP/IP сниффер описывает каждый нижележащий уровень. HTTP инкапсулируется в TCP, протокол TCP в IPv4, IPv4 в Ethernet II.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows