Зависимость точности gps от количества спутников. Сущность принципа определения координат. Навигационные сигналы gps

Зависимость точности gps от количества спутников. Сущность принципа определения координат. Навигационные сигналы gps

15.02.2019

GPS - спутниковая система навигации, обеспечивающая измерение расстояния, времени и определяющая местоположениe. Позволяет в любом месте Земли (не включая приполярные области), почти при любой погоде, а также в космическом пространстве вблизи планеты определить местоположение и скорость объектов. Система разработана, реализована и эксплуатируется Министерством обороны США.

Краткая характеристика GPS

Спутниковая навигационная система Министерства Обороны США — GPS, называется также NAVSTAR. Система состоит из 24 навигационных искусственных спутников Земли (НИСЗ) , наземного командно-измерительного комплекса и аппаратуры потребителей. Она является глобальной, всепогодной, навигационной системой, обеспечивающей определение координат объектов с высокой точностью в трехмерном околоземном пространстве. Спутники GPS помещены на шести средневысоких орбитах (высота 20183 км) и имеют период обращения 12 часов Плоскости орбит расположены через 60° и наклонены к экватору под углом 55°. На каждой орбите находится 4 спутника. 18 спутников — это минимальное количество для обеспечения видимости в каждой точке Земля не менее 4-х НИСЗ.

Основной принцип использования системы - определение местоположения путём измерения расстояний до объекта от точек с известными координатами - спутников. Расстояние вычисляется по времени задержки распространения сигнала от посылки его спутником до приёма антенной GPS-приёмника. То есть, для определения трёхмерных координат GPS-приёмнику нужно знать расстояние до трёх спутников и время GPS системы. Таким образом, для определения координат и высоты приёмника используются сигналы как минимум с четырёх спутников.

Система предназначена для обеспечения навигации воздушных и морских судов и определения времени с высокой точностью . Она может применяться в режиме двухмерной навигации – 2D определение навигационных параметров объектов на поверхности Земли) и в трехмерном режиме — ЗD (измерение навигационных параметров объектов над поверхностью Земли). Для нахождения трехмерного положения объекта требуется измерить навигационные параметры не менее 4-х НИСЗ, а при двухмерной навигации — не менее 3-х НИСЗ. В GPS используется псевдодальномерный способ определения позиции и псевдорадиально скоростной метод нахождения скорости объекта.

Для повышения точности результаты определений сглаживаются с помощью фильтра Калмана. Спутники GPS передают навигационные сигналы на двух частотах: F1 = 1575,42 и F2=1227,60 МГц. Режим излучения — непрерывный с псевдошумовой модуляцией. Навигационные сигналы представляют собой общедоступный С/А-код (course and acquisition), передаваемый только на частоте F1, и защищенный Р-код (precision code), излучаемый на частотах F1, F2.

В GPS для каждого НИСЗ определен свой уникальный С/А-код и уникальный Р-код. Такой вид разделения сигналов спутников называется кодовым. Он позволяет бортовой аппаратуре распознавать, какому спутнику принадлежит сигнал, когда все они осуществляют передачу на одной частоте GPS предоставляет два уровня обслуживания потребителей точные определения (РРS Precise positioning Service) и стандаршые данные (SPS Standart Positioning Service) PPS основывается на точном коде, а SPS — на общедоступном. Уровень обслуживания РРS предоставляется военным и федеральным службам США, а SPS — массовому гражданскому потребителю.Кроме навигационных сигналов, спутник регулярно передает сообщения, которые содержат информацию о состоянии спутника, его эфемеридах, системном времени, прогнозе ионосферной задержки, показателях работоспособности. Бортовая аппаратура GPS состоит из антенны и приемоиндикатора. ПИ включает в себя приемник, вычислитель, блоки памяти, устройства управления и индикации. В блоках памяти хранятся необходимые данные, программы решения задач и управления работой приемоиндикатора. В зависимости от назначения используется два вида бортовой аппаратуры: специальная и для массового потребителя.Специальная аппаратура предназначена для определения кинематических параметров ракет, военных самолетов, кораблей и специальных судов. При нахождении параметров объектов в ней используются Р и С/А коды. Эта аппаратура обеспечивает практически непрерывные определения с точностью: местоположения объекта — 5+7 м, скорости — 0.05+0.15 м/с, времени — 5+15 нс

Основное применение навигационных спутниковой системы GPS:

  • Геодезия: с помощью GPS определяются точные координаты точек и границы земельных участков
  • Картография: GPS используется в гражданской и военной картографии
  • Навигация: с применением GPS осуществляется как морская, так и дорожная навигация
  • Спутниковый мониторинг транспорта: с помощью GPS ведётся мониторинг за положением, скоростью автомобилей, контроль за их движением
  • Сотовая связь: первые мобильные телефоны с GPS появились в 90-х годах. В некоторых странах, например США это используется для оперативного определения местонахождения человека, звонящего 911.
  • Тектоника, Тектоника плит: с помощью GPS ведутся наблюдения движений и колебаний плит
  • Активный отдых: есть разные игры, где применяется GPS, например, Геокэшинг и др.
  • Геотегинг: информация, например фотографии «привязываются» к координатам благодаря встроенным или внешним GPS-приёмникам.

Определение координат потребителя

Местоопределение по расстояниям до спутников

Координаты местоположения вычисляются на основе измеренных дальностей до спутников. Для определения местоположения необходимо провести четыре измерения. Трех измерений достаточно, если уметь исключать неправдоподобные решения какими-то другими доступными способами. Еще одно измерение требуется по техническим причинам.

Измерение расстояния до спутника

Расстояние до спутника определяется путем измерения промежутка времени, который требуется радиосигналу, чтобы дойти от спутника до нас. Как спутник, так и приемник генерируют один и тот же псевдослучайный код строго одновременно в общей шкале времени. Определим, сколько времени потребовалось сигналу со спутника, чтобы дойти до нас, путем сравнения запаздывания его псевдослучайного кода по отношению коду приемника.

Обеспечение совершенной временной привязки

Точная временная привязка — ключ к измерению расстояний до спутников. Спутники точны по времени, поскольку на борту у них — атомные часы. Часы приемника могут и не быть совершенными, так как их уход можно исключить при помощи тригонометрических вычислений. Для получения этой возможности необходимо произвести измерение расстояния до четвертого спутника. Необходимость в проведении четырех измерений определяет устройство приемника.

Определение положения спутника в космическом пространстве.

Для вычисления своих координат нам необходимо знать как расстояния до спутников, так и местонахождение каждого в космическом пространстве. Спутники GPS движутся настолько высоко, что их орбиты очень стабильны и их можно прогнозировать с большой точностью. Станции слежения постоянно измеряют незначительные изменения в орбитах, и данные об этих изменениях передаются со спутников.

Ионосферные и атмосферные задержки сигналов.

Существуют два метода, которые можно использовать, чтобы сделать ошибку минимальной. Во-первых, можно предсказать, каково будет типичное изменение скорости в обычный день, при средних ионосферных условиях, а затем ввести поправку во все наши измерения. Но, к сожалению, не каждый день является обычным. Другой способ состоит в сравнении скоростей распространения двух сигналов, имеющих разные частоты несущих колебаний. Если сравнить время распространения двух разночастотных компонентов сигнала GPS, то сможем выяснить, какое замедление имело место. Этот метод корректировки достаточно сложен и используется только в наиболее совершенных, так называемых «двухчастотных» приемниках GPS.

Многолучевость.

Еще один тип погрешностей — это ошибки «многолучевости». Они возникают, когда сигналы, передаваемые со спутника, многократно переотражаются от окружающих предметов и поверхностей до того, как попадают в приемник.

Геометрический фактор уменьшения точности.

Хорошие приемники снабжают вычислительными процедурами, которые анализируют относительные положения всех доступных для наблюдения спутников и выбирают из них четырех кандидатов, т.е. наилучшим образом расположенные четыре спутника.

Результирующая точность GPS.

Результирующая погрешность GPS определяется суммой погрешностей от различных источников. Вклад каждого из них варьируется в зависимости от атмосферных условий и качества оборудования. Кроме того, точность может быть целенаправленно снижена Министерством обороны США в результате установки на спутниках GPS так называемого режима S/A («Selective Availability»- ограниченный доступ). Этот режим разработан для того, чтобы не дать возможному противнику тактического преимущества в определении местоположения с помощью GPS. Когда и если этот режим установлен, он создает наиболее существенную компоненту суммарной погрешности GPS.

Вывод:

Точность измерений с помощью GPS зависит от конструкции и класса приёмника, числа и расположения спутников (в реальном времени), состояния ионосферы и атмосферы Земли (сильной облачности и т.д.), наличия помех и других факторов. «Бытовые» GPS-приборы, для «гражданских» пользователей, имеют погрешность измерения в диапазоне от ±3-5м до ±50м и больше (в среднем, реальная точность, при минимальной помехе, если новые модели, составляет ±5–15 метров в плане). Максимально возможная точность достигает +/- 2-3 метра на горизонтали. По высоте – от ±10-50м до ±100-150 метров. Высотомер будет точнее, если проводить калибровку цифрового барометра по ближайшей точке с известной точной высотой, (из обычного атласа, например) на ровном рельефе местности или по известному атмосферному давлению (если оно не слишком быстро меняется, при перемене погоды). Измерители высокой точности «геодезического класса» – точнее на два-три порядка (до сантиметра, в плане и по высоте). Реальная точность измерений обусловлена различными факторами, например – удаленностью от ближайшей базовой (корректирующей) станции в зоне обслуживания системы, кратностью (числом повторных измерений / накоплений на точке), соответствующим контролем качества работ, уровнем подготовки и практическим опытом специалиста. Такое высокоточное оборудование — может применяться только специализированными организациями, специальными службами и военными.

Для повышения точности навигации рекомендуется использовать GPS-приёмник – на открытом пространстве (нет рядом зданий или нависающих деревьев) с достаточно ровным рельефом местности, и подключать дополнительную внешнюю антенну. Для целей маркетинга, таким аппаратам приписывают «двойную надёжность и точность» (ссылаясь на, одновременно используемые, две спутниковые системы, Глонасс и Джипиэс), но реальное фактическое, улучшение параметров (повышение точности определения координат) может составлять величины — лишь до нескольких десятков процентов. Возможно только заметное сокращение времени горячего-тёплого старта и продолжительности измерений

Качество измерений джипиэс ухудшается, если спутники располагаются на небе плотным пучком или на одной линии и «далеко» – у линии горизонта (всё это называется «плохая геометрия») и есть помехи сигналу (закрывающие, отражающие сигнал высотные здания, деревья, крутые горы поблизости). На дневной стороне Земли (освещённой, в данный момент, Солнцем) — после прохождения через ионосферную плазму, радиосигналы ослабляются и искажаются на порядок сильнее, чем на ночной. Во время геомагнитной бури, после мощных солнечных вспышек — возможны перебои и длительные перерывы в работе спутникового навигационного оборудования.

Фактическая точность джипиэски зависит от типа GPS-приемника и особенностей сбора и обработки данных. Чем больше каналов (их должно быть не меньше 8) в навигаторе, тем точнее и быстрее определяются верные параметры. При получении «вспомогательных данных A-GPS сервера местоположения» по сети Интернет (путём пакетной передачи данных, в телефонах и смартфонах) — увеличивается скорость определения координат и расположения на карте

WAAS (Wide Area Augmentation System, на американском континенте) и EGNOS (European Geostationary Navigation Overlay Services, в Европе) – дифференциальные подсистемы, передающие через геостационарные (на высоте от 36 тыс.км в нижних широтах до 40 тысяч километров над средними и высокими широтами) спутники корректирующую информацию на GPS-приёмники (вводятся поправки). Они могут улучшить качество позиционирования ровера (полевого, передвижного приемника), если поблизости располагаются и работают наземные базовые корректирующие станции (стационарные приёмники опорного сигнала, уже имеющие высокоточную координатную привязку). При этом полевой и базовый приёмник должны одновременно отслеживать одноимённые спутники.

Для повышения скорости измерений рекомендуется применять многоканальный (8-и канальный и более), приёмник с внешней антеной. Должны быть видимы, как минимум, три спутника GPS. Чем их больше, тем лучше результат. Необходима, так же, хорошая видимость небосвода (открытый горизонт). Быстрый, «горячий» (длительностью в первые секунды) или «тёплый старт» (полминуты или минута, по времени) приёмного устройства — возможен, если он содержит актуальный, свежий альманах. В случае, когда навигатор долго не использовался, приёмник вынужден получать полный альманах и, при его включении, будет производиться холодный старт (если прибор с поддержкой AGPS, тогда быстрее — до нескольких секунд). Для определения только горизонтальных координат (широта / долгота) может быть достаточно сигналов трёх спутников. Для получения трёхмерных (с высотой) координат — нужны, как минимум, четыре сп-ка. Необходимость создания собственной, отечественной системы навигации связана с тем, что GPS – американская, потенциальных противников, которые могут в любой момент Ч, в своих военных и геополитических интересах, селективно отключить, «глушить», модифицировать её в каком-либо регионе или увеличить искусственную, систематическую ошибку в координатах (для иностранных потребителей этой услуги), что и в мирное время всегда присутствует.

Случалось ли вам заблудиться и от всей души желать найти простой способ узнать, какой дорогой необходимо идти? Или найти чудесное место для рыбалки или охоты и не запомнить, как можно к нему легко вернуться? А как на счет обнаружить в походе, что сбился с пути, и не знать, как вернуться обратно к лагерю или машине? Возникала ли при полете необходимость определить ближайший аэропорт или идентифицировать воздушное пространство, в котором находились? Возможно, вы сталкивались с проблемой, когда нужно съехать на обочину и уточнить у кого-нибудь направление.

GPS технология стремительно изменяет способ людей прокладывать путь по всей земле. Делается ли это ради забавы, спасения жизни, более быстрого добирания, или еще чего вы только не придумаете, GPS навигация становится с каждым днем все более распространенной.

Что же все-таки такое GPS ?

GPS - Глобальная система навигации и позиционирования. Сеть спутников, которые постоянно передают закодированную информацию, с помощью которой можно точно определить месторасположение на земле путем измерения расстояния до спутников.

Как указано в приведенном выше определении GPS означает Глобальная Система Позиционирования (Global Positioning System), и относится к группе спутников Министерства Обороны США, постоянно вращающихся вокруг Земли. Спутники передают радио сигналы малой мощности, позволяя каждому, у кого есть GPS навигатор, определять свое месторасположение на Земле. Создание этой выдающейся системы было не дешевым и стоило США миллиардов долларов. Текущее техническое обслуживание, включая запуск новых спутников на замену старым, увеличивает стоимость системы. Удивительно, GPS фактически предшествовал появлению персональных компьютеров. Разработчики возможно и предвидеть не могли тот день, когда мы сможем носить маленькие GPS навигаторы весом меньше фунта, которые будут не только сообщать нам, где мы находимся в системе координат (долгота/широта), но смогут даже показывать наше месторасположение на электронной карте с городами, улицами и т.п.

Изначально разработчики думали о военном применении. GPS приемники служили бы целям навигации, дислокации войск и координации артиллерийского огня (среди прочих применений). К счастью, административное решение в 1980г. сделало GPS навигатор доступным также для гражданского применения. Сейчас каждый может оценить преимущества GPS ! Возможности почти не ограничены. Иногда люди спрашивают, можно ли бесплатно использовать эту систему – ДА! (Ну, вообще-то вашей платой стали уплаченные налоги). Так что просто распакуйте свой GPS навигатор, вставьте батарейки и окунитесь в интереснейший мир GPS навигации.

Кто использует GPS ?

У GPS навигатора есть множество применений на суше, в воде и в воздухе. В основном GPS навигатор позволяет вам записывать или задавать точки месторасположения на земле и помогает продвигаться от и к этим точкам. GPS навигатор может использоваться везде, кроме мест, где нет приема сигнала, т.е. внутри помещений, в пещерах, парковках и прочих местах, находящихся под землей, а также под водой.

В воздухе и на воде GPS применяется в основном для навигации, на земле же применение более разнообразно. В различных целях GPS навигаторы используется учеными. Все большую часть своей работы геодезисты проделывают с использованием GPS навигатора, что значительно сокращает затраты на проведение разведывательных работ, а также обеспечивает потрясающую точность. В основном разведывательное оборудование обеспечивает точность до одного метра. Более дорогие системы могут обеспечить точность в пределах сантиметра! В сфере отдыха применение GPS навигатора настолько разнообразно, насколько многочисленны виды отдыха. GPS навигатор становится все популярнее среди туристов, охотников, скалолазов, лыжников и т.д. Если вы увлекаетесь видом спорта или какой-либо деятельностью, где вам необходимо отслеживать свое местоположение, прокладывать маршрут к определенному месту или знать. в каком направлении и как быстро вы движетесь, вы по достоинству оцените все преимущества GPS навигации.

GPS навигация быстро становится привычным делом и в автомобилях. Некоторые встроенные системы обеспечивают поддержку в экстренных ситуациях на дороге – нажатием кнопки передается текущее месторасположение автомобиля в диспетчерский центр. Более совершенные системы могут отображать на дисплее месторасположение машины по электронной карте, позволяя водителям контролировать маршрут движения и искать нужные адреса, рестораны, отели и прочие объекты. Некоторые GPS навигаторы даже могут автоматически создавать маршрут и поочередно выдавать направления движения до указанного пункта назначения.

Чтобы знать, как работает GPS навигация, не надо быть ученым. Все что вам нужно, это немного базовых знаний плюс желание изучить и понять мир GPS навигации. Не позволяйте понятиям вроде "псевдослучайный", "анти-спуфинг" и "псевдокод" запугать вас. Давайте знакомиться и осваивать наилучший инструмент навигации со времен изобретения компасса - GPS навигатор!

3 сегмента GPS

Система NAVSTAR (официальное название GPS в Министерстве обороны США) состоит из космического сегмента (спутники), контрольного сегмента (наземные станции) и пользовательского сегмента (вы и ваш GPS навигатор).

Теперь давайте возьмем три части системы и обсудим их более детально. Так мы сможем ближе рассмотреть, как работает GPS навигация.

Космический сегмент

Космический сегмент, который состоит минимум из 24 спутников (21 активный и 3 запасных) является сердцем системы. Спутники находятся на так называемой "верхней орбите" на высоте около 12 тыс. миль над поверхностью Земли. Функционирование на такой большой высоте позволяет сигналам покрывать бОльшую территорию. Спутники расположены на орбитах так, что GPS навигатор на земле всегда может получать сигналы по меньшей мере от четырех из них в любое заданное время.

Спутники вращаются со скоростью 7 000 миль в час, что позволяет им обходить вокруг земли каждые 12 часов. Они питаются солнечной энергией и рассчитаны приблизительно на 10 лет работы. На случай пропадания солнечной энергии (затмения и прочее) у спутников есть резервные батареи. Также спутники оснащены малыми ракетоносителями, которые корректируют траекторию вращения.

Первые GPS спутники были запущены в космос в 1978г. Полное созвездие из 24 спутников было получено в 1994г., завершив создание системы. Деньги на покупку новых спутников и их запуск для поддержания в последующие годы работоспособности системы входят в бюджет Министерства обороны США.

Каждый спутник передает радио сигналы малой мощности на нескольких частотах (выделенные L1, L2 и др.). Гражданские GPS навигаторы "слушают" частоту L1 1575,42 МГц в сверхвысокой полосе частот. Сигналы проходят "линию видимости", что значит, что они пройдут через облака, стекло и пластик, но не пройдут сквозь большинство твердых объектов, таких как здания и горы.

Чтобы вы смогли получить представление о положении сигнала L1 в радиоспектре, вспомните ваши любимые FM радиостанции, они работают на частотах где-то между 88 и 108 МГц (и звучат намного лучше!). Спутниковые сигналы очень малой мощности, порядка 20-50 Вт. Для сравнения, FM радиостанция около 100 000 Вт. Представьте теперь, как сложно пытаться услышать 50 Вт радиостанцию, передающую на высоте 12 000 миль! Вот почему так важно иметь чистый обзор неба при использовании GPS навигатора.

L1 содержит два "псевдослучайных" (комплексный шаблон цифрового кода) сигнала, Защищенный (Р) код и код гражданского доступа (С/А). Каждый спутник передает уникальный код, позволяющий GPS приемнику идентифицировать сигналы. "Анти-спуфинг" относится к шифрованию Р-кода для предотвращения несанкционированного доступа. Р-код также называют "Р(Y)" или "Y" код.

Основной целью этих закодированных сигналов является возможность вычисления времени прохождения (или времени прибытия сигнала) от спутника до GPS навигатора на земле. Время прохождения, умноженное на скорость света, равно дальности спутника (расстояние от спутника до GPS навигатора). Навигационное сообщение (информация, которую спутники передают GPS навигатору) содержит данные об орбите спутника, системном времени, общем состоянии системы, а также модель задержки сигналов в ионосфере. Спутниковые сигналы рассчитываются с использованием сверхточных атомных часов.

Контрольный сегмент

Контрольный сегмент выполняет то, о чем говорит само его название – "контролирует" GPS спутники, отслеживая их и обеспечивая правильной информацией об орбите и времени. На земле расположено пять контрольных станций – четыре станции слежения и одна станция основного контроля. Четыре станции постоянно получают данные со спутников и затем передают информацию на станцию основного контроля, которая "корректирует" данные спутников и вместе с двумя другими антенными полигонами передает (по восходящему потоку) информацию к GPS спутникам.

Пользовательский сегмент

Пользовательский сегмент включает вас и ваш GPS навигатор. Как уже упоминалось, пользовательский сегмент состоит из туристов, пилотов, охотников, военных и других, кто хочет знать, где находится, где находился или куда направляется.
GPS навигация – Как это работает?

Месторасположение

Теперь расскажем о том, как это работает. GPS навигатор должен знать две вещи, чтобы выполнить свою работу. Он должен знать, ГДЕ находятся спутники (месторасположение) и как ДАЛЕКО они находятся (расстояние). Посмотрим сперва как GPS навигатор знает, где в космосе находятся спутники. GPS навигатор получает два вида кодированной информации от спутников. Один вид информации, называемый "альманах", содержит данные о расположении спутников. Эти данные постоянно передаются и сохраняются в памяти GPS навигатора, так что он знает орбиты спутников и где каждый спутник предположительно должен находится. Данные альманаха периодически обновляются по мере перемещения спутников. Любой спутник может немного отклоняться от орбиты, а наземные станции постоянно отслеживают орбиту, высоту, расположение и скорость спутников. постоянно отслеживают орбиту, высоту, расположение и скорость спутников. Наземные станции посылают данные об орбите на станцию основного контроля, которая, в свою очередь, передает откорректированные данные обратно спутникам. Эти откорректированные данные точного месторасположения спутника называются данными "эфимериса", которые действительны около четырех или шести часов и передаются GPS навигатору в виде кодированной информации.

Таким образом, получив данные альманаха и эфимериса, GPS навигатор всегда знает местонахождение спутников.

Время

Даже если GPS навигатор знает точное положение спутников в космосе, ему все равно необходимо знать, насколько они далеко (расстояние), чтобы определить свое месторасположение на земле. Существует простая формула, говорящая приемнику, как далеко он находится от каждого из спутников:

расстояние от данного спутника равно скорости передаваемого сигнала, умноженной на время, необходимое сигналу, чтобы пройти от спутника до GPS навигатора (Скорость х Время прохождения сигнала = Расстояние).

Вспомните, как вы определяли, насколько далеко от вас гроза, когда были ребенком. Когда вы видели молнию, то считали затем, сколько секунд пройдет, пока раздастся гром. Чем больше насчитали, тем дальше была гроза. GPS навигация работает по такому же принципу, называемому "Время прибытия".

Используя основную формулу для определения расстояния, приемник уже знает скорость. Это скорость радио волны – 186 000 миль в секунду (скорость света), с учетом задержки сигнала при прохождении сквозь атмосферу Земли.

Теперь GPS навигатору необходимо определить временную составляющую формулы. Ответ кроется в закодированных сигналах, которые передают спутники. Передаваемый код называется "псевдослучайным кодом" потому, что похож на шумовой сигнал. Когда спутник генерирует псевдослучайный код, GPS навигатор генерирует такой же код и пытается согласовать его с кодом спутника. GPS навигатор сравнивает два кода, чтобы определить, насколько необходимо задержать (или сместить) свой код, чтобы соответствовать коду спутника. Чтобы получить расстояние время задержки (смещения) умножается на скорость света.

Часы GPS навигатора не отслеживают время с такой точностью, как часы спутника. Включение в состав GPS навигатора атомных часов сделало бы его намного больше и намного дороже! Поэтому каждое измерение расстояния требует корректировки на величину погрешности внутренних часов GPS навигатора. По этой причине измерение расстояния относится к "псевдорасстоянию". Чтобы определить позицию, используя данные псевдорасстояния, необходимо отслеживать и пересчитывать зафиксированные данные минимум с четырех спутников, чтобы погрешность исчезла.

Получение полного круга

Теперь, когда у нас есть и позиция спутника, и расстояние до него, приемник может определить свое месторасположение. Скажем, мы находимся на расстоянии 11 000 миль от спутника. Тогда наше месторасположение будет где-то в условной сфере со спутником в центре с радиусом 11 000 миль. Далее, допустим, что мы находимся на расстоянии 12 000 миль от другого спутника. Вторая сфера будет пересекаться с первой, образуя общую окружность. Если добавить третий спутник, на расстоянии 13 000 миль, будет две общие точки, где пересекаются три сферы.
Хотя возможных позиций две, они сильно отличаются показателями широты, долготы и высоты. Чтобы определить, какая же из двух точек соответствует вашему фактическому месторасположению, GPS навигатору необходимо также указать приблизительную высоту над уровнем моря. Это позволит приемнику рассчитать 2-х координатную позицию (широта, долгота). При наличии четвертого спутника GPS навигатор сможет определить 3-х координатную позицию (широта, долгота, высота). Так, допустим, расстояние до четвертого спутника составляет 10 000 миль. Теперь у нас есть четвертая сфера, пересекающая первые три в одной общей точке.

Данные альманаха

GPS навигатор всегда сохраняет данные о положении спутников. Эти данные называются альманахом. Иногда, когда GPS навигатор долгое время не включается, данные альманаха становятся устаревшими или "холодными". Когда GPS навигатор "холодный", установление связи со спутником может занять больше времени. GPS навигатор считается "теплым", если данные со спутников собраны за последние четыре-шесть часов. Если время установления связи со спутником играет для вас большую роль, то при покупке GPS навигаторов необходимо обращать внимание на время захвата спутника в "холодном" и "теплом" режимах.

Как только навигатор установит связь с достаточным количеством спутников, чтобы рассчитать месторасположение, вы готовы начать GPS навигацию! Большинство GPS навигаторов будут отображать текущие координаты или текущую позицию на электронной карте, которая будет помогать вам в навигации.

Технология GPS навигатора

Большинство современных GPS навигаторов имеют параллельный мультиканальный дизайн. Более старые одноканальные тоже были популярны, но у них была ограниченная возможность постоянного приема сигналов в жестких условиях, таких как густой лиственный покров. Параллельные приемники обычно имеют от пяти до двенадцати схем приема, каждая из которых отвечает за сигнал конкретного спутника, так что можно в любое время устанавливать надежную связь со всеми спутниками. Параллельные приемники быстро захватывают спутники при первом включении, им также нет равных в возможности принимать сигналы спутника в сложных условиях, таких как густая листва или город с высокими зданиями.

Источники погрешностей GPS навигаторов

Гражданский GPS навигатор имеет потенциальную погрешность определения месторасположения как результат совокупности погрешностей от следующих источников:

Задержки ионосферы и тропосферы – Сигнал спутника проходит сквозь атмосферу, и поэтому скорость электромагнитных волн отличается от пресловутой скорости света. Система использует встроенную "модель", которая высчитывает среднее, но не точное, значение задержки.

Отражение сигнала – встречается, когда сигнал перед тем, как достичь приемника, отражается от таких объектов как высотные здания или горы. Это увеличивает время прохождения сигнала, вызывая тем самым ошибку.

Ошибки часов приемника – поскольку не практично устанавливать атомные часы в приемниках GPS навигаторов, имеющиеся встроенные часы могут выдавать очень незначительные временные ошибки.

Орбитальные ошибки – также известны как "ошибки эфимериса", это неточности данных о расположении спутника.

Количество видимых спутников – чем больше спутников может "видеть" GPS навигатор, тем выше точность. Здания, рельеф местности, электронная интерференция, иногда даже густая листва могут блокировать прием сигнала, вызывая ошибки месторасположения или полное отсутствие показаний. Чем чище обзор, тем лучше прием. GPS навигаторы не будут работать в помещении (как правило), под водой или под землей.

Геометрия/затенение спутника – имеет отношение к относительному расположению спутников в любое заданное время. Идеальная геометрия спутников бывает, когда спутники располагаются под тупым углом по отношению друг к другу. Плохая геометрия является результатом расположения спутников на одной линии или в тесной группе.

Намеренное ухудшение сигнала спутника – намеренное ухудшение сигнала министерством обороны США известно как "Избирательная доступность" и предназначено для предотвращения использования с враждебными намерениями GPS сигналов высокой точности. Этим объясняется большинство ошибок. "Избирательная доступность" была отменена 2 мая 2000г. и в данный момент не применяется. Это значит, что вы можете ожидать от GPS навигатора точности в пределах 6 – 12 метров (около 20 – 40 футов).

Точность GPS навигатора может быть улучшена еще больше с применением дифференциального GPS приемника (DGPS), который может работать от нескольких возможных источников, уменьшая некоторые из описанных выше ошибок. Следующий раздел объясняет, что такое DGPS и как это работает.
DGPS – как это работает?

Дифференциальные GPS работают с помощью расположения GPS приемника (называемого контрольной станцией) в месте с известными координатами. Поскольку контрольная станция знает свое точное месторасположение, она может определить ошибки спутниковых сигналов. Станция делает это путем измерения расстояния до каждого спутника с использованием принимаемых сигналов и сравнивает результат с фактическими показателями, рассчитанными на основе известного месторасположения. Разница между измеренным и рассчитанным расстоянием для каждого видимого спутника является "дифференциальной коррекцией".
Дифференциальные коррекции для каждого отслеживаемого спутника форматируются в сообщения и передаются DGPS приемникам. Далее дифференциальные коррекции применяются DGPS приемниками в вычислениях для уменьшения ошибок и улучшения точности. Уровень точности зависит от самого приемника и сходства его "окружающей среды" с условиями, в которых находится контрольная станция, а также его приближенности к станции. Приемник контрольной станции определяет составляющие погрешности и обеспечивает их коррекцию для GPS навигатора в реальном времени. Коррекция может передаваться по FM радиочастотам, через спутник или через маяк береговой охраны США. Обычно точность DGPS составляет 1 – 5 метров (около 3 – 16 футов).

При полете есть одна вещь, которую все мы желаем получить: БЕЗОПАСНОСТЬ. Исключительная информация о месторасположении это ключ к безопасности полета. При дезориентирующих погодных условиях, когда визуальная навигация усложняется или вообще невозможна особое значение приобретает GPS навигация. Знакомьтесь с "Системой Панорамного обзора" или просто WAAS. Так называется сеть из 25 наземных контрольных станций, которые полностью покрывают территорию США, захватывая немного Канады и Мексики. Внедренные FAA (Федеральным Авиационным Агентством США) для целей авиации эти 25 контрольных станций расположены с предельной точностью. Они сравнивают измеренное GPS расстояние с известными значениями. Каждая контрольная станция подключена к базовой станции, которая собирает все коррекционные сообщения вместе и транслирует их через спутник. С помощью WAAS приемники GPS навигаторов могут обеспечивать точность 3 – 5 метров по горизонтали и 3 – 7 в высоту.

Специальная погрешность

Главная причина погрешностей данных в системе GPS больше не является проблемой. Второго мая, 2000 года в 5:05 утра (MEZ) так называемая специальная погрешность (SA) была отключена. Специальная погрешность - это искусственная фальсификация времени в сигнале L1, переданном спутником. Для гражданских GPS приемников эта погрешность вела к менее точному определению координат. (ошибка в приблизительно 50 м. в течение нескольких минут).

В дополнение, полученные данные передавались с меньшей точностью, что означает, что передаваемое положение спутника не соответствует действительности. Таким образом, за несколько часов возникает неточность данных о местоположении в 50-150 м. В те времена, когда специальная погрешность была активна, гражданские GPS приборы имели неточность в приблизительно 10 метров, а в наши дни - 20 или обычно даже меньше. После отключения выборочной погрешности, главным образом, улучшились точность данных о высоте.

Причиной для специальной погрешности была безопасность. Например, террористы не должны обладать возможностью обнаружения важных строительных объектов используя оружие на дистанционном управлении. Во время первой войны в заливе в 1990 специальная погрешность была отключена частично, т.к. американским войскам не хватало военных GPS приемников. Были приобретены 10 000 гражданских GPS приборов (Magellan и Trimble), которые позволили свободно и достаточно точно ориентироваться на пустынной местности. Специальная погрешность была деактивирована из-за широкого распространения GPS системы по всему миру. Следующие два графика показывают, как изменилась точность определения координат после выключения специальной погрешности. Длина границы диаграмм равняется 200 метрам, данные получены 1 мая 2000 года и 3 мая двухтысячного года в период 24 часа каждая. В то время как координаты при специальной погрешности находятся в радиусе 45 метров, то без нее 95 процентов всех точек находятся в радиусе 6.3 метра.

"Геометрия спутников"

Другой фактор, который влияет на точность определения координат - это "геометрия спутников". Геометрия спутников описывает положения спутников друг к другу с точки зрения приемника.

Если приемник видит 4 спутника и все они расположены, к примеру, на северо-западе, то это приведет к "плохой" геометрии. В худшем случае, обнаружение местоположения будет вовсе невозможно тогда, когда все определяемые расстояния будут указывать в одно направление. Даже, если местоположение распознано, погрешность может достигать 100 - 150 м. Если же эти 4 спутника будут хорошо распределены по небесному своду, то точность определяемого местоположения будет гораздо выше. Давайте предположим, что спутники расположены на севере, востоке, юге и западе, формируя углы в 90 градусов относительно друг друга. В данном случае расстояния могут быть измеряются в четырех разных направлениях, что и характеризует "хорошую" геометрию спутников.

Если два спутника находятся в наилучшем положении относительно приемника, то угол между приемником и спутниками равен 90 градусов. Время прохождения сигнала не может быть определенно абсолютно точно, о чем говорилось ранее. Поэтому возможные положения отмечены черными кругами. Точка пересечения (А) двух кругов достаточна мала и обозначена синим квадратным полем, что означает, что определяемые координаты будут достаточно точными.

Если спутники расположены почти в одну линию относительно приемника, то, как видно, на перекрестии мы получим более обширную площадь, а значит и меньшую точность.

Геометрия спутников также во многом зависит от высоких машин или от того, используете ли вы прибор в машине. Если какой-то из сигналов заблокирован, оставшиеся спутники попробуют определить координаты, если это вообще будет возможно. Такое часто может наблюдаться в зданиях, когда вы близко расположены к окнам. Если определение местоположением будет возможным, то в большинстве случаев оно будет не точным. Чем большая часть небосвода загорожена каким-либо предметом, тем становится сложнее определить координаты.

Большинство GPS приемников не только показывают количество "пойманных" спутников, но так же и их положение в небе. Это позволяет пользователю судить, закрывается ли какой-то определенный спутник каким-либо предметом и возникнет ли неточность данных при перемещении всего на пару метров.

Производители большинства приборов дают свою формулировку о точности измеряемых величин, которая в основном зависит от разных факторов. (о которых производитель неохотно говорит).

Для определения качества геометрии спутников в основном используются значения DOP ("разбавление" точности). В зависимости от того, какие факторы используются для вычисления значений DOP, возможны различные варианты:

  • GDOP (Geometrical Dilution Of Precision); Полная точность; 3D-координаты и время
  • PDOP (Positional Dilution Of Precision) ; Точность положения; 3D-координаты
  • HDOP (Horizontal Dilution Of Precision); Горизонтальная точность; 2D-координаты
  • VDOP (Vertical Dilution Of Precision); Вертикальная точность; высота
  • TDOP (Time Dilution Of Precision); временная точность; время

HDOP-значения ниже 4 хороши, выше 8 - плохие. HDOP значения становятся хуже, если "пойманные" спутники находятся высоко в небе над приемником. С другой стороны, значения VDOP становятся тем хуже, чем ближе спутники к горизонту, а значения PDOP хороши, когда спутники находятся прямо над головой и еще три распределены по горизонту. Для точного определения местоположения, значение GDOP не должно быть меньше 5. Значения PDOP, HDOP и VDOP являются частью NMEA данных GPGSA.

Геометрия спутников не является причиной погрешности в определении положения, которое может быть измерено в метрах. На самом деле значения DOP усиливает другие неточности. Высокие значения DOP увеличивает другие ошибки больше, чем низкое значения DOP.

Ошибка, которая возникает при определении местоположения из-за геометрии спутников, также зависит от широты, на которой находится приемник. Это показано ниже на диаграммах. Диаграмма слева показывает неточность по высоте (вначале кривая изображена со специальной погрешностью), которая была записана в Вухане (Китай). Вухан расположен на 30.5° северной широты и является наилучшим местом, где совокупность спутников всегда идеальна. Диаграмма справа показывает такой же записанный интервал, сделанный на станции Касей в Антарктике (66.3° южной широты). Из-за не такой идеальной совокупности спутников в этой широте время от времени возникали более грубые ошибки. В дополнение ошибка происходит из-за влияния атмосферы - чем ближе к полюсам, тем больше погрешность.

Орбиты спутников

Хотя спутники и находятся на достаточно четко определенных орбитах, небольшое отклонения от орбит все же возможно из-за гравитации. Солнце и Луна имеют слабое влияние на орбиты. Данные об орбите постоянно корректируются и поправляются и регулярно посылаются приемнику в эмпирическую память. Поэтому влияние на точность определения местоположения достаточно маленькое и если возникает погрешность, то не более 2 метров.

Влияния отражения сигналов

Эффект происходит из-за отражения сигналов спутника от других объектов. Для GPS сигналов этот эффект главным образом происходит в близости больших зданий или других объектов. Отраженному сигналу требуется больше времени, чем прямому сигналу. Ошибка составит всего несколько метров.

Атмосферные эффекты

Другой источник неточности это уменьшение скорости распространения сигнала в тропосфере и ионосфере. Скорость распространения сигналов в открытом космосе равна скорости света, а в ионосфере и тропосфере она меньше. В атмосфере на высоте в 80 - 400 км энергией солнца создается большое количество положительно заряженных ионов. Электроны и ионы сконцентрированы в четырех токопроводящих слоях ионосферы (D-, E-, F1-, и F2-слоях).
Эти слоя преломляют электромагнитные волны, исходящих от спутников, что увеличивает время прохождения сигналов. В основном эти ошибки корректируются вычислительными действиями приемника. Различные варианты скоростей при прохождении ионосферы для низких и высоких частот прекрасно известны для нормальных условий. Эти значения используются при расчете координат местоположения. Однако, гражданские приемники не способны вносить корректировку для непредвиденных изменений в прохождении сигнала, причиной которых могут стать сильные солнечные ветра.

Известно, что во время прохождения ионосферы электромагнитные волны замедляются обратно пропорционально площади их частоты (1/f2). Это означает, что электромагнитные волны с низкой частотой замедляют скорость быстрее, чем электромагнитные волны с высокими частотами. Если сигналы с высокой и низкой частотой, которые достигли приемника, позволили проанализировать разность во времени их прибытия, то время прохождения в ионосфере также будет посчитано. Военные GPS приемники используют сигналы двух частот (L1 и L2) , которые по разному ведут себя в ионосфере, и это позволяет устранить другую погрешность при вычислениях.

Влияние тропосферы - это следующая причина, почему время прохождения сигнала увеличивается из-за преломления. Причинами преломления являются разная концентрация водяного пара в тропосфере, в зависимости от погоды. Данная ошибка не так велика, как ошибка, которая возникает при прохождение, через ионосферу, но она не может быть устранена вычислением. Для исправления этой ошибки при вычислении используется приблизительная поправка.

Следующие два графика показывают ошибку ионосферы. Данные изображенные слева, были получены одночастотным приемником, который не может внести исправить ошибку ионосферы. График справа получен двухчастотным приемником, который может корректировать ошибку ионосферы. Обе диаграммы имеют примерно одинаковый масштаб(Слева: Широта от -15м до +10 м, Долгота -10м до +20 м. Справа: широта от - 12 м до + 8 м, долгота от - 10м до +20м). Правый график показывает более высокую точность.

Используя WAAS и EGNOS можно настроить "карты" погодных условий над различными регионами. Откорректированные данные отсылаются на приемник и заметно улучшают точность.

Неточность часов и округление ошибок

Несмотря на то, что время приемника синхронизируется с временем спутника во время определения положения, все же неточность времени есть, что приводит к ошибки в 2м при определении местоположения. Округление и вычислительные ошибки приемника имеют погрешность примерно в 1м.

Релятивистские эффекты

В данном разделе нет полного объяснения теории относительности. В повседневной жизни мы не осознаем значения теории относительности. Однако, эта теория влияет на множество процессов, среди которых правильное функционирование GPS системы. Это влияние будет коротко объяснено далее.

Как мы знаем, время является одним из главных факторов в GPS навигации и должно быть равно 20-30 наносекундам, чтобы обеспечить необходимую точность. Поэтому необходимо учесть скорость движения спутников (примерно 12000 км/ч)

Кто когда-либо сталкивался с теорией относительности, знает, что время течет медленнее при больших скоростях. Для спутников, которые движутся со скоростью 3874 м/с, часы идут медленнее, чем для земли. Это релятивистское время ведет к неточности во времени примерно в 7,2 микросекунде в день (1 микросекунд = 10-6 секунд). Теория относительности также гласит, что время идет тем медленнее, чем сильнее поле гравитации. Для наблюдателя на земной поверхности часы спутника будут идти быстрее (так как спутник находится на 20 000 км выше и подвергается гравитационным силам меньше, чем наблюдатель). И эта вторая причина этого эффекта, который в шесть раз сильнее, чем неточность о которой говорилось чуть ранее.

В целом, кажется, что часы на спутниках идут немного быстрее. Отклонение времени для наблюдателя на Земле составило бы 38 микросекунд в день и послужили бы причиной ошибки в итоге в 10 км за день. Чтобы избежать этой ошибки нет необходимости постоянно вносить корректировки. Частота часов на спутниках была установлена на 10.229999995453 Mhz вместо of 10.23 Mhz, но данные используют так, как если бы они имели стандартную частоту в 10.23 MHz. Эта уловка решила проблему релятивистского эффекта раз и навсегда.

Но есть и другой релятивистский эффект, который не учитывается при определении местоположения по системе GPS. Это так называемый эффект Сагнака и он вызван тем, что наблюдатель на поверхности Земли также постоянно движется со скоростью 500м/с (скорость на экваторе) из-за того, что планета вращается. Но влияние этого эффекта мало и его корректировка сложна для вычисления, т.к. зависит от направления движения. Поэтому этот эффект учитывается только в особых случаях.

Ошибки GPS системы приведены в следующей таблице. Частные значение не являются постоянными значениями, но являются подчиняются различиям. Все числа - приблизительные значения.

Спутниковые системы позиционирования и навигации, изначально разрабатывавшиеся для военных нужд, в последнее время находят широкое применение в гражданской сфере. GPS/ГЛОНАСС мониторинг транспорта, наблюдение за нуждающимися в опеке людьми, контроль перемещений сотрудников, слежение за животными, отслеживание багажа , геодезия и картография – это основные направления использования спутниковых технологий.

В настоящее время существует две глобальных системы спутникового позиционирования, созданных в США и РФ, и две региональных, охватывающих Китай, страны Евросоюза и еще ряд стран Европы и Азии. В России доступен ГЛОНАСС мониторинг и GPS мониторинг.

Системы GPS и ГЛОНАСС

GPS (Global Position System, Глобальная система позиционирования) – это спутниковая система, разработка которой началась в Америке с 1977 года. К 1993 программу развернули, а к июлю 1995 – добились полной готовности системы. В настоящее время космическая сеть GPS состоит из 32 спутников: 24 основных, 6 резервных. Они вращаются вокруг Земли по средневысокой орбите (20 180 км) в шести плоскостях, по четыре основных спутника в каждой.

На земле расположена главная контрольная станция и десять станций слежения, три из которых передают спутникам последнего поколения корректировочные данные, а те распределяют их на всю сеть.

Разработка системы ГЛОНАСС (Глобальной навигационной спутниковой системы) начата еще в СССР в 1982 году. О завершении работ заявили в декабре 2015 года. Для работы ГЛОНАСС требуется 24 спутника, для покрытия территории и РФ достаточно 18, а общее число спутников, находящихся в данный момент на орбите (включая резервные) – 27. Они также движутся по средневысокой орбите, но на меньшей высоте (19 140 км), в трех плоскостях, по восемь основных спутников в каждой.

Наземные станции ГЛОНАСС расположены в России (14), Антарктиде и Бразилии (по одной), намечается развертывание ряда дополнительных станций.

Предшественником системы GPS была система Transit, разработанная в 1964 году для управления запуском ракет с подводных лодок. Она могла определить местонахождение исключительно неподвижных объектов с точностью до 50 м, а единственный спутник находился в поле видимости всего один час в сутки. Программа GPS ранее носила названия DNSS и NAVSTAR. В СССР создание навигационной спутниковой системы велось с 1967 года в рамках программы «Циклон».

Основные отличия системs мониторинга ГЛОНАСС от GPS:

  • американские спутники движутся синхронно с Землей, а российские – асинхронно;
  • разная высота и количество орбит;
  • разный угол их наклона (около 55° для GPS, 64,8° для ГЛОНАСС);
  • разный формат сигналов и рабочие частоты.
  • Преимущества системы GPS

  • GPS – старейшая из существующих систем позиционирования, приведена в полную готовность раньше российской.
  • Надежность обусловлена использованием большего числа резервных спутников.
  • Позиционирование происходит с меньшей погрешностью, чем у ГЛОНАСС (в среднем 4 м, а для спутников последнего поколения – 60–90 см).
  • Множество устройств поддерживает систему.


Преимущества системы ГЛОНАСС

  • Положение асинхронных спутников на орбите более стабильное, что облегчает управление ими. Регулярное внесение корректив не требуется. Данное преимущество важно для специалистов, а не потребителей.
  • Система создана в России, поэтому обеспечивает уверенный прием сигнала и точность позиционирования в северных широтах. Это достигается за счет большего угла наклона спутниковых орбит.
  • ГЛОНАСС – это отечественная система, и останется доступной для россиян в случае отключения GPS.
  • Недостатки системы GPS

  • Спутники вращаются синхронно вращению Земли, поэтому для точного позиционирования требуется работа корректирующих станций.
  • Низкий угол наклона не обеспечивает хорошего сигнала и точного позиционирования в полярных областях и высоких широтах.
  • Право управления системой принадлежит военным, а они могут искажать сигнал или вообще отключить GPS для гражданских лиц или для других стран в случае конфликта с ними. Поэтому хотя GPS для транспорта точнее и удобнее, а ГЛОНАСС – надежнее.
  • Недостатки системы ГЛОНАСС

  • Разработка системы началась позже и до недавнего времени велась со значительным отставанием от американцев (кризис, финансовые злоупотребления, хищения).
  • Неполный комплект спутников. Продолжительность службы российских спутников ниже, чем американских, они чаще нуждаются в ремонте, поэтому точность навигации в ряде областей снижается.
  • Спутниковый мониторинг транспорта ГЛОНАСС дороже, чем GPS из-за высокой стоимости устройств, адаптированных к работе с отечественной системой позиционирования.
  • Недостаток программного обеспечения для смартфонов, КПК. Модули ГЛОНАСС проектировали для навигаторов. Для компактных портативных устройств на сегодняшний день более распространенный и доступный вариант – это поддержка GPS-ГЛОНАСС или только GPS.


Резюме

Системы GPS и ГЛОНАСС являются взаимодополняемыми. Оптимальное решение – это спутниковый GPS-ГЛОНАСС мониторинг. Устройства с двумя системами, например, GPS-маркеры с ГЛОНАСС-модулем «М-Плата» обеспечивают высокую точность позиционирования и уверенную работу. Если для позиционирования исключительно по ГЛОНАСС погрешность в среднем составляет 6 м, а для GPS – 4 м, то при использовании двух систем одновременно она снижается до 1,5 м. Но такие приборы с двумя микрочипами стоят дороже.

ГЛОНАСС разработана специально для российских широт и потенциально способна обеспечить высокую точность, из-за ее недоукомплектованности спутниками реальное преимущество пока на стороне GPS. Плюсы американской системы – это доступность и широкий выбор устройств с поддержкой GPS.

Спутниковые приемники прочно укрепились в списках обязательного оборудования для геодезических изысканий и кадастровых работ, поэтому стоит разобраться в их предназначении и особенностях. В этой статье мы объясним принцип действия GPS приемников (система ГЛОНАС работает аналогично), как они помогают в геодезических работах, а также отличия от обычных GPS модулей на телефонах и навигаторах.

Что из себя представляет GPS?

Аббревиатура GPS расшифровывается как Global Positioning System, что означает «Система глобального позиционирования». Изначально эта система разрабатывалась военными армии США. Но со временем «ушла в народ», где нашлось для неё множество мирных применений.

GPS состоит из 24-х искусственных спутников Земли семейства NAVSTAR, первый из которых отправился на орбиту ещё в 1978 году. Именно такое количество спутников нужно для обеспечения работоспособности системы навигации. На борту каждого из них находится работающий на частоте 1575,42 МГц и 1227,6 МГц передатчик мощностью 50 Вт передающий пучок данных на Землю и атомные часы, обеспечивающие постоянную абсолютную координацию всей группы.

В систему входят и спутниковые приемники. Их может быть бессчетное множество. Как самых простых, установленных в навигаторах, так и технически сложных, находящихся в геодезическом и другом высокоточном оборудовании. Задача приемников уловить и записать данные, принимаемые от спутниковых передатчиков.

Задача GPS измерений

Основная задача, которая в геодезии решается с помощью GPS, - это . Используется система и в крупномасштабных , при , в кадастровых работах ( , ) для обеспечения привязки геодезических измерений относительно пунктов геодезической государственной сети (ГГС).

Важным вопросом является выбор пунктов ГГС, к которым будет привязываться опорная геодезическая сеть. Исследования показали, что стоит отдавать предпочтение пунктам более высокого класса, расположенным на расстоянии 5–15 км от промышленных объектов, чтобы исключить влияние техногенных факторов.

Принцип работы GPS приемников

Имея в своём распоряжении GPS-приемник, любой его пользователь на Земле может получить орбитальные координаты за сутки всех спутников, время с точностью до наносекунды, текущие дату и точное время отправки сообщения. Такую информацию отправляет каждый спутник. GPS-приемник рассчитывает расстояние до него, а при получении информации от нескольких спутников - взаимное их расположение, а также собственные координаты.

Чтобы определить просто положение на местности (широту и долготу), потребуется поймать сигнал минимум трёх спутников, а если нужна ещё и высота над уровнем моря - минимум четырёх. Это относится к ЛЮБЫМ спутниковым приемникам. Конечно, чем больше сигналов ловит приемник-тем точнее и быстрее определяется его местоположение.

Принцип определения координат приемника достаточно прост. Они получаются методом обратных засечек от передатчиков спутников. Обо всем по порядку. Передатчик и приемник имеют высокоточные часы. В спутнике они атомные с погрешностью 10¯9 секунды/год. В приемниках часы попроще, но тоже гораздо точнее наручных. Передатчик высылает кодированный сигнал с данными о времени передачи, своей орбите и координатах и многое другое. Сигнал со скоростью света достигает приемника и обрабатывается им. Время передачи и приема различается на незначительную величину, но именно по этим данным можно определить расстояние до спутника. Поэтому и часы должны быть очень точными. Расстояние есть скорость помноженная на время. Перемножив скорость света и время прохождения сигнала и определяется пространственная засечка. И так происходит со всеми спутниковыми сигналами.

Получается, что в каждый момент времени приемник получает одновременно сигналы от нескольких спутников и определяет свое местоположение относительно их. Понятно, что спутники постоянно движутся по разным орбитам, и приемник не стоит на месте. Учет этих и других факторов ложится на вычислительную мощь приемника и наземных центров управления системой.

Разница в GPS приемниках геодезических и обычных

Сначала необходимо немного рассказать о сигналах, которые передают спутники. На самом деле сигналы передаются в закодированном виде на двух модулированных частотах, названных выше. Навигационные приемники, не имеющие специальных дешифраторов (платных), могут обработать только «грубый» открытый код, посылаемый передатчиками. В него преднамеренно введена случайная незначительная ошибка. И именно она обуславливает столь невысокую точность обычных навигаторов. Сделано это из коммерческих соображений- «неиспорченную частоту» нужно покупать. И цена на данный момент каждой частоты превышает 100 тыс. рублей. Бытовым навигаторам достаточно точности открытого кода, поэтому они не так дороги, как геодезические приемники.

Второе различие- приемники в навигаторах работают в одиночку и определяют свое абсолютное местоположение. То есть без дополнительных уравниваний и других приемников. Они самодостаточны. Точность определения может достигать 20 и более метров. А геодезические приемники работают минимум в паре. Один находится на пункте с известными координатами (база), а второй- на определяемом пункте (ровер). Они находятся в относительной близости друг от друга (до 50 км) и должны получать сигналы от одинаковых спутников. Получается, что координаты определяемого пункта вычисляются не относительно летающих спутников, а относительно известного пункта. За счет этого точность определения положения приемника достигает 1-2 сантиметра.

Из отличий можно отметить цену (многократная разница), мощность, внутренняя начинка, размер (геодезические значительно больше).

Методы геодезических измерений GPS приемниками

Один из приемников должен находится на базе (с известным местоположением). Второй перемещается по определяемым пунктам. Есть несколько вариантов его передвижения. В этом и заключаются методологические отличия.

Статический метод- самый точный- 5мм + 1мм/км. На пункте необходимо наблюдать не менее 1 часа. Применяется для создания и развития опорных геодезических сетей.

Быстростатический метод- точность сопоставима с кинематическим, но менее достоверен. Длительность наблюдений 15-20 минут. Применяется для создания сетей сгущения.

Кинематический метод Stop-and-Go- около 1-2см + 2мм/км. Продолжительность на пункте около 30 сек. Часто применяется в топосъемке на открытой местности с небольшим количеством контуров.

Непрерывный кинематический метод- точность порядка 10-15см. Приемник движется непрерывно. Используется для трассирования линейных объектов (дороги, ЛЭП, подземные коммуникации и т.д)

С развитием GSM технологий появился самый «продвинутый метод»- RTK. Точность сопоставима с быстростатическим методом, но измерения проводятся несколько сукунд. В Москве и ближайшем Подмосковье в связи с большим количеством непрерывно работающих базовых станций этот метод считается предпочтительным (если, конечно, оборудование позволяет).

Как видно- методы отличаются временем непрерывного нахождения приемника на определяемом пункте. Чем дольше-тем точнее.

Стоимость работ с использованием GPS приемников

GPS измерения включаются в состав большинства инженерно-изыскательских и кадастровых работ, поэтому и стоимость измерений прописывается в смете на данный вид работ. То есть эти измерения являются одним из этапов проведения топографической съемки, межевания и т.д.

Как отдельный вид- GPS определение координат пунктов проводится для создания опорных сетей для разных строительных и не только нужд. Стоимость этих работ можно узнать, пройдя по синей ссылке справа. Стоимость GPS определений в составе других видов работ сопоставима с представленной.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows