Фотодиод принцип работы. Фотодиоды. фотодиод схема

Фотодиод принцип работы. Фотодиоды. фотодиод схема

28.08.2019

Фотоэлектронные приборы. Принцип работы, основные параметры и характеристики фотодиода.

ФОТОЭЛЕКТРОННЫЕ ПРИБОРЫ - электровакуумные или полупроводниковые приборы,преобразующие эл--магн. сигналы оптич. диапазона в электрические токи, напряжения или преобразующие изображения в невидимых (напр., ИК) лучах в видимые изображения. Ф. п. предназначены для преобразования, накопления, хранения, передачи и воспроизведения информации (включая информацию в виде изображения объекта). Действие Ф. п. основано на использовании фотоэффектов: внешнего (фотоэлектронной эмиссии), внутреннего (фотопроводимости) или вентильного. К Ф. п. относятся разл. фотоэлементы, фотоэлектронные умножители, фоторезисторы , фотодиоды, электронно-оптич. преобразователи, усилители яркости изображения, а также передающие электронно-лучевые трубки.

Фотоэлектронными называются приборы, преобразующие энергию оптического излучения в электрическую. В спектре длин волн оптического излучения для фотоэлектронных приборов в основном используются ультрафиолетовые излучения (диапазон длин волн λ=10-400 нм), видимое (λ=0,38-0,76 мкм) и инфракрасное (λ=0,74-1 мкм).
Работа фотоэлектронных приборов основана на явлениях внутреннего и внешнего фотоэффектов. Внутренний фотоэффект, используемый в основном в полупроводниковых фотоэлектронных приборах, заключается в том, что под действием лучистой энергии оптического излучения электроны получают дополнительную энергию для их освобождения от межатомных связей и перехода из валентной зоны в зону проводимости, в результате чего электропроводимость полупроводника существенно возрастает. При этом, согласно теории Эйнштейна, энергия световых квантов (фотонов) оптического излучения должна превышать ширину запрещенной зоны полупроводника. (36)
Следовательно, фотоэффект возможен только при воздействии на полупроводник излучения с длиной волны λ ф, меньшей некоторого граничного значения, называемого «красной границей».
(37)
где λ ф – длинноволновая граница спектральной чувствительности материала, мкм;
с – скорость света в вакууме;
– постоянная Планка;
– ширина запрещенной зоны (рис.3), ограниченная краями энергетических зон ЗП, ВЗ, в электрон-вольтах (эВ).
Следует отметить, что возможности фотоэлектронных приборов могут расширяться при воздействии энергии разнообразных источников излучения. Такими источниками могут быть как источники фотонов (солнечная энергия, гамма-излучение, рентгеновское излучение), так и источники частиц с высокой энергией (электронная пушка, бета-излучение, альфа-частицы, протоны и др.) .

Фотодиод – это двухэлектродный полупроводниковый диод, в котором в результате внутреннего фотоэффекта в p-n переходе возникает односторонняя фотопроводимость при воздействии на него оптического излучения. Конструктивно он представляет собой кристалл с p-n переходом, причём световой поток при освещении прибора направляется перпендикулярно плоскости p-n перехода (рис.36). Различают два режима работы фотодиода: фотогенераторный (или, в различных источниках – запирающий, фотогальванический, фотовольтаический, вентильный) – без внешнего источника питания, и фотодиодный (иногда фотопреобразовательный) – с внешним источником.

Рис. 36. Структура фотодиода

Принцип работы фотодиода

Структурная схема фотодиода. 1 - кристалл полупроводника; 2 - контакты; 3 - выводы; Ф - поток электромагнитного излучения; Е - источник постоянного тока; Rн - нагрузка.

При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей - дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и емкостью p-n-перехода C p-n

Фотодиод может работать в двух режимах:

§ фотогальванический - без внешнего напряжения

§ фотодиодный - с внешним обратным напряжением

Особенности:

§ простота технологии изготовления и структур

§ сочетание высокой фоточувствительности и быстродействия

§ малое сопротивление базы

§ малая инерционность

Параметры и характеристики фотодиодов

Параметры:

чувствительность

отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприемника, к световому потоку или потоку излучения, его вызвавшему.

Si v =I ΦΦv ; Si ,Ev =I ΦEv - токовая чувствительность по световому потоку

Su e =U ΦΦe ; Si ,Ee =U ΦEe - вольтаическая чувствительность по энергетическому потоку

помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром - шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.

Характеристики:

вольт-амперная характеристика (ВАХ)

зависимость выходного напряжения от входного тока. U Φ=f (I Φ)

спектральные характеристики

зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещенной зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.

световые характеристики

зависимость фототока от освещенности, соответствует прямой пропорциональности фототока от освещенности. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.

постоянная времени

это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.

темновое сопротивление

сопротивление фотодиода в отсутствие освещения.

Инерционность

Устройство и основные физические процессы. Упрощенная структура фотодиода приведена на рис. 6.7,а, а его условное графическое изображение – на рис. 6.7,б.



Рис. 6.7. Структура (а) и обозначение (б) фотодиода

Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n-перехода и в прилегающих к нему областях под действием излучения.

Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения uак между анодом и катодом при разомкнутой цепи. Причем uак>0 (дырки переходят к аноду, а электроны – к катоду под действием электрического поля p-n-перехода).

Характеристики и параметры. Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещенностям (освещенность измеряется в люксах, лк).

Вольт-амперные характеристики (ВАХ) фотодиода представлена на рис. 6.8.

Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область p-n–перехода, вызывают генерацию пар электрон-дырка. Под действием электрического поля p-n–перехода носители тока движутся к электродам (дырки – к электроду слоя p, электроны – к электроду слоя n). В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию.

Рис. 6.8. Вольт-амперные характеристики фотодиода

На практике фотодиоды используют и в так называемом режиме фотогенератора (фотогальванический режим, вентильный режим), и в так называемом режиме фотопреобразователя (фотодиодный режим).

В режиме фотогенератора работают солнечные элементы, преобразующие свет в электроэнергию. В настоящее время коэффициент полезного действия солнечных элементов достигает 20 %. Пока энергия, полученная от солнечных элементов, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана.

Режим фотопреобразователя соответствует ВАХ в третьем квадранте. В этом режиме фотодиод потребляет энергию (u · i > 0) от некоторого обязательно имеющегося в цепи внешнего источника напряжения (рис. 6.9). Графический анализ этого режима выполняется при использовании линии нагрузки, как и для обычного диода. При этом характеристики обычно условно изображаются в первом квадранте (рис. 6.10).

Рис. 6.9 Рис. 6.10

Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 107–1010 Гц. Фотодиод часто используют в оптопарах светодиод-фотодиод. В этом случае различные характеристики фотодиода соответствуют различным токам светодиода (который при этом создает различные световые потоки).


При поглощении световых квантов в p-n переходе или в примыкающих к нему областях генерируются новые носители заряда (электроны и дырки), которые проходя через него и вызывают появление напряжение на выводах фотодиода или протекание тока в замкнутой цепи. Величина, на которую возрастает обратный ток протекающий через переход, называют фототоком.

Фотодиод, в зависимости от материала из которого он изготовлен, используется для регистрации светового потока в оптическом инфракрасном, и ультрафиолетовом диапазоне. Эти радиокомпоненты обычно изготавливают из германия, кремния, арсенида галлия, индия и т.п.

В фотодиодном режиме применяется внешний источник питания, который смещает полупроводниковый прибор в обратном направлении. В этом случае через протекает обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.

В фотогальваническом режиме фотодиод работает в роли датчики или в роли слаботочного элемента питания, так как под воздействием светового потока на выводах фотоэлемента генерируется напряжение, зависящее от потока излучения и нагрузки.

Чтобы лучше разобраться с режимами работы этого компонента, рассмотрим его вольтамперную характеристику.


При отсутствии светового излучения график представляет собой обратную ветвь ВАХ типичного диода. Присутствует небольшой ток обратки, называемый темновым током обратно смещенного.

При наличии излучения, сопротивление фотодиода снижается и обратный ток увеличивается. Чем больший световой поток падает на фотоэлемент, тем больший обратный ток протекает через фотодиод. Зависимость в этом режиме линейная. Как видим из ВАХ обратный ток фотодиода практически не зависит от обратного напряжения.

Фотогальваническому режиму соответствует работа в четвертой четверти графика. И здесь можно выделить два предельных варианта: режим холостого хода и короткого замыкания.

Режим приближенный к холостому ходу применяется для получения энергии от фотодиода, хотя КПД у него невысокий. Но если соединить последовательно и параллельно много таких компонентов, то такой получившейся батареей можно запитать мало-потребляющую схему.

В режиме короткого замыкания, напряжение на фотоэлементе стремится к нулю, а обратный ток прямо пропорционален световому потоку. Этот режим применяется для построения фотодатчиков.

Характеристики фотодиода

Помимо ВАХ, рассмотренной выше существкует еще ряд основных параметров фотоэлемента.

Световая характеристика фотодиода , зависимость фототока от освещенности, которая прямопропорционально генерируемому фототоку от освещенности. Это объясняется тем, что толщина базы фотодиода гораздо меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, появившиеся в базе, учувствуют в образовании фототока.

Спектральная характеристика фотодиода - это зависимость фототока от длины волны светового потока воздействующего на фотоэлемент.

постоянная времени - в течение этого времени фототок фотоэлемента изменяется после освещения или после затемнения фотодиода по отношению к установившемуся значению.

темновое сопротивление - сопротивление радиокомпонента при отсутствии освещения.

ХАРАКТЕРИСТИКИ ФОТОДИОДА

Основными характеристиками фотодиода являются: ВАХ, световая и спектральная.

Вольт-амперная характеристика . В общем случае (при любой полярности U) ток фотодиода описывается выражением (1). Это выражение представляет собой зависимость тока фотодиода I ф от напряжения на фотодиоде U при разных значениях потока излучения Ф, т.е. является уравнением семейства вольт-амперных характеристик фотодиода. Графики вольт-амперных характеристик приведены на рис. 1.7.

Рис. 1.7 ВАХ фотодиода.

Семейство вольт-амперных характеристик фотодиода расположено в квадрантах I, III и IV. Квадрант I – это нерабочая область для фотодиода: в этом квадранте к p-n переходу прикладывается прямое напряжение и диффузионная составляющая тока полностью подавляет фототок (I p - n >> I ф). Фотоуправление через диод становится невозможным.

Квадрант III – это фотодиодная область работы фотодиода. К p-n переходу прикладывается обратное напряжение. Следует подчеркнуть, что в рабочем диапазоне обратных напряжений фототок практически не зависит от обратного напряжения и сопротивления нагрузки. Вольт-амперная характеристика нагрузочного резистора R представляет собой прямую линию, уравнение которой имеет вид:

E обр - I ф · R = U,

где U обр – напряжение источника обратного напряжения; U – обратное напряжение на фотодиоде; I ф – фототок (ток нагрузки).

Фотодиод и нагрузочный фоторезистор соединены последовательно, т.е. через них протекает один и тот же ток I ф. Этот ток I ф можно определить по точке пересечения вольт-амперных характеристик фотодиода и нагрузочного резистора (рис 1.7 квадрант III) Таким образом, в фотодиодном режиме при заданном потоке излучения фотодиод является источником тока I ф по отношению к внешней цепи. Значение тока I ф от параметров внешней цепи (U обр, R) практически не зависит (Рис 1.7.).

Квадрант IV семейства вольт-амперных характеристик фотодиода соответствует фотогальваническому режиму работы фотодиода. Точки пересечения вольт-амперных характеристик с осью напряжения соответствуют значениям фото-ЭДС E ф или напряжениям холостого хода U хх (R н = ∞) при разных потоках Ф. У кремниевых фотодиодов фото-ЭДС 0,5-0,55 В. Точки пересечения вольт-амперных характеристик с осью токов соответствуют значениям токов короткого замыкания I кз (R н = 0). Промежуточные значения сопротивления нагрузки определяются линиями нагрузки, которые для разных значений R н выходят из начала координат под разным углом. При заданном значении тока по вольт-амперным характеристикам фотодиода можно выбрать оптимальный режим работы фотодиода в фотогальваническом режиме (Рис. 1.8). Под оптимальным режимом в данном случае понимают выбор такого сопротивления нагрузки, при котором в R н будет передаваться наибольшая электрическая мощность.

Рис.1.8. ВАХ фотодиода в фотогальваническом режиме.

Отимальному режиму соответствует для потока Ф1 линия нагрузки R 1 (площадь заштрихованногопрямоугольника с вершиной в точке А, где пересекаются линии Ф 1 и R 1 , будет наибольшей – рис.1.8). Для кремниевых фотодиодов при оптимальной нагрузке напряжение на фотодиоде U=0,35-0,4 В.

Световые (энергетические) характеристики фотодиода – это зависимость тока от светового потока I = f(Ф):

Рис. 1.9. Световая характеристика ФД.

В фотодиодном режиме энергетическая характеристика в рабочем диапазоне потоков излучений линейна.

Это говорит о том, что практически все фотоносители доходят до p-n перехода и принимают участие в образовании фототока, потери неосновных носителей на рекомбинацию не зависят от потока излучения.

В фотогальваническом режиме энергетические характеристики представляются зависимостями либо тока короткого замыкания I кз, либо фото-ЭДС E ф от потока излучения Ф. При больших потоках Ф закон изменения этих зависимостей существенно отклоняется от линейного (рис. 1.10).

Фотодиодный режим

Рис.1.10.Световые характеристики ФД

Для функции I кз = f(Ф) появление нелинейности связанно с ростом падения напряжения на объемном сопротивлении базы полупроводника. Снижение фото-ЭДС объясняется уменьшением высоты потенциального барьера при накоплении избыточного заряда электронов в n-области и дырок p-области.

Диодный режим имеет по сравнению с генераторным следующие преимущества:

· выходной ток в фотодиодном режиме не зависит от сопротивления нагрузки, в генераторном режиме максимальный входной ток может быть получен только при коротком замыкании в нагрузке.

· фотодиодный режим характеризуется высокой чувствительностью, большим динамическим диапазоном преобразования оптического излучения, высоким быстродействием (барьерная емкость p-n перехода уменьшается).

Недостатком фотодиодного режима работы является зависимость темнового тока (обратного тока p-n перехода) от температуры.

Основными параметрами являются:

· темновой ток I т.

· рабочее напряжение U раб – напряжение, прикладываемое к диоду в фотопреобразовательном режиме.

· Интегральная чувствительность K ф.

Назначение: фотодио́д - приёмник оптического излучения, который преобразует попавший на его фоточувствительную область свет в электрический заряд.

Принцип действия: Простейший фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р–n-переход. При воздействии излучения в направлении, перпендикулярном плоскости p-n-перехода, в результате поглощения фотонов с энергией, большей, чем ширина запрещенной зоны, в n-области возникают электронно-дырочные пары. Эти электроны и дырки называют фотоносителями . При диффузии фотоносителей в глубь n-области основная доля электронов и дырок не успевает рекомбинировать и доходит до границы p–n-перехода. Здесь фотоносители разделяются электрическим полем p–n-перехода, причем дырки переходят в p-область, а электроны не могут преодолеть поле перехода и скапливаются у границы p–n-перехода и n-области. Таким образом, ток через p–n-переход обусловлен дрейфом неосновных носителей – дырок. Дрейфовый ток фотоносителей называется фототоком .

Фотодиоды могут работать в одном из двух режимов – без внешнего источника электрической энергии (режим фотогенератора) либо с внешним источником электрической энергии (режим фотопреобразователя).

Устройство: cтруктурная схема фотодиода. 1 - кристалл полупроводника; 2 - контакты; 3 - выводы; Ф - поток электромагнитного излучения; Е - источник постоянного тока; Rн - нагрузка.

Параметры: чувствительность (отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала.); шумы (помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром - шум фотодиода)

Характеристики:а) вольт-амперная характеристика фотодиода представляет собой зависимость выходного напряжения от входного тока. б) световая характеристика зависимость фототока от освещенности, соответствует прямой пропорциональности фототока от освещенности. в) спектральная характеристика фотодиода – это зависимость фототока от длины волны падающего света на фотодиод.

Применение: а) оптоэлектронные интегральные микросхемы.

б) многоэлементные фотоприемники. в) оптроны.

9. Светодиоды. Назначение, устройство, принцип действия, основные параметры и характеристики.

Назначение: Светодиод - это полупроводниковый прибор, который излучает свет при пропускании через него тока в прямом направлении.

Принцип действия: Работа основана на физическом явлении возникновения светового излучения при прохождении электрического тока через p-n-переход. Цвет свечения (длина волны максимума спектра излучения) определяется типом используемых полупроводниковых материалов, образующих p-n-переход.

Светодиод является полупроводниковым излучающим прибором с одним или несколькими n-р переходами, преобразующий электрическую энергию в энергию некогерентного светового излучения. Излучение возникает в результате рекомбинации инжектированных носителей в одной из областей, прилегающих к n-р переходу. Рекомбинация происходит при переходе носителей с верхних уровней на нижние.

Характеристики и параметры: основным параметром светодиодов является внутренняя квантовая эффективность (отношение числа фотонов к количеству инжектированных в базу носителей) и внешняя эффективность (отношение потока фотонов из светодиода к потоку носителей заряда в нем). Внешняя эффективность в значительной мере определяется технологией и с ростом ее уровня может быть значительно увеличена.

Основные характеристики светодиодов - вольт-амперные, яркостные и спектральные. Основными параметрами светоизлучающих диодов являются длина волны, полуширина спектра излучения, мощность излучения, рабочая частота и диаграмма направленности излучения.

Светодиоды находят широкое применение в цифровых индикаторах, световых табло, устройствах опто электроники. Принципиально возможно формирование на их основе экрана цветного телевидения.

Принцип действия фотодиода

Полупроводниковый фотодиод - это полупроводниковый диод обратный ток которого зависит от освещенности.

Обычно в качестве фотодиода используют полупроводниковые диоды с р-п переходом, который смещен в обратном направлении внешним источником питания. При поглощении квантов света в р-n переходе или в прилегающих к нему областях образуются новые носители заряда. Неосновные носители заряда, возникшие в областях, прилегающих к р-п переходу на расстоянии, не превь,’ ,ающем диффузионной длины, диффундируют в р-п переход и проходя* через него под действием электрического поля. То есть обратный ток при освещении возрастает. Поглощение квантов непосредственно в р-п переходе приводит к аналогичным результатам. Величина, на которую возрастает обратный ток, называется фототоком.

Характеристики фотодиодов

Свойства фотодиода можно охарактеризовать следующими характеристиками:

Вольт-амперная характеристика фотодиода представляет собой зависимость светового тока при неизменном световом потоке и темнового тока 1т от напряжения.

Световая характеристика фотодиода обусловлена зависимостью фототока от освещенности. При увеличении освещенности фототок возрастает.

Спектральная характеристика фотодиода - это зависимость фототока от длины волны падающего света на фотодиод. Она определяется для больших длин волн шириной запрещенной зоны, а при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.

Постоянная времени - это время, в течение которого фото- ток фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.

Темновое сопротивление - сопротивление фотодиода в отсутствие освещения.

Интегральная чувствительность определяется формулой:

где 1ф - фототок, Ф - освещенность.

Инерционность

Существует три физических фактора, влияющих на инерционность:

1. Время диффузии или дрейфа неравновесных носителей через базу т;

2. Время пролета через р-n переход т,;

3. Время перезарядки барьерной емкости р-п перехода, характеризующееся постоянной времени RC6ap.

Толщина р-п перехода, зависящая от обратного напряжения и концентрации примесей в базе, обычно меньше 5 мкм, а значит, т, - 0,1 не. RC6ap определяется барьерной емкостью р-п перехода, зависящей от напряжения и сопротивления базы фотодиода при малом сопротивлении нагрузки во внешней цепи. Величина RC6ap обычно составляет нескольких наносекунд.

Расчет КПД фотодиода и мощности

КПД вычисляется по формуле:

где Росв - мощность освещенности; I - сила тока;

U - напряжение на фотодиоде.

Расчет мощности фотодиода иллюстрирует рис. 2.12 и таблица 2.1.

Рис. 2.12. Зависимость мощности фотодиода от напряжения и силы тока

Максимальная мощность фотодиода соответствует максимальной площади данного прямоугольника.

Таблица 2.1. Зависимость мощности от КПД

Мощность освещенности, мВт

Сила тока, мА

Напряжение, В

Применение фотодиода в олтоэлектронике

Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах:

Оптоэлектронные интегральные микросхемы.

Фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств, а именно: почти идеальная гальваническая развязка управляющих цепей от силовых при сохранении между ними сильной функциональной связи.

Многоэлементные фотоприемники.

Эти приборы (сканистор, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие) относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Оптоэлектрический «глаз» на основе фотодиода способен реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ.

Число фоточувствительных ячеек в приборе является достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения).

Как происходит восприятие образов?

Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик каждого элемента (ток, заряд, напряжение) пропорционален его освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. Тогда на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ.

При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования. Оптроны.

Оптроном называется такой оптоэлектронный прибор, в котором имеются источник и приемник излучения с тем или иным видом оптической связи между ними, конструктивно объединенные и помещенные в один корпус. Между управляющей цепью (ток в которой мал, порядка нескольких мА), куда включен излучатель, и исполнительной, в которой работает фотоприемник, отсутствует электрическая (гальваническая) связь, а управляющая информация передается посредством светового излучения.

Это свойство оптоэлектронной пары (а в некоторых видах оптронов присутствует по несколько не связанных друг с другом даже оптически оптопар) оказалось незаменимым в тех электронных узлах, где нужно максимально устранить влияние выходных электрических цепей на входные. У всех дискретных элементов (транзисторов, тиристоров, микросхем, являющихся коммутационными сборками, или микросхем с выходом, позволяющим коммутировать нагрузку большой мощности) управляющие и исполнительные цепи электрически связаны друг с другом. Это часто недопустимо, если коммутируется высоковольтная нагрузка. К тому же, возникающая обратная связь неминуемо приводит к появлению дополнительных помех.

Конструктивно фотоприемник обычно крепится на дне корпуса, а излучатель - в верхней части. Зазор между излучателем и фотоприемником заполнен иммерсионным материалом - чаще всего эту роль выполняет полимерный оптический клей. Этот материал исполняет роль линзы, фокусирующей излучение на чувствительный слой фотоприемника. Иммерсионный материал снаружи покрыт специальной пленкой, отражающей световые лучи внутрь, чтобы препятствовать рассеянию излучения за пределы рабочей зоны фотоприемника.

Роль излучателей в оптронах, как правило, выполняют светодиоды на основе арсенид-галлия. Светочувствительные элементы в оптопарах могут представлять собой фотодиоды (оптопары серии АОД…), фототранзисторы, фототринисторы (оптопары серии АОУ.,.) и высокоинтегрированные схемы фотореле. В диодной оптопаре, например, в качестве фотоприемного элемента используется фотодиод на основе кремния, а излучателем служит инфракрасный излучающий диод. Максимум спектральной характеристики излучения диода приходится на длину волны около 1 мкм. Диодные оптопары применяются в фотодиодном и фотогенераторном режимах.

Транзисторные оптроны (серия АОТ…) имеют некоторые преимущества относительно диодных. Коллекторным током биполярного транзистора управляют как оптически (воздействуя на светодиод), так и электрически по базовой цепи (в данном случае работа фототранзистора при отсутствии излучения управляющего светодиода оптрона практически не отличается от работы обыкновенного кремниевого транзистора). У полевого транзистора управление осуществляется через цепь затвора.

Кроме того, фототранзистор может работать в ключевом и усилительных режимах, а фотодиод - только в ключевом. Оптроны с составными-транзисторами (например, АОТ1ЮБ), имеют наибольший коэффициент усиления (как и обычный узел на составном транзисторе), могут коммутировать напряжение и ток достаточно больших величин и по данным параметрам уступают только тиристорным оптронам и оптоэлектронным реле типа КР293КП2 - КР293КП4, которые приспособлены для коммутации высоковольтных и сильноточных цепей. Сегодня в розничной продаже появились новые оптоэлектронные реле серий К449 и К294. Серия К449 позволяет коммутировать напряжение до 400 В при токе до 150 мА. Такие микросхемы в четырехвы- водном компактном корпусе DIP-4 приходят на смену маломощным электромагнитным реле и имеют по сравнению с реле массу преимуществ (бесшумность работы, надежность, долговечность, отсутствие механических контактов, широкий диапазон напряжения срабатывания). Кроме того, их доступная цена объясняется тем, что нет необходимости использовать драгметаллы (в реле ими покрываются коммутирующие контакты).

В резисторных оптронах (например, ОЭП-1) и-злучателями являются электрические минилампы накаливания, помещенные также в один корпус.

Графическим обозначениям оптронов по ГОСТу присвоен условный код - латинская буква U, после которой следует порядковый номер прибора в схеме.

В главе 3 книги описаны приборы и устройства, иллюстрирующие применение оптронов.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows