Лампы и выключатели с индикаторами – решение проблем с мерцанием. Схемы подсветки электрических выключателей

Лампы и выключатели с индикаторами – решение проблем с мерцанием. Схемы подсветки электрических выключателей

07.05.2019

Во многих выключателях встроена очень полезная функция – подсветка. С этой функцией исключены поиски выключателя в темной комнате. Как же она работает? Подсветка устроена довольно просто: под клавишей выключателя помещается миниатюрный световой индикатор, а в клавише сделано небольшое окно, через которое можно видеть состояние выключателя.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2016/02/vyklyuchatel-768x576..jpg 1024w, https://elquanta.ru/wp-content/uploads/2016/02/vyklyuchatel.jpg 1500w" sizes="(max-width: 600px) 100vw, 600px">

Выключатель с подсветкой в интерьере комнаты

В качестве индикатора используют неоновую лампочку или светодиод, в работе каждого из них есть свои особенности. Во многих источниках сообщается, что такие выключатели можно использовать только с галогенными и лампами накаливания, так как энергосберегающие – с такими выключателями вспыхивают, а светодиодные – немного светятся в темноте.

Для того чтобы разобраться с этими явлениями надо понимать механизм работы каждого индикатора.

Неоновый индикатор

Во многих выключателях используют неоновую лампочку в качестве индикатора, она представляет собой чаще всего стеклянный баллон, заполненный неоном, в котором размещены на некотором расстоянии друг от друга два электрода.

Давление газа очень небольшое – несколько десятых долей мм ртутного столба. В такой среде между электродами при подаче на них напряжения возникает так называемый тлеющий разряд – это светятся ионизированные молекулы газа. В зависимости от рода газа цвет свечения может быть самым разным: от красного у неона, до сине-зеленого у аргона.

Jpg?.jpg 360w, https://elquanta.ru/wp-content/uploads/2016/02/lampa-1-150x150.jpg 150w" sizes="(max-width: 360px) 100vw, 360px">

На рисунке изображена миниатюрная неоновая лампочка, в электротехнике их чаще всего используют в качестве индикаторов наличия тока.

Подсветка на неоновой лампочке

Выключатель с подсветкой на неоновой лампочке очень надежен, срок службы лампочки более 5 тыс. часов, индикатор хорошо виден в темноте. Схема подключения проста.

Схема подключения подсветки на неоновой лампочке

На схеме изображено подключение подсветки из неонки к выключателю. L1 – это неоновая лампочка из типа МН-6, ток 0,8 мА, напряжение зажигания 90 В, это данные из справочника. R1 – гасящий резистор, S1 – выключатель освещения.

Расчет гасящего резистора

Сопротивление резистора рассчитывается по формуле:

где R – сопротивление резистора (Ом);
∆U – разность (Uс – Uз) между напряжением сети и зажиганием лампы в вольтах;
I – сила тока лампы (А).

R=(220-90)/0,0008=162500 ОМ.

Ближайший номинал резистора 150 кОм. Вообще номинал резистора можно выбирать в пределах от 150 до 510 кОм, при этом лампочка нормально работает, при большем номинале увеличивается долговечность, и уменьшается рассеиваемая мощность.

Мощность резистора вычисляется по следующей формуле:

где P – мощность (Вт), рассеиваемая на резисторе;

P=220-90 × 0,0008 = 0,104 Вт.

Ближайший больший номинал мощности резистора – 0,125 Вт. Этой мощности вполне хватает, резистор едва заметно нагревается, не более чем до 40-50 градусов, что вполне допустимо. Если есть возможность, желательно поставить резистор мощностью 0,25 Вт.

Конструкция

Если припаять вывод резистора к любому выводу лампы, можно собрать схему.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2016/02/sxema-01.jpg 640w" sizes="(max-width: 600px) 100vw, 600px">

Собранная подсветка своими руками

Остается собранную схему подключить. Для этого при снятом корпусе выключателя вывод резистора подключается к одной клемме, а лампочки – к другой.

Схема работы неоновой подсветки

Теперь при выключенном положении клавиши, ток будет идти через схему (нижний рисунок), а так как ток ограничен сопротивлением, то силы его хватит, чтобы зажечь подсветку, но совершенно недостаточно для работы лампы освещения. При включении выводы схемы подсветки закорачиваются, и ток течет через выключатель, минуя подсветку, к лампе освещения (верхний рисунок).

Такую подсветку можно поставить в выключатель, в котором она не была предусмотрена изготовителем, при этом в клавише включения не обязательно сверлить отверстие. Материал, из которого делают клавиши, легко просвечивается, и в темноте выключатель довольно хорошо виден, поэтому сверлить отверстие для лампочки не обязательно.

Светодиодная подсветка

Часто встречается подсветка из светодиода, который представляет собой полупроводниковый прибор излучающий свет при протекании через него электрического тока.

Цвет светоизлучающего диода зависит от материала, из которого он изготовлен и в некоторой степени от приложенного напряжения. Светодиоды представляют собой соединение двух полупроводников различных типов проводимости p и n . Называют это соединение – электронно-дырочный переход, именно на нем возникает излучение света при прохождении через него прямого тока.

Возникновение светового излучения объясняется рекомбинацией носителей зарядов в полупроводниках, на приведенном ниже рисунке изображена примерная картина происходящего в светодиоде.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2016/02/sxema-03.jpg?x15027" alt="Схема" width="487" height="234">

Рекомбинация носителей зарядов и возникновение светового излучения

На рисунке кружком со знаком «–» обозначены отрицательные заряды, они находятся в зеленой области, так условно обозначена область n. Кружок со знаком «+» символизирует положительные носители тока, находятся они в коричневой зоне p, граница между этими областями и есть p-n переход.

Когда под действием электрического поля положительный заряд преодолевает p-n переход, то прямо на границе он соединяется с отрицательным. А так как при соединении происходит и возрастание энергии от столкновения этих зарядов, то часть энергии идет на нагревание материала, а часть излучается в виде светового кванта.

Конструктивно светодиод представляет собой металлическое, чаще всего медное основание, на котором закреплены два кристалла полупроводников разной проводимости, один из них является анодом, другой – катодом. К основанию приклеен алюминиевый рефлектор с закрепленной на нем линзой.

Как можно понять из рисунка ниже, немало в конструкции уделено внимания отводу тепла, это неслучайно, так как полупроводники хорошо работают в узком тепловом коридоре, выход за его границы нарушает работу прибора вплоть до выхода из строя.

Схема устройства светодиода

У полупроводников с ростом температуры, в отличие от металлов, сопротивление не увеличивается, а напротив, уменьшается. Это может вызвать неконтролируемое увеличение силы тока и соответственно нагрева, при достижении определенного порога происходит пробой.

Светодиоды очень чувствительны к превышению порогового напряжения, даже кратковременный импульс выводит его из строя. Поэтому токоограничивающие резисторы должны быть подобраны очень точно. Кроме того, светодиод рассчитан на прохождение тока только в прямом направлении, т.е. от анода к катоду, если прикладывается напряжение обратной полярности, то это также может вывести его из строя.

И все же, несмотря на эти ограничения, светодиоды широко применяются для подсветки в выключателях. Рассмотрим схемы включения и защиты светодиодов в выключателях.

На рисунке ниже приведена схема подсветки. Она содержит: гасящий резистор R1, светодиод VD2 и защитный диод VD1. Буква а – анод светодиода, k – катод.

Схема подсветки на светодиоде

Так как рабочее напряжение светодиода гораздо ниже сетевого, то для его снижения используют гасящие резисторы, в зависимости от потребляемого тока его сопротивление будет разным.

Расчет сопротивления резистора

Сопротивление резистора R рассчитывается по формуле:

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2016/02/formula1.jpg?x15027" alt="formula1" width="177" height="83">

где R – сопротивление гасящего резистора (Ом);

Сделаем расчет гасящего резистора для светодиода АЛ307А. Исходные данные: рабочее напряжение 2 В, сила тока от 10 до 20 мА.

Используя вышеприведенную формулу, R макс =(220 – 2)/0,01=218 00 ОМ, R мин = (220 – 2)/0,02=10900 ОМ. Получаем, что сопротивление резистора должно лежать в пределах от 11 до 22 кОм.

Расчет мощности

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2016/02/formula2.jpg?x15027" alt="formula2" width="177" height="83">

где Р – мощность, рассеиваемая на резисторе (Вт);

U c – напряжение сети (здесь 220 В);

U сд – рабочее напряжение светодиода (В);

I сд – рабочий ток светодиода (А);

Подсчитываем мощность: Р мин =(220-2)*0,01 = 2,18 Вт, Р макс =(220-2)*0,02=4,36 Вт. Как следует из расчета, мощность, рассеиваемая резистором, довольно значительная.

Из номиналов мощностей резисторов самый ближайший больший – это 5 Вт, но такой резистор довольно больших габаритов, и спрятать его в корпус выключателя не удастся, да и впустую тратить электроэнергию нерационально.

Так как расчет проводился на максимально допустимый ток светодиода, а в таком режиме у него многократно снижается долговечность, снизив ток в два раза, можно убить двух зайцев: уменьшить рассеиваемую мощность и увеличить срок службы светодиода. Для этого надо просто увеличить сопротивление резистора вдвое до 22-39 кОм.

Подключение подсветки к клеммам выключателя

На рисунке выше приведена схема подключения подсветки к клеммам выключателя. К одной клемме подходит фазный провод сети, ко второй –провод от лампочки освещения, подсветка подключается к двум этим клеммам. Когда выключатель разомкнут, то через схему подсветки течет ток, и она горит, но лампа освещения не светится. Если выключатель замкнуть, то напряжение потечет по цепи, минуя подсветку, освещение включится.

В заводских выключателях с подсветкой чаще всего используется схема, изображенная на рисунке выше. Номинал резистора – от 100 до 200 кОм, производители идут на сознательное уменьшение тока через светодиод до 1-2 мА, а значит, и яркости свечения, потому что в ночное время этого вполне достаточно. В то же время снижается рассеиваемая мощность, можно не устанавливать и защитный диод, потому что обратное напряжение не превышает допустимое.

Применение конденсатора

В качестве гасящего элемента можно применить конденсатор, он в отличие от резистора имеет не активное, а реактивное сопротивление, поэтому при прохождении через него тока на нем не выделяется тепло.

Все дело в том, что при движении электронов по проводящему слою резистора, они сталкиваются узлами кристаллической решетки материала и передают им часть своей кинетической энергии. Поэтому материал нагревается, а электрический ток испытывает сопротивление продвижению.

Совершенно другие процессы возникают при движении тока через конденсатор. Конденсатор в простейшем случае представляет собой две металлических пластины, разделенные диэлектриком, так что постоянный электрический ток через него течь не может. Но зато на этих пластинах может сохраняться заряд, и если его периодически заряжать и разряжать, то в цепи начинает течь переменный ток.

Расчет гасящего конденсатора

Если конденсатор включить в цепь переменного тока, то он через него будет протекать, но в зависимости от емкости и частоты тока его напряжение снизится на какую-то величину. Для вычисления используют следующую формулу:

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2016/02/formula3.png?x15027" alt="formula3" width="260" height="90">

где X c – емкостное сопротивление конденсатора (ОМ);

f – частота тока в сети (в нашем случае 50 ГЦ);

С – емкость конденсатора в (мкФ);

Для расчетов эта формула не совсем удобна, поэтому на практике чаще всего прибегают к следующей – эмпирической, которая позволяет с достаточной точностью проводить подбор конденсатора.

C=(4,45*I)/(U-U д)

Исходные данные: U c –220 В; U сд –2 В; I сд –20 мА;

Находим емкость конденсатора С =(4,45*20)/(220-2)=0,408 мкФ, из ряда номинальных емкостей Е24 выбираем ближайший меньший 0,39 мкФ. Но при выборе конденсатора необходимо еще учитывать его рабочее напряжение, оно должно быть не меньше, чем U c *1,41.

Дело в том, что в цепи переменного тока принято различать действующее и эффективное напряжение. Если форма тока синусоидальная, то действующее напряжение в 1,41 больше эффективного. Значит, конденсатор должен иметь минимальное рабочее напряжение 220*1,41=310 В. А так как такого номинала нет, то ближайший больший будет 400 В.

Для этих целей можно использовать пленочный конденсатор типа К73-17, его габариты и масса вполне позволяют разместить в корпусе выключателя.

Выключатель в работе. Видео

О совместной работе светодиодной лампы и выключателя с подсветкой можно узнать из этого видео.

Все расчеты, сделанные в статье, действительны для режима нормального свечения, при использовании их для выключателей номиналы резисторов можно скорректировать в сторону увеличения в 2-3 раза. Это уменьшит яркость свечения светодиода, неонки и мощность рассеивания резисторов, а значит, и их габариты.

Иногда требуется выяснить факт наличия сетевого напряжения, либо, например, обозначить выключатель в темноте. Самый простой элемент индикации - это маленькая неоновая лампа, которую можно через резистор напрямую подключить к сети 220 В, потребление будет минимальным, а эффект удастся достичь. Да, в современных условиях, светодиоды гораздо более популярны, но они требуют большей обвязки для таких целей, поэтому и в устройствах выпускаемых промышленностью (утюги, чайники и т.п.) - до сих пор с успехом используют неоновые лампочки. Под катом будет построение стенда для тестирования устройств 220 Вольт (по возможности безопасного) и немного моего балкона, который я оборудовал для создания поделок…


Неоновые лампочки пришли без трека, нашел я их в почтовом ящике. Посылка ехала около полутора месяцев. Внутри пакета со встроенной пупыркой лежали лампочки с припаянными резисторами в пакетике с защелкой Zip lock:


Количество соответствует заявленному. Вид и размеры одного экземпляра:




Резистор установлен на 147 КОм:


Пробуем подключить к сети 220 Вольт:


Точнее 230:)


Такая розетка не фиксирует малые токи:


Подключим мультиметр, который фиксирует ток 1.2 мА:


Про сами неоновые лампочки. Свет лампы обладает малой инерционностью и допускает яркостную модуляцию с частотой до 20 кГц. Лампы подключаются к источнику питания через токоограничительный резистор так, чтобы ток через лампу был порядка 1 миллиампера. Использование лампы без резистора чрезвычайно опасно, поскольку может привести к перерастанию разряда в дуговой, с возрастанием тока через неё до значения, ограниченного лишь внутренним сопротивлением источника питания и подводящих проводов, и, как следствие, коротким замыканием и (или) разрывом баллона лампы. Напряжение зажигания лампы обычно не более 100 вольт, напряжение гашения порядка 40-65 вольт. Срок службы - 80 000 часов или более (ограничен поглощением газа стеклом колбы и потемнением колбы от распылённых электродов; «перегорать» в лампе просто нечему).

Теперь к применению… Вообще я их заказывал, чтобы заменить штатную лампочку в старом утюге, который использую для изготовления плат. Но раз у нас их много - грех не воспользоваться.
Учитывая, что я довольно часто тестирую устройства работающие с сетевым напряжением, решил собрать некий стенд для испытаний. Основные требования:
- безопасность, все таки это поделки и на столе во время тестов всякое возможно;
- удобное подключение своих приборов (розетка);
- индикация текущего тока и напряжения, а также потребляемой мощности;
- для тестирования коммутирующих устройств отдельная розетка с проводом и, желательно, с индикацией;
- возможность отключения обоих проводов питания устройства;
- минимальное влияние проводов на исследуемые процессы;
- более-менее приличный вид и компактность.

Для повышения безопасности прибора решил установить дифференциальный автомат категории «С» на 10 А, с током утечки 30 мА. А раз речь идет про автомат, то удобнее применить компактный щиток, тем более они недорогие. В качестве индикации выбрал , он удовлетворяет всем моим требованиям (80-260 В/20A AC), обзоры на этот прибор уже были на муське ( , ). Решил встроить этот прибор в компактный щиток:


Для подключения питания к своему стенду использовал типовой разъем C14, :


Расположить его решил сбоку, под него выпилил отверстие:


Крепил его винтами от разобранной микроволновки. В собранном виде:


Припаял провода: 3 по 2.5 мм2, контакты заизолировал клеевой термоусадкой:


Розетку для подключения тестируемых устройств использовал монтируемую на дин рейку. Собранное устройство:




Проверяем:


Но этого мне показалось мало… Довольно часто приходится тестировать коммутационный узел, поэтому хотелось интерфейс подключения нагрузок, также объединить с данным устройством. Для этого подойдет типовая розетка, я взял от Шнайдер Электрик (она, конечно, немного не в цвет, ну да ладно):


именно в нее планируется встроить обозреваемые неоновые лампочки. В качестве светорассеивателя взято оргстекло красного цвета:


Вот так выглядит лампочка через него:


Отпиливаем лобзиком маленький кусочек:


Край доработаем бормашинкой на стойке:


Примеряем стекло:


Меня устроило, нужно сверлить:


Примеряем, я специально край полученный в домашних условиях повернул к основанию розетки - так его меньше всего будет видно:


Обезжириваем стеклышко и розетку верхушками от процесса домашней дистилляции и клеим на суперклей:


Результат:


Далее возвращаемся к неоновым лампочкам. Меня не устроила длина выводов, поэтому перепаял резистор:


Приготовил проводок для подключения лампочки к розетке:


Надел термоусадку:


Припаял проводки:


Сверху одел общую клеевую термоусадку подходящего диаметра:


Итог:


Проверка:


Закрепить в розетке решил термоклеем:


Нужно было придумать чем закрыть остальное пространство вокруг лампы, решил, что фольга для этого подойдет отлично, но где ее взять. И тут пришла в голову мысль о новогодних подарках, спрятанных от детей на моем балконе мастерской. Пришлось перебрать не мало конфет, чтобы найти нужное. Оказалось, что современные производители активно экономят на фольге. Подходящий вариант:


Конфета была успешно съедена (да простят меня дети:)), вкусная конфета придала новых сил. Результат:




Готовимся соединять щиток и нашу мега розетку, сверлим основание:


И боковину щитка:


Пластик боковины достаточно мягкий, поэтому решил его усилить изнутри текстолитом (ну да я же в названии писал про платы). Отбракованная плата еще поработает, использовал основание розетки как шаблон:


Примеряем:


Чтобы винтики не раскрутились, решил использовать отечественный анаэробный фиксатор резьбы АвтомастерГель от «Регион Спецтехно». Обзор этого замечательного фиксатора я делал :




Фиксатор бывает разных типов, я использовал самый могучий:). Наносим его на винты:


Результат:


С другой стороны:


Собираем крышку:


Подключаем провода:


Сразу скажу, что потянул с усилием все сидит плотно несмотря на разницу в диаметре.
Итог:


Ближе:


Включено:


На некотором удалении, также, все отлично видно:


С лампой в розетке (именно так и планируется использовать во многих ближайших тестах):


Без света выглядит так:


С максимальным светом индикатор тоже заметен:


Готовим входной провод для теста коммутирующих устройств (ПВС 2х2.5 мм2), пометил его красной термоусадкой:


Собираем вилку:


Если диаметр провода большеват для тестирования устройства, используем переход на тонкий провод (ШВВП 2х0.5мм2) через многоразовые универсальные клемники Ваго (именно в таких случаях целесообразно их использовать - для временного подключения). Так выглядит очередное тестируемое устройство, подключенное к изготовленному стенду, сразу после уборки на столе:


Само устройство на подоконнике:


Общий вид рабочего места тестировщика:):


Основным объектом тестирования, будут платы точечной сварки из , и иные поделки для дачной автоматики.
Иллюстрация работы собранной конструкции в тестировании очередной поделки:


А так как коммутация осуществляется симистором, то на этом видео видно поведение индикатора, который в выключенном состоянии горит менее ярко, но не гаснет, об этой особенности симисторов следует помнить.

На этом заканчиваю свой длинный опус про достаточно простое, но очень нужное мне устройство. Всех поздравляю с наступающим Новым Годом! Надеюсь кому-то данная информация окажется полезной.

Дополнительная информация

Если делать индикацию на светодиоде, то правильная схема будет выглядеть так:


В реале:


Если снизить емкость в 10 раз до 10нФ:

Планирую купить +29 Добавить в избранное Обзор понравился +68 +113

Дневного света и неон. Одним из наиболее привлекательных и ярких представителей в семействе газоразрядных ламп, как в прямом, так и в переносном смысле этого слова, конечно же, является НЕОН. Это название прочно закрепилось за неоновыми лампами с момента их появления – тогда они заправлялись преимущественно вновь открытым инертным газом NEON. Ярко-алое и, в то же время, мягкое свечение неона воспринимали, как нечто необычное, чудесное и почти неземное. Этот чудесный свет принес неоновым лампам огромную популярность. С тех пор и по сей день кротким словом НЕОН именуются все неоновые лампы, вне зависимости от того, заправлены ли они газом неон, или газом аргон, или каким-либо другим инертным газом.

Газоразрядные лампы , во всем многообразии их модификаций, уже давно стали вещью для всех привычной и необходимой. Без них та среда обитания, которую создает для себя человек, без сомнения, была бы гораздо менее комфортной. Без газоразрядных ламп сегодня сложно представить ночное освещение городских улиц и автомагистралей, световую наружную рекламу и художественную подсветку зданий. Освещение цехов предприятий, складов, офисов, освещение и световое оформление в торговых комплексах и многое другое осуществляется, в основной своей массе, газоразрядными источниками света. Объем ежегодного производства и потребления всевозможных видов газоразрядных ламп огромен.

Световая реклама – не единственная область, где активно используется НЕОН. В качестве основного освещения, а также декоративной подсветки он используется не менее часто. Люди, умеющие понять его красоту и знающие в нем толк, используют его в серьезных проектах и делают это виртуозно.



Разумеется, неоновую трубку можно сделать и прямой, как лампа дневного света . Прямые трубки, например, в виде линейных прожекторов успешно используются в художественной подсветке фасадов зданий, малых и больших объектов архитектуры, архитектурных ансамблей. В этой области они, как линейный источник света, хорошо дополняют подсветку обычными прожекторами, которые дают световые пятна или световые конусы. Комплексное использование этих двух типов прожекторов позволяет сделать общую картину более целостной и, в то же время, более разноплановой.

Качественно выполненная архитектурная подсветка производит сильное впечатление и может доставить истинно эстетическое наслаждение. Можно добиться нужного эффекта, используя только обычные прожекторы, но для этого потребуется значительно большее их количество, соответственно, потребление электроэнергии будет значительно выше.




Прямые лампы холодного катода довольно часто используются и в качестве внутренней подсветки световых коробов. Наиболее часто это делают рекламно-производственные компании, у которых имеется собственное неоновое производство, так как изготовление прямых трубок требует значительно меньших трудозатрат. Прямые лампы холодного катода размещаются в коробе по тому же принципу, что и люминесцентные лампы дневного света. Расстояние между лампами не должно превышать расстояние от ламп до лицевой панели.

В рекламно-производственных компаниях очень хорошо знакомы с недостатками ламп дневного света, при использовании их на улице. В данном случае газосветные трубки более предпочтительны, даже если для питания используются громоздкие электромагнитные трансформаторы. Это на самом деле так, и не согласиться с этим трудно. Ниже перечислены основные преимущества неоновых ламп:

  • Световые короба можно делать любых требуемых габаритов и форм, и не зависеть от стандартных размеров ламп дневного света.
  • Для монтажа и подключения требуется значительно меньше фурнитуры. Монтажные работы менее трудоемки и занимают гораздо меньше времени.
  • Электрическая схема, как таковая, гораздо более проста и надежна. В электрической цепи присутствуют только два элемента – трансформаторы и лампы. Отсутствие таких ненадежных элементов как стартеры и многочисленные точки электрических соединений значительно повышает надежность схемы с лампами холодного катода.
  • Газосветные лампы можно изготовить, выбрав трубки любого нужного оттенка белого свечения. Если рассматривать палитру стеклянных трубок для газосвета Tecnolux, то всего оттенков белого насчитывается 27. Если требуется изготовить цветные лампы, то также нет проблем! Можно выбрать любой цвет из 30, предложенных в палитре Tecnolux.
  • Реальная потребляемая мощность светового короба, для подсветки которого используются, например, 6 ламп дневного света длиной 1.5 метра (по 58 Вт), составит 348 Вт. Реальная потребляемая мощность светового короба, для подсветки которого используется, например, 6 неоновых трубок длиной 1.5 метра и трансформатор Tecnolux 6000/50, составит 265 Вт. А при подключенной к нему компенсирующей емкости – всего 173 Вт.
  • Яркостью газосветной лампы можно легко управлять, например, с помощью электронных конверторов Tecnolux со встроенным диммирующим устройством. Диммирование люминесцентных ламп весьма проблематично.
  • И, наконец – уверен, что многие с этим согласятся – целесообразнее и правильнее будет загрузить собственное производство, заплатить своим работникам и получить прибыль для своей компании, чем платить другой компании за люминесцентные лампы, зная все их недостатки.

Стремление к снижению потребления электроэнергии заставляет искать не только новые, более экономичные источники света, но и новые пути, новые способы использования уже хорошо известных источников света. В данном случае речь пойдет о модернизированных газосветных лампах, а точнее об использовании усовершенствованных ламп холодного катода для внутренней подсветки световых коробов и внутреннего освещения помещений.

Нужно отметить, что далеко не каждая рекламно-производственная компания может себе позволить содержать неоновое производство. А тем более, не каждая компания, занимающаяся строительством и производящая электромонтажные работы. Поэтому для световых коробов, в случае рекламы, или для потолочного освещения, в случае строительства новых объектов, компании вынуждены использовать, в основном, стандартные люминесцентные лампы дневного света.

Стандартные лампы холодного катода Tecnolux Longlife обладают поистине феноменальным сроком службы. В процессе их изготовления используются новейшие материалы и технологии. Газосветные лампы Tecnolux Longlife изготавливаются из экологически чистого стекла, не содержащего свинца. Стеклянная трубка лампы изнутри покрывается специальным защитным слоем, на который наносится люминофор марки Трифосфор (#66 Triphosphor). Люминофоры марки Трифосфор содержат редкоземельные элементы, способствующие значительному снижению деградации люминофора в процессе его эксплуатации. Таким образом, люминофоры типа Трифосфор более долговечны, обладают повышенной световой отдачей и обладают очень хорошим индексом цветопередачи. Чем выше индекс цветопредачи, тем меньше искажаются естественные цвета предметов.

Изюминка стандартных ламп Tecnolux Longlife – специальный защитный слой, предотвращающий контакт паров ртути со стеклянными стенками лампы. В обычных газосветных лампах, не имеющих защитного слоя, в процессе работы протекают различные электрохимические реакции между атомами ртути и высвобождающимися компонентами стекла. С течением времени на стекле осаждаются вещества, которые являются результатом таких реакций, они имеют черный цвет и накапливаются между люминофором и стеклом. Даже если лампа была изготовлена очень качественно, при строгом соблюдении всех требований технологии, она существенно теряет яркость свечения через 3-4 года работы, так как не имеет защитного слоя. Благодаря защитному слою Tecnolux стекло остается прозрачным, люминофор не теряет свои рабочие характеристики, а лампа долго сохраняет первоначальную яркость свечения.

Наименование ЛХК 19/750 TL66 ЛХК 19/1100 TL66 ЛХК 19/1500 TL66 ЛХК 19/2000 TL66 ЛХК 19/2200 TL66
Наружный диаметр 19.5 19.5 19.5 19.5 19.5
Линейная длина 760 мм 1110 мм 1510 мм 2010 мм 2210 мм
Цветность #66 Triphosphor #66 Triphosphor #66 Triphosphor #66 Triphosphor #66 Triphosphor
Индекс цветопередачи 89 89 89 89 89
Световой поток
при токе 50 мА
470 Люмен 720 Люмен 1010 Люмен 1360 Люмен 1500 Люмен
Световой поток
при токе 80 мА
820 Люмен 1250 Люмен 1740 Люмен 2350 Люмен 2600 Люмен
Потр. мощность
при токе 50 мА
12.5 Вт 16.0 Вт 19.5 Вт 24.0 Вт 26.0 Вт
Потр. мощность
при токе 80 мА
21.5 Вт 27.0 Вт 33.0 Вт 41.0 Вт 44.0 Вт
Электрическая длина 1.16 эл.м 1.51 эл.м 1.91 эл.м 2.41 эл.м 2.61 эл.м

Представленные выше новые лампы холодного катода Tecnolux Longlife можно запитывать как от классических электромагнитных индукционных неоновых трансформаторов, так и от электронных конверторов – преобразователей для неона. Даже в случае использования электромагнитных трансформаторов для питания ламп Longlife, энергопотребление будет значительно ниже, чем у такого же количества люминесцентных ламп, питаемых по стандартной схеме от сети через дроссель. Если для питания газосветных ламп использовать электронные преобразователи, то энергопотребление еще более снижается, приближаясь по величине к энергопотреблению светодиодной подсветки.

Для ламп с наружным диаметром 19.5 мм допускается использование источников питания с током от 35 мА до 75 мА. Лампы, которые будут подключены к источнику питания с током 35 мА, естественно, будут излучать меньший световой поток, что в некоторых случаях, когда нужен неяркий, приглушенный свет, как раз соответствует техническим требованиям проекта. В этом случае ресурс ламп увеличивается, так как они будут работать в более щадящем режиме, в плане энергопотребления также будет наблюдаться экономия, так как источники питания с меньшим током более экономичны.

Для использования ламп Longlife в световых коробах на улице целесообразнее будет применять источники питания с током 50 мА или 75 мА. При отрицательных температурах зимнего периода такие источники питания достаточно быстро прогревают лампу, что является залогом быстрого восстановления яркости свечения в морозы. Для потолочного освещения в офисах, торговых центрах и других местах общественного пользования целесообразнее использовать лампы с источниками питания, имеющими ток не менее 50 мА. При таком токе они будут работать в номинальном режиме и с достаточно высоким световым потоком, который обеспечит комфортное освещение.

Выбор источника питания для неоновых ламп.

Как уже говорилось выше, стандартные лампы Tecnolux Longlife можно подключать как к электромагнитным трансформаторам, так и к электронным конверторам – выбор всегда остается за вами. Наибольшее количество ламп можно подключить к неоновым трансформаторам Tecnolux (см. таблицу), так как они являются наиболее мощными из всех существующих марок неоновых трансформаторов. Если нужен более экономичный источник питания, то в этом случае наилучшим выбором станут электронные конверторы Tecnolux.

Источники питания ламп Максимально допустимое количество ламп Longlife,
подключаемых к источнику питания, (штук)
Наименование Мощность ЛХК 19/750 TL66 ЛХК 19/1100 TL66 ЛХК 19/1500 TL66 ЛХК 19/2000 TL66 ЛХК 19/2200 TL66
MIDI 5035 95 Вт 8 6 4 3 3
MAXI 7035 ECG 130 Вт 11 8 6 5 5
MAXI 12035 165 Вт 14 11 8 7 6
MIDI 2040 ECG 40 Вт 4 3 2 1 1
MIDI 4040 ECG 80 Вт 7 5 4 3 3
MAXI 6040 ECG 120 Вт 10 8 6 5 4
MIDI 3050 ECG 80 Вт 6 4 3 2 2
MIDI 4050 95 Вт 6 5 4 3 2
MAXI 5050 ECG 120 Вт 8 6 5 4 3
MAXI 8050 150 Вт 11 8 6 5 4
MAXI 3080 ECG 112 Вт 6 4 3 2 2
TECNOLUX
10000/50
285 Вт 19 15 12 9 9

Сравнение энергопотребления электронных конверторов и обычных индукционных трансформаторов показывает явное преимущество конверторов. Теперь сравним энергопотребление подсветки лампами холодного катода и светодиодами. Для наглядности возьмем то же количество, которое рассматривалось при сравнении неоновых и люминесцентных ламп. Таким образом, энергопотребление 6-ти ламп холодного катода длиной 1.5 метра каждая, питаемых конвертором MAXI 8050, составит 150 Вт. Если использовать для питания конвертор MAXI 6040 ECG, то энергопотребление составит 120 Вт. Размеры светового короба для такой подсветки будут приблизительно такими: 3 метра – длина, 0.5 метра – ширина и 0.2 метра – глубина.

Расчет светодиодной подсветки. Чтобы получить сопоставимую яркость засветки, для данной площади светового короба потребуется приблизительно 115 светодиодных модулей. Потребляемая мощность составит 100 Вт.

Итак, по уровню энергопотребления новые газосветные лампы действительно приближаются к светодиодам. Картина будет не полной, если не сравнить стартовую стоимость подсветки и сроки службы. Стоимость светодиодной подсветки составит приблизительно 12 000 руб. Стоимость неоновой подсветки составит приблизительно 8 000 руб.

Реальный срок службы светодиодов белого свечения составляет 40-50 тыс. часов , при условии эксплуатации не более 8-12 часов в сутки. На сегодняшний день это максимальный показатель. Естественно, для чистоты эксперимента, рассматриваются действительно качественные светодиодные модули. Срок службы ламп Longlife, по заявлению производителя, составляет 100 тыс. часов.

Монтаж и подключение ламп Tecnolux Longlife

Монтаж ламп очень прост. Сначала на поверхность крепятся ламподержатели, затем в них вставляется газосветная лампа. Подключение к лампам электронного конвертора или электромагнитного трансформатора также не составляет особого труда. При установке и подключении конверторов для неона обязательно необходимо соблюдать следующие требования:

  • Запрещается устанавливать конверторы непосредственно на металлические поверхности. Между нижней поверхностью конвертора и металлической поверхностью обязательно должна быть прокладка из диэлектрика толщиной не менее 10 мм.
  • Расстояние от неоновых ламп до металлической поверхности должно быть не менее 40 мм.
  • Высоковольтные кабели, соединяющие неоновые лампы в цепь, следует прокладывать на дистанционных держателях таким образом, чтобы расстояние от высоковольтного кабеля до металлической поверхности было не менее 30 мм.
  • Конвертор следует подключать в середину нагрузки, согласно рекомендуемой производителем конверторов схеме подключения.
  • При эксплуатации в условиях улицы, рекомендуется дополнительно изолировать высоковольтные кабели, вставляя их в пластиковый гофрошланг.

Понравилось видео? Подписывайтесь на наш канал!

Выключатели с индикатором (с подсветкой)- это удобные устройства, которые позволяют быстро найти выключатель в темной комнате. Подсветка осуществляется при помощи неоновой лампы, установленной в корпусе выключателя.

С их появлением функциональность выключателей возросла, но и проблем не уменьшилось. Ведь каждый механизм имеет свои особенности.

Как устроен выключатель?

Фаза, приходящая к данному выключателю, подключается на L - входящий контакт (рис.2), а с выходящих контактов уходит на освещающие лампы. Подвижные контакты при этом замыкаются между собой.

Устанавливается цепь подсветки, которая включает резистор и «неонку» - неоновую лампочку, и припаиваются к контактам L1 и L. Таким образом, когда контакты L и L1 разомкнуты, неоновая лампочка горит, а при включении света данные контакты замыкаются подвижным контактом, что исключает из схемы цепь подсветки.

На что обратить внимание?

При выборе выключателя с индикатором необходимо оперировать мощностью потребления всех осветительных приборов, подключаемых к выключателю. На внутренней стороне выключателя указывается маркировка и номинальный ток (максимально допустимый) ток. В основном выключатели производятся на ток 10 и 16 А и соответственно максимальная мощность подключения для них составляет 2,2 и 3,5 кВт.

Так же необходимо отметить, что не стоит использовать выключатели с подсветкой для работы с энергосберегающими (люминесцентными) лампами. Потому как в выключенном состоянии мерцает энергосберегающая лампа, а такое «поведение» лампы вряд ли кого-то обрадует.

В настоящее время есть специальные виды осветительных приборов - лампа мерцающая свеча, которые имитируют трепетание пламени на ветру.

Почему мигает лампа при установке выключателя с подсветкой?

У многих пользователей возникают проблемы с энергосберегающими лампами, при установке выключателя с индикатором, и возникает вопрос о том, почему мигает энергосберегающая лампа. Дело в том, что когда выключатель находится в отключеном состоянии, ток, проходя через цепь сигнальной неоновой или светодиодной лампочки, заряжает конденсатор ЭПРА, который находится внутри лампы. Это является распространенной причиной, почему мерцают энергосберегающие лампы - напряжение достигает величины срабатывания и лампа вспыхивает, после чего конденсатор разряжается и процесс повторяется снова, по мере заряда.

Если выключенная лампа мигает, можно убрать подсветку из выключателя или параллельно лампе поставить резистор, либо другой конденсатор.

В настоящее время некоторые производители осветительных приборов учли проблему, когда после выключения лампа мигает, и решили её посредством шунтирования ламп либо увеличения времени задержки включения - плавный пуск.

У многих пользователей возникают проблемы с энергосберегающими лампами, при установке выключателя с индикатором, и возникает вопрос о том, почему мигает энергосберегающая лампа.

Данный вариант решения проблемы, когда мигает светодиодная лампа, является оптимальным. На набор мощности данных ламп технологически отводится 1-2 секунды, однако к недостаткам данных ламп можно отнести набор полной яркости только через 1-1,5 минуты.

Еще одной причиной, почему мерцают лампы, может быть неправильное подключение, когда через выключатель идет ноль, а не фаза. Таким образом, если светодиодные лампы мерцают, можно произвести переподключение выключателя самостоятельно или вызвать для этого специалиста. Кроме того, если мигает люминесцентная лампа, это может не зависеть от качества самой лампы. В таком случае нужно попробовать отключить индикатор.

Таким образом, приобретая выключатель с индикатором, лучше всего подобрать лампы с плавным включением, а при установке тщательно проверить правильность подключения проводов, в таком случае проблемы, когда энергосберегающая лампа мигает после выключения, будут не страшны.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows