Какие бывают технологии локальных сетей? Основные способы доступа к среде к среде передачи. Базовые технологии локальных сетей

Какие бывают технологии локальных сетей? Основные способы доступа к среде к среде передачи. Базовые технологии локальных сетей

30.04.2021

Добрый день, Друзья! Рад Вас приветствовать на нашем блоге компьютерной грамотности. В предыдущей статье мы подняли большую и, судя по комментариям, очень важную для наших читателей тему – .

В этой статье я предлагаю перейти к рассмотрению первых этапов планирования сети. А если быть точным, то будем говорить о технологиях локальных сетей и выборе соответствующей архитектуры сети.

Сразу отметим, что разговор будет вестись только об основных технологиях локальных сетей, наиболее распространенных на сегодняшний день:

  • Ethernet (на базе витой пары);
  • Wi-Fi;
  • HomePlugAV.

Ethernet — самая популярная сетевая технология

  • 1. Ethernet – самая старая из наиболее распространенных технологий, используемых в локальных сетях. На сегодняшний день большинство сетевых адаптеров оснащаются интерфейсами, поддерживающие скорости 100 и 1000 Мбит/с (1 Гбит/с).

По соотношению цены и качества данная технология “впереди планеты всей”. Однако требуется проложить кабель по квартире в соответствии с планируемым размещением компьютеров. Есть еще одно “НО”: прокладывать сетевой кабель необходимо вдалеке от кабелей электропроводки, телевизионной и телефонной проводки. Дабы не вносить помехи в тракты передачи данных.

Для домашних потребностей, при условии, что нет проблем с прокладкой кабеля, этот вариант, мне кажется, наилучшим. Этой технологии будет вполне достаточно и для передачи данных, и для просмотра фильмов в режиме трансляции по сети.

  • 2. Wi-Fi-технология – в последние время очень сильно набирает обороты ввиду все большей доступности различных wi-fi технология мобильных устройств и гаджетов. В отличие от Ethernet, никаких кабелей не требуется. Отметим также, что кабельные сети больше подходят для стационарных компьютеров. А при подключении любого мобильно ПК к кабелю, он перестает быть мобильным.

Использование этой сетевой технологии требует несколько иного оборудования для создания сети, о чем мы будем говорить в следующей статье.

Если говорить о скоростях передачи данных Wi-Fi, то все зависит от поддерживаемой версии протокола беспроводной связи (разновидности стандарта 802.11):

11 Мбит/с (802.11b) – стандарт устаревшего оборудования;

54 Мбит/с (802.11g) – самый распространенный сегодня стандарт, который поддерживают большинство сетевых карт мобильных устройств;

600 Мбит/с (802.11n) – технология завтрашнего дня. Однако Wi-Fi-маршрутизаторы, поддерживающие этот стандарт, уже имеются в продаже.

  • 3. HomePlugAV – это перспективная технология будущего, как мне кажется, не требующая прокладки кабелей и homeplugav технологиябеспроводного соединения, а использующая для передачи данных домашнюю электропроводку. Средой передачи данных является электрическая сеть в квартире.

Очень удобно, только пока дорого. Приобретет свою популярность при развитии и более широком распространении интеллектуальной домашней сети “Умный дом”. О технологии HomePlugAV я подготовил .

Выбор архитектуры домашней сети

Рассмотрев основные технологии, логическим продолжением, как мне кажется, будет выбор архитектуры домашней сети. Кроме всего прочего, на выбор архитектуры окажет влияние предоставляемая технология доступа в Интернет и количество объединяемых в сеть устройств.

  • 1. Если у Вас кабельная сеть на базе Ethernet, то необходимо будет строить сеть по схеме “Звезда”. Это когда все компьютеры в сети, просто подключаются к одному коммутатору или роутеру, имеющему общее Интернет подключение.

Как правило, вид роутера (LAN или ADSL) зависит от того, по какой технологии заводится Интернет в квартиру. Если это та же самая витая пара, что используется в нашей домашней сети, то подойдет обычный LAN-роутер. Если же Интернет в квартиру заводится по телефонной линии, то просто заменяем роутер на ADSL-модем, который также предоставит нам возможность создания внутренней (квартирной) Ethernet-сети.

В следующих статьях мы рассмотрим, как подключить по такой технологии компьютеры в сеть, а также расскажем об особенностях соединения двух компьютеров по сети Ethernet.

  • 2. Если Вы выбрали беспроводную Wi-Fi сеть, то здесь возможно два варианта:

вариант “компьютер-компьютер” – соединение двух и более компьютеров, оснащенных беспроводными адаптерами, в единую сеть (наиболее уместен при создании небольшой сети без доступа в Интернет);
вариант “с точкой доступа” – наиболее распространен и используется для создания домашней сети с “входным” Интернетом соединением по технологии Ethernet или ADSL.
Построить такую сеть на практике быстрее и проще. Однако есть свои ограничения: следует учитывать, что некоторые бытовые электронные приборы (типа холодильников и микроволновок), а также другие точки доступа (например, у соседей) вносят помехи в каналы передачи, что снижает скорость обмена данными по беспроводной сети.

  • 3. Гибридная сеть – этот вариант подходит тем, у кого, например, входной Интернет обеспечивается ADSL-модемом, а внутренняя домашняя сеть имеет как мобильные компьютеры, вроде ноутбука, так и стационарные ПЭВМ. Я рассмотрел самый сложный вариант, объединяющий три разные технологии: ADSL, Wi-Fi и Ethernet.

Внимание! Меня очень часто спрашивают о вреде беспроводных сетей.

Как человек, немного разбирающийся в этой области, скажу, что вредным воздействием на человека в беспроводных сетях потенциально обладает Электромагнитное излучение (ЭМИ). Сила воздействия ЭМИ на человека зависит от следующих факторов: интенсивность излучения и частота излучения. Чем выше частота излучения, тем сильнее пагубное воздействие на организм человека. То же самое и с интенсивностью (или длительностью воздействия).

Вредно ли для нас Wi-Fi сеть, поддерживающая стандарты 802.11g или 802.11n, точно пока никто сказать не может.

  1. Размещайте беспроводные точки доступа и беспроводные телефонные базы в нежилых комнатах;
  2. Выключайте на ночь электронные устройства, которыми не пользуйтесь.

Итак, Друзья, мы рассмотрели как выбрать технологию локальной сети и на ее базе определиться с архитектурой сети. В следующих статьях мы будем говорить о настройке сети и ее отдельных компонентов.

Тема 1.3: Открытые системы и модель OSІ

Тема 1.4: Основы локальных сетей

Тема 1.5: Базовые технологии локальных сетей

Тема 1.6: Основные программные и аппаратные компоненты ЛВС

Локальные сети

1.5. Базовые технологии или сетевые технологии локальных сетей

1.5.3. Сетевые технологии локальных сетей

В локальных сетях, как правило, используется разделяемая среда передачи данных (моноканал) и основная роль отводится протоколами физического и канального уровней, так как эти уровни в наибольшей степени отражают специфику локальных сетей.

Сетевая технология – это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения локальной вычислительной сети. Сетевые технологии называют базовыми технологиями или сетевыми архитектурами локальных сетей.

Сетевая технология или архитектура определяет топологию и метод доступа к среде передачи данных, кабельную систему или среду передачи данных, формат сетевых кадров тип кодирования сигналов, скорость передачи в локальной сети. В современных локальных вычислительных сетях широкое распространение получили такие технологии или сетевые архитектуры, как: Ethernet, Token-Ring, ArcNet, FDDI.

Сетевые технологии локальных сетей IEEE802.3/Ethernet

В настоящее время эта сетевая технология наиболее популярна в мире. Популярность обеспечивается простыми, надежными и недорогими технологиями. В классической локальной сети Ethernet применяется стандартный коаксиальный кабель двух видов (толстый и тонкий).

Однако все большее распространение получила версия Ethernet, использующая в качестве среды передачи витые пары, так как монтаж и обслуживание их гораздо проще. В локальных сетях Ethernet применяются топологии типа “шина” и типа “пассивная звезда”, а метод доступа CSMA/CD.

Стандарт IEEE802.3 в зависимости от типа среды передачи данных имеет модификации:

  1. 10BASE5 (толстый коаксиальный кабель) - обеспечивает скорость передачи данных 10 Мбит/с и длину сегмента до 500м.
  2. 10BASE2 (тонкий коаксиальный кабель) - обеспечивает скорость передачи данных 10 Мбит/с и длину сегмента до 200м.
  3. 10BASE-T (неэкранированная витая пара) - позволяет создавать сеть по звездной топологии. Расстояние от концентратора до конечного узла до 100м. Общее количество узлов не должно превышать 1024.
  4. 10BASE-F (оптоволоконный кабель) - позволяет создавать сеть по звездной топологии. Расстояние от концентратора до конечного узла до 2000м.

В развитие сетевой технологии Ethernet созданы высокоскоростные варианты: IEEE802.3u/Fast Ethernet и IEEE802.3z/Gigabit Ethernet. Основная топология, которая используется в локальных сетях Fast Ethernet и Gigabit Ethernet, пассивная звезда.

Сетевая технология Fast Ethernet обеспечивает скорость передачи 100 Мбит/с и имеет три модификации:

  1. 100BASE-T4 - используется неэкранированная витая пара (счетверенная витая пара). Расстояние от концентратора до конечного узла до 100м.
  2. 100BASE-TX - используются две витые пары (неэкранированная и экранированная). Расстояние от концентратора до конечного узла до 100м.
  3. 100BASE-FX - используется оптоволоконный кабель (два волокна в кабеле). Расстояние от концентратора до конечного узла до 2000м.

Сетевая технология локальных сетей Gigabit Ethernet – обеспечивает скорость передачи 1000 Мбит/с.

Существуют следующие модификации стандарта:

  1. 1000BASE-SX – применяется оптоволоконный кабель с длиной волны светового сигнала 850 нм.
  2. 1000BASE-LX – используется оптоволоконный кабель с длиной волны светового сигнала 1300 нм.
  3. 1000BASE-CX – используется экранированная витая пара.
  4. 1000BASE-T – применяется счетверенная неэкранированная витая пара.

Локальные сети Fast Ethernet и Gigabit Ethernet совместимы с локальными сетями, выполненными по технологии (стандарту) Ethernet, поэтому легко и просто соединять сегменты Ethernet, Fast Ethernet и Gigabit Ethernet в единую вычислительную сеть.

Сетевые технологии локальных сетей IEEE802.5/Token-Ring

Сеть Token-Ring предполагает использование разделяемой среды передачи данных, которая образуется объединением всех узлов в кольцо.

Сеть Token-Ring имеет звездно-кольцевую топологию (основная кольцевая и звездная дополнительная топология). Для доступа к среде передачи данных используется маркерный метод (детерминированный маркерный метод).

Стандарт поддерживает витую пару (экранированную и неэкранированную) и оптоволоконный кабель. Максимальное число узлов на кольце - 260, максимальная длина кольца - 4000 м. Скорость передачи данных до 16 Мбит/с.

Сетевые технологии локальных сетей IEEE802.4/ArcNet

В качестве топологии локальная сеть ArcNet использует “шину” и “пассивную звезду”. Поддерживает экранированную и неэкранированную витую пару и оптоволоконный кабель.

В сети ArcNet для доступа к среде передачи данных используется метод передачи полномочий. Локальная сеть ArcNet - это одна из старейших сетей и пользовалась большой популярностью. Среди основных достоинств локальной сети ArcNet можно назвать высокую надежность, низкую стоимость адаптеров и гибкость.

Основным недостаткам сети является низкая скорость передачи информации (2,5 Мбит/с). Максимальное количество абонентов - 255. Максимальная длина сети - 6000 метров.

Сетевые технологии локальных сети FDDI (Fiber Distributed Data Interface)

FDDI– стандартизованная спецификация для сетевой архитектуры высокоскоростной передачи данных по оптоволоконным линиям. Скорость передачи – 100 Мбит/с. Эта технология во многом базируется на архитектуре Token-Ring и используется детерминированный маркерный доступ к среде передачи данных.

Максимальная протяженность кольца сети – 100 км. Максимальное количество абонентов сети – 500. Сеть FDDI - это очень высоконадежная сеть, которая создается на основе двух оптоволоконных колец, образующих основной и резервный пути передачи данных между узлами.

может производиться обмен данными. При разрыве соединения станция – инициатор разрыва отправляет другой стороне соответствующее уведомление.

Датаграммные протоколы предоставляют услуги по ненадежной доставке данных. Данные отсылаются без предупреждения и протокол не отвечает за их доставку.

Датаграммные протоколы работают достаточно быстро, т.к. не выполняет никаких действий при отправке данных.

Передача данных на физическом уровне

Различают два способа передачи информации: 1.Аналоговоя модуляция 2.Цифровое кодирование

Аналоговая модуляция – используется при передаче данных по телефонным линиям связи (узкополосные каналы связи). Сигнал имеет синусоидальную форму. Для кодирования информации используются три способа:

Амплитудная модуляция, т.е. изменение амплитуды сигнала несущей частоты

Частотная модуляция, т.е. изменение частоты сигнала

Фазовая модуляция, т.е. изменение фазы сигнала

Цифровое кодирование – способ представления информации в виде прямоугольных импульсов. Различают два способа цифрового кодирования:

Потенциальное кодирование – для представления нулей и единиц используются только значения потенциала сигнала, а его перепады игнорируются.

Импульсное кодирование – позволяет представлять данные перепадом потенциала определенного направления.

Литература:

Тема 4. Технологии локальных сетей

Вопросы для изучения:

Стандарты IEEE 802

Технология Ethernet

Технология Token Ring

Технология FDDI

Стандарты IEEE 802

В 1980г. В институте IEEE был организован комитет 802 целью которого была разработка стандартов локальных сетей. Эти стандарты описывают функционирование локальных сетей на физическом и канальном уровнях. Канальный уровень делится на два подуровня: уровень логического управления каналом(Logical Link Layer, LLC) и уровень управления доступом к среде передачи данных (Media Access Control, MAC).

Уровень MAC выполняет синхронизацию доступа к совместной среде передачи данных и определяет в какой момент времени станция может начинать передавать имеющиеся данные.

После того как получен доступ к среде, выполняется передача данных в соответствии со стандартами, которые определены на уровне LLC. Уровень LLC отвечает за связь с сетевым уровнем, а также выполняет передачу данных с заданной степенью надежности.

На уровне LLC используются три процедуры передачи данных:

1. LLC1 – передача данных с установлением соединения и подтверждением

2. LLC2 – передача данных без установления соединения и подтверждения

3. LLC3 – передача данных без установления соединения, но с подтверждением приема данных.

Протоколы LLC и MAC взаимно независимы – каждый протокол уровня MAC может применяться с любым протоколом уровня LLC и наоборот.

Стандарт 802.1 описывает общие понятия локальных сетей, определяет связь трех уровней стандартов 802 с семиуровневой моделью, а также стандарты построения сложных сетей на основе базовых топологий(internetworking). К этим стандартам относят стандарты, описывающие функционирование моста/коммутатора, стандарты объединения разнородных сетей при помощи транслирующего моста, стандарты построения виртуальных сетей(VLAN) на основе коммутаторов.

Технология Ethernet

Термин Ethernet относится к семейству протоколов локальных сетей, которые описываются стандартом IEEE 802.3 и используют метод доступа к среде CSMA/CD.

В настоящий момент существует три основные разновидности технологии, которые функционируют на базе оптоволоконных кабелей или неэкранированной витой пары:

1. 10 Mbps - 10Base-T Ethernet

2. 100 Mbps - Fast Ethernet

3. 1000 Mbps - Gigabit Ethernet

10 – мегабитный Ethernet включает три стандарта физического уровня:

1. 10Base – 5 («Толстый» коаксиал) – использует в качестве передающей среды коаксиальный кабель диаметром 0.5 дюйма, волновое сопротивление 50 Ом. Максимальная длина сегмента без повторителей – 500м. На один сегмент может подключаться не более 100 трансиверов. При построении сети используется правило «3-4- 5»(3 «нагруженных» сегмента, 4 повторителя, не более 5 сегментов). Повторитель подключается при помощи трансивера, т.о. в сети может быть не более 297 узлов. Для того чтобы предотвратить появление отраженных сигналов, используются терминаторы сопротивлением 50 Ом.

2. 10 Base – 2 («Тонкий» коаксиал) – использует в качестве передающей среды коаксиальный кабель диаметром 0.25 дюйма, волновое сопротивление 50 Ом. Максимальная длина сегмента без повторителей – 185м. На один сегмент может подключаться не более 30 узлов. При построении сети используется правило «3-4-5»(3 «нагруженных» сегмента, 4 повторителя, не более 5 сегментов). Для того чтобы предотвратить появление отраженных сигналов, используются терминаторы сопротивлением 50 Ом.

3. 10 Base – Т (Неэкранированная витая пара) – в качестве передающей среды используются две неэкранированные витые пары, узлы подключаются к концентратору и

образуют топологию «звезда». Расстояние от повторителя до станции не более 100 метров для категории кабеля не ниже 3. Концентраторы могут соединяться между собой, увеличивая протяженность логического сегмента сети(домена коллизий). При построении сети используется правило 4-х хабов(между любыми двумя узлами сети должно быть не более 4-х повторителей), количество узлов в сети не должно превышать 1024.

100 – мегабитный Ethernet(Fast Ethernet) включает следующие спецификации:

1. 100Base – TX. Среда передачи данных - неэкранированная витая пара категории не ниже 5. Поддерживается функция автоопределения скорости. Возможна работа в полнодуплексном режиме.

2. 100Base – FX Использует многомодовое оптоволокно.

3. 100Base – T4 Использует 4 витые пары для передачи данных по кабелю 3 категории. Не поддерживает полнодуплексной передачи данных.

В сетях 100-мегабитного Ethernet используются повторители двух классов (I иII ). Повторители классаI могут соединять каналы, отвечающие разным требованиям, например, 100Base-TX и 100Base-T4 или 100Base-FX. В пределах одного логического сегмента может быть применен только один повторитель классаI . Такие повторители часто имеют встроенные возможности управления с использованием протокола SNMP.

Повторители класса II не выполняют преобразования сигналов, и могут объединять только однотипные сегменты. Логический сегмент может содержать не более двух повторителей классаII.

При построении сети необходимо учитывать следующие ограничения:

Все сегменты на витой паре не должны превышать 100 м. Оптоволоконные сегменты не должны превышать 412 м.Расстояние между концентраторами класса II не должно превышать 5м.

1000 – мегабитный (Gigabit) Ethernet описан следующими стандартами:

IEEE 802.3z(1000Base-TX, 1000Base-LX, 1000Base-SX)

IEEE 802.3ab(1000Base-T)

1000Base-TX: передающая среда – экранированный медный кабель длиной до 25м. 1000Base-LX : передающая среда – одномодовое оптоволокно, длина до 5000м. 1000Base-CX : передающая среда – многомодовое оптоволокно, длина до 550м. 1000Base-T : передающая среда – UTP CAT5/CAT5e, длина сегмента до 100м.

При проектировании сетей Ethernet должно всегда выполняться требование корректного определения коллизий. Для этого время передачи кадра минимальной длины должно превышать или быть равным размеру интервала времени, за который кадр дважды пройдет расстояние между двумя самыми удаленными узлами сети.

Технология Token Ring

Была разработана фирмой IBM в 1984 году. Топология сети Token Ring представляет собой кольцо, где все станции соединениы отрезками кабеля.Способ доступа к сети – маркерный. Право передавать данные получает та станция, которая завладела маркером – кадром специального формата. Период времени в течение которого станция может вести передачу определяется временем удержания маркера.

Данные передаются с двумя скоростями – 4 и 16 Мбит/с. Работа на разных скоростях в одном кольце не допускается. Для контроля состояния сети одна из станций при инициализации кольца выбирается на роль активного монитора.

В сети Token Ring со скоростью передачи 4 Мбит станция передает кадр данных, который по кругу передается всеми станциями, пока его не получит станция – адресат. Станция – получатель копирует кадр в свой буфер, устанавливает признак того, что кадр был успешно принят, и передает его по кольцу дальше. Станция – отправитель кадра изымает кадр из сети, и, если время удержания маркера не истекло, то передает следующий кадр данных. В один момент времени в сети присутствует либо маркер либо кадр данных.

В сети Token Ring со скоростью передачи 16 Мбит используется алгоритм раннего высвобождения маркера. Его суть заключается в том, что станция, передавшая кадр своих данных, передает следом кадр маркера, не дожидаясь возвращения кадра данных по кольцу. В этом случае по кольцу одновременно циркулируют кадры данных и маркера, но данные может передавать только станция, захватившая маркер.

Для разных типов сообщений, кадрам могут присваиваться различные приоритеты

– от 0 до 7. Кадр маркера имеет два поля в которых записываются текущее и резервируемое значения приоритета. Станция может захватить маркер только в том случае, если значение приоритета для ее данных выше или равно значению приоритета маркера. В противном случае она может записать значение приоритета своих данных в резервное поле приоритета маркера, зарезервировав его для себя во время следующего прохода(если это поле еще не зарезервировано для данных с более высоким уровнем приоритета). Станция, которая сумела захватить маркер, после завершения передачи своих данных переписывает биты поля резервного приоритета в поле приоритета маркера и обнуляет поле резервного приоритета. Механизм приоритетов используется только по требованию приложений.

На физическом уровне узлы в сети Token Ring подключаются при помощи устройств многостанционного доступа(MSAU – Multistation Access Unit), которые объединяются кусками кабеля и образуют кольцо. Все станции в кольце работают на одной скорости.Максимальная длина кольца равна 4000м.

Технология FDDI

Fiber Distributed Data Interface – Оптоволоконный интерфейс распределенных данных, разработан институтом ANSI с 1986 по1988г. Является первой технологией локальных сетей, в которой используется оптоволокно. Для повышения безотказности FDDI строится на базе двух оптоволоконных колец, которые образуют основной и резервный пути прохождения данных. Для обеспечения надежности узлы подключают к обоим кольцам. В нормальном режиме работы данные проходят только по первичному кольцу. Если произошел отказ и часть первичного кольца не может передавать данные, то выполняется операция свертывания кольца – то есть объединение первичного кольца с вторичным и образование единого кольца.

В сетях FDDI используется маркерный метод доступа к среде передачи данных, который работает на основе алгоритма с ранним освобождением маркера. Технология FDDI поддерживает передачу двух видов трафика – синхронного(звук, видео) и асинхронного(данные). Тип данных определяется станцией. Маркер всегда может быть захвачен на определенный итервал времени для передачи синхронных кадров и лишь в случае отсутствия перегрузок кольца – для передачи асинхронного кадра.

Максимальное число станций с двойным подключением в кольце составляет 500, максимальная длина кольца – 100км. Максимальное расстояние между двумя соседними узлами равно 2км.

Сетевая технология - это минимальный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения вычислительной сети. Сетевые технологии называют базовыми технологиями. В настоящее время насчитывается огромное количество сетей, имеющих различные уровни стандартизации, но широкое распространение получили такие известные технологии, как Ethernet, Token-Ring, Arcnet.

Для обеспечения согласованной работы в сетях передачи данных используются различные коммуникационные протоколы передачи данных - наборы правил, которых должны придерживаться передающая и принимающая стороны для согласованного обмена данными. Протоколы - это наборы правил и процедур, регулирующих порядок осуществления некоторой связи. Протоколы - это правила и технические процедуры, позволяющие нескольким компьютерам при объединении в сеть общаться друг с другом.

Существует множество протоколов. И хотя все они участвуют в реализации связи, каждый протокол имеет различные цели, выполняет различные задачи, обладает своими преимуществами и ограничениями.

Протоколы работают на разных уровнях модели взаимодействия открытых систем OSI/ISO. Функции протоколов определяются уровнем, на котором он работает. Несколько протоколов могут работать совместно. Это так называемый стек, или набор, протоколов.

Как сетевые функции распределены по всем уровням модели OSI, так и протоколы совместно работают на различных уровнях стека протоколов. Уровни в стеке протоколов соответствуют уровням модели OSI. В совокупности протоколы дают полную характеристику функций и возможностей стека.

Передача данных по сети, с технической точки зрения, должна состоять из последовательных шагов, каждому из которых соответствуют свои процедуры или протокол. Таким образом, сохраняется строгая очередность в выполнении определенных действий.

Кроме того, все эти действия должны быть выполнены в одной и той же последовательности на каждом сетевом компьютере. На компьютере-отправителе действия выполняются в направлении сверху вниз, а на компьютере-получателе снизу вверх.

Компьютер-отправитель в соответствии с протоколом выполняет следующие действия: Разбивает данные на небольшие блоки, называемыми пакетами, с которыми может работать протокол, добавляет к пакетам адресную информацию, чтобы компьютер-получатель мог определить, что эти данные предназначены именно ему, подготавливает данные к передаче через плату сетевого адаптера и далее - по сетевому кабелю.

Компьютер-получатель в соответствии с протоколом выполняет те же действия, но только в обратном порядке: принимает пакеты данных из сетевого кабеля; через плату сетевого адаптера передает данные в компьютер; удаляет из пакета всю служебную информацию, добавленную компьютером-отправителем, копирует данные из пакета в буфер - для их объединения в исходный блок, передает приложению этот блок данных в формате, который оно использует.

И компьютеру-отправителю, и компьютеру-получателю необходимо выполнить каждое действие одинаковым способом, с тем чтобы пришедшие по сети данные совпадали с отправленными.

Если, например, два протокола будут по-разному разбивать данные на пакеты и добавлять информацию (о последовательности пакетов, синхронизации и для проверки ошибок), тогда компьютер, использующий один из этих протоколов, не сможет успешно связаться с компьютером, на котором работает другой протокол.

До середины 80-ых большинство локальных сетей были изолированными. Они обслуживали отдельные компании и редко объединялись в крупные системы. Однако, когда локальные сети достигли высокого уровня развития и объем передаваемой ими информации возрос, они стали компонентами больших сетей. Данные, передаваемые из одной локальной сети в другую по одному из возможных маршрутов, называются маршрутизированными. Протоколы, которые поддерживают передачу данных между сетями по нескольким маршрутам, называются маршрутизируемыми протоколами.

Среди множества протоколов наиболее распространены следующие:

IPX/SPX и NWLmk;

Набор протоколов OSI.

На данный момент Ethernet является самой распространенной технологией в локальных сетях. На базе этой технологии работает более 10 млн. локальных сетей и более 100 млн. компьютеров, имеющих сетевую карту, поддерживающую данную технологию. Существуют несколько подтипов Ethernet в зависимости от быстродействия и типов используемого кабеля.

Одним из основоположников данной технологии является фирма Xerox, разработавшая и создавшая в 1975 году тестовую сеть Ethernet Network. Большинство принципов, реализованных в упомянутой сети, используются и сегодня.

Постепенно технология совершенствовалась, отвечая возрастающему уровню запросов пользователей. Это привело к тому, что технология расширила сферу своего применения до такой среды передачи данных, как оптическое волокно или неэкранированная витая пара.

Причиной начала использования названных кабельных систем стало достаточно быстрое увеличение количества локальных сетей в различных организациях, а также низкая производительность локальных сетей, использующих коаксиальный кабель. Вместе с тем возникла необходимость в удобном и экономичном управлении и обслуживании данных сетей, чего уже не могли обеспечить устаревшие сети.

Основные принципы работы Ethernet. Все компьютеры, входящие в сеть, подключены к общему кабелю, который называется общей шиной. Кабель является средой передачи, и его может использовать для получения или передачи информации любой компьютер данной сети.

Сети Ethernet используют метод пакетной передачи данных. Компьютер-отправитель отбирает данные, которые нужно отправить. Эти данные преобразуются в короткие пакеты (иногда их называют кадрами), которые содержат адреса отправителя и получателя. Пакет снабжен служебной информацией -- преамбулой (отмечает начало пакета) -- и информацией о значении контрольной суммы пакета, которая необходима для проверки правильности передачи пакета по сети.

Перед тем как отправить пакет, компьютер-отправитель проверяет кабель, контролируя в нем отсутствие несущей частоты, на которой и будет происходить передача. Если такая частота не наблюдается, то он начинает передачу пакета в сеть.

Пакет будет принят всеми сетевыми платами компьютеров, которые подключены к этому сегменту сети. Сетевые карты контролируют адрес назначения пакета. Если адрес назначения не совпадает с адресом данного компьютера, то пакет отклоняется без обработки. Если же адреса совпадают, то компьютер примет и обработает пакет, удаляя из него все служебные данные и транспортируя необходимую информацию «вверх» по уровням модели OSI вплоть до прикладного.

После того как компьютер передаст пакет, он выдерживает небольшую паузу, равную 9,6 мкс, после чего опять повторяет алгоритм передачи пакета вплоть до полной транспортировки необходимых данных. Пауза нужна для того, чтобы один компьютер не имел физической возможности заблокировать сеть при передаче большого количества информации. Пока длится такая технологическая пауза, канал сможет использовать любой другой компьютер сети.

Если два компьютера одновременно проверяют канал и делают попытку отправить пакеты данных по общему кабелю, то в результате этих действий происходит коллизия, так как содержимое обоих кадров сталкивается на общем кабеле, что значительно искажает передаваемые данные.

После того как коллизия будет найдена, передающий компьютер обязан остановить передачу на небольшой случайный интервал времени.

Важным условием корректной работы сети является обязательное распознавание коллизии всеми компьютерами одновременно. Если любой передающий компьютер не вычислит коллизию и сделает вывод о правильности передачи пакета, то данный пакет попросту пропадет из-за того, что будет сильно искажен и отклонен принимающим компьютером (несовпадение контрольной суммы).

Вероятно, что утерянную или искаженную информацию повторно передаст протокол верхнего уровня, который работает с установлением соединения и идентификацией своих сообщений. Следует учитывать и то, что повторная передача произойдет через достаточно длительный интервал времени (десятки секунд), что приведет к значительному снижению пропускной способности конкретной сети. Именно поэтому своевременное распознание коллизий крайне важно для стабильности работы сети.

Все параметры Ethernet составлены так, чтобы коллизии всегда четко определялись. Именно поэтому минимальная длина поля данных кадра составляет не менее 46 байт (а с учетом служебной информации -- 72 байта или 576 бит). Длина кабельной системы рассчитывается таким образом, чтобы за то время, пока транспортируется кадр минимальной длины, сигнал о коллизии успел дойти до самого отдаленного компьютера сети. Исходя из этого, при скорости в 10 Мбит/с максимальное расстояние между произвольными элементами сети не может превышать 2500 м. Чем выше скорость передачи данных, тем меньше максимальная длина сети (уменьшается пропорционально). Используя стандарт Fast Ethernet ограничивается максимальное удаление 250 м, а в случае с гигабитным Ethernet -- 25 м.

Таким образом, вероятность успешного получения общей среды напрямую зависит от загруженности сети.

Постоянное возрастание уровня требований к пропускной способности сети послужило причиной разработки технологии Ethernet, скорость передачи в которой превышала 10 Мбит/с. В 1992 году был реализован стандарт Fast Ethernet, поддерживающий транспортировку информации со скоростью 100 Мбит/с. Большая часть принципов работы Ethernet остались без изменений.

Некоторые изменения произошли в кабельной системе. Коаксиальный кабель был не в состоянии обеспечить скорость передачи информации в 100 Мбит/с, поэтому ему на смену в Fast Ethernet приходят неэкранированные кабели типа витая пара, а также оптоволоконный кабель.

Выделяют три вида Fast Ethernet:

Стандарт 100Base-TX использует сразу две пары кабеля: UTP или STP. Одна пара необходима для передачи данных, а вторая -- для приема. Перечисленным требованиям соответствуют два кабельных стандарта: EIA/TIA-568 UTP категории 5 и SТР Типа 1 компании IBM. В 100Base-TX предоставляется возможность полнодуплексного режима в процессе работы с сетевыми серверами, а также применение всего двух из четырех нар восьмижильного кабеля -- две оставшиеся пары будут свободными и в дальнейшем могут быть использованы для расширения функциональности данной сети (например, на их основе возможна организация телефонной сети).

Стандарт 100Base-T4 позволяет использовать кабели категорий 3 и 5. Это происходит из-за того, что в 100Base-T4 используются четыре пары восьмижильного кабеля: одна -- для передачи, а другая -- для приема, остальные могут использоваться как для передачи, так и для приема. Соответственно, как прием, так и передача данных могут проводиться сразу по трем парам. Если общая пропускная способность в 100 Мбит/с распределяется на три пары, то 100Base-T4 снижает частоту сигнала, поэтому для нормальной работы вполне достаточно и менее качественного кабеля. Для организации сетей 100Base-T4 могут использоваться кабели UTP категорий 3 и 5, точно так же, как и UTP категории 5 и STP типа 1.

Стандарт 100Base-FX использует для передачи данных многомодовое оптоволокно с 62,5-микронным ядром и 125-микронной оболочкой. Данный стандарт предназначен для магистралей -- соединения репитеров Fast Ethernet в пределах одного помещения. Основные преимущества оптического кабеля передались и рассматриваемому стандарту 100Base-FX: невосприимчивость к электромагнитным шумам, повышенный уровень защиты информации и увеличенные расстояния между сетевыми устройствами.

Долгое время интерфейс Firewire (высокоскоростной последовательный интерфейс Firewire, так же известный как IEEE1394) использовался в основном при обработке потокового видео. В общем-то, для этого он первоначально и проектировался. Однако, высочайшая, даже по сегодняшним меркам, пропускная способность этого интерфейса (400 Мбит/с) сделала его достаточно эффективным для современных периферийных высокоскоростных устройств, а так же для организации небольших быстродействующих сетей.

Благодаря поддержке WDM драйвера, Firewire интерфейс поддерживается операционными системами, начиная с Windows 98 Second Edition. Однако встроенная поддержка интерфейса Firewire была впервые реализована в Windows Millennium, и теперь поддерживается в Windows 2000 и Windows XP. Все операционные системы, кроме Windows 98SE также поддерживают горячую установку сети. Если Firewire контроллер присутствует в системе, Windows автоматически инсталлирует виртуальный сетевой адаптер, с возможностью прямого доступа и модификации стандартных сетевых установок.

По умолчанию Firewire сеть поддерживает TCP/IP протокол, которого вполне достаточно для решения большинства современных сетевых задач, например, функция Internet Connection Sharing (совместное использование Интернет), встроенная в операционную систему Microsoft.

Firewire обеспечивает существенное преимущество в скорости по сравнению со стандартной 100BaseT Ethernet сетью. Но это не главное преимущество Firewire сети. Более важна простота создания такой сети, доступная пользователю не самого высокого уровня подготовки. Так же важно отметить универсальность и невысокую стоимость.

Главным недостатком Firewire сети является ограниченная длинна, кабеля. Согласно спецификации, для работы на скорости 400 Мбит/с длинна кабеля не должна превышать 4,5 метров. Для решения этой проблемы используется различные варианты репитеров.

Несколько лет назад был разработан новый стандарт Ethernet -- Gigabit Ethernet. На данный момент он пока еще не имеет широкого распространения. Технология Gigabit Ethernet в качестве среды транспортировки информации использует оптические каналы и экранированную витую пару. Такая среда способна десятикратно повысить скорость передачи данных, что является необходимым условием для проведения видеоконференций или работы сложных программ, оперирующих большими объемами информации.

Данная технология использует те же принципы, что и более ранние стандарты Ethernet. Кроме того, сеть, которая базируется на основе экранированной витой пары, можно осуществить посредствам перехода на технологию Gigabit Ethernet путем замены сетевых плат и сетевого оборудования, которые используются в сети, 1000Base-Х содержит сразу три физических интерфейса, параметры и характеристики которых указаны ниже:

Интерфейс 1000Base-SX определяет лазеры с допустимой длиной излучения в промежутке 770-860 нм, мощность излучения передатчика в диапазоне от 10 до 0 дБм, при существующем соотношении ON/OFF (есть сигнал/ нет сигнала) не менее 9 дБ. Чувствительность такого приемника -- 17 дБм, а его насыщение -- 0 дБм.

Интерфейс 1000Base-LX определяет лазеры с допустимой длиной излучения в промежутке 1270-1355 нм, мощность излучения передатчика в диапазоне от 13,5 до 3 дБм, при существующем соотношении ON/OFF (есть сигнал/ нет сигнала) не менее 9 дБ. Чувствительность такого приемника -- 19 дБм, а его насыщение -- 3 дБм.

1000Base-CX -- экранированная витая пара, предназначенная для транспортировки данных на небольшие расстояния. Для транспортировки данных используются все четыре пары медного кабеля, а скорость передачи по одной паре составляет 250 Мбит/с. Технология Gigabit Ethernet -- самая быстрая из всех существующих на данный момент технологий локальных сетей. Достаточно скоро большинство сетей будут создаваться на основе данной технологии.

Wi-Fi- технология беспроводной связи. Название это расшифровывается как Wireless Fidelity(с англ. - беспроводная точность). Предназначена для доступа на коротких дистанциях и, в то же время, на достаточно больших скоростях. Существует три модификации этого стандарта - IEEE 802.11a, b и g, их отличие друг от друга в скорости передачи данных и расстоянии на которое они могут передавать данные. Максимальная скорость работы 11/ 54/ 320 Мбит/c соответственно, а расстояние передачи порядка 100 метров. Технология удобна тем, что не требует больших усилий объединения компьютеров в сеть, позволяет избежать неудобств возникающих при прокладке кабеля. В настоящее время услугами можно воспользоваться в кафе, аэропортах, парках и др.

USB сеть. Предназначена в основном для пользователей ноутбуков, т.к. при отсутствии сетевой карты в ноутбуке она может обойтись довольно дорого. Удобство в том, что сеть может быть создана без использования сетевых карт и концентраторов, универсальность, возможность подключать любой компьютер. Скорость передачи данных 5-7 Мбит/с.Локальная сеть через электрические провода. 220В. Электрические сети не идут ни в какое сравнение с локальными и глобальными сетями. Электрическая розетка есть в каждой квартире, в каждой комнате. По дому можно протянуть десятки метров кабелей, соединив между собой все компьютеры, принтеры и прочие сетевые устройства. Но тогда каждый компьютер станет "рабочим местом", стационарно расположенным в помещении. Перенести его - значит переложить сетевой кабель. Можно установить дома беспроводную сеть IEEE 802.11b, но могут возникнуть проблемы с проникновением сигнала через стены и перекрытия, к тому же это лишнее излучение, которого в современной жизни итак хватает. А есть и иной способ - использовать уже существующие электрические провода и розетки, установленные в стенах. Единственное, что для этого потребуется - соответствующие адаптеры. Скорость сетевого подключения через электрические провода составляет 14 Мбит/с. Дальность действия - примерно 500 метров. Но стоит учитывать, что распределительная сеть - трёхфазная, а к домам подводится по одной фазе и нулю, равномерно нагружая каждую из фаз. Так что, если один пользователь подключен к одной фазе, а второй - к другой, то воспользоваться подобной системой не удастся.

Сравнительный анализ технологий локально-вычислительных сетей представлен в Приложении Б.

Сетевая технология - это минимальный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения вычислительной сети. Сетевые технологии называют базовыми технологиями. В настоящее время насчитывается огромное количество сетей, имеющих различные уровни стандартизации, но широкое распространение получили такие известные технологии, как Ethernet, Token-Ring, Arcnet.

На данный момент Ethernet является самой распространенной технологией в локальных сетях. На базе этой технологии работает более 7 млн. локальных сетей и более 80 млн. компьютеров, имеющих сетевую карту, поддерживающую данную технологию. Существуют несколько подтипов Ethernet в зависимости от быстродействия и типов используемого кабеля.

Одним из основоположников данной технологии является фирма Xerox, разработавшая и создавшая в 1975 году тестовую сеть Ethernet Network. Большинство принципов, реализованных в упомянутой сети, используются и сегодня.

Постепенно технология совершенствовалась, отвечая возрастающему уровню запросов пользователей. Это привело к тому, что технология расширила сферу своего применения до такой среды передачи данных, как оптическое волокно или неэкранированная витая пара.

Причиной начала использования названных кабельных систем стало достаточно быстрое увеличение количества локальных сетей в различных организациях, а также низкая производительность локальных сетей, использующих коаксиальный кабель. Вместе с тем возникла необходимость в удобном и экономичном управлении и обслуживании данных сетей, чего уже не могли обеспечить устаревшие сети.

Основные принципы работы Ethernet. Все компьютеры, входящие в сеть, подключены к общему кабелю, который называется общей шиной. Кабель является средой передачи, и его может использовать для получения или передачи информации любой компьютер данной сети.

Сети Ethernet используют метод пакетной передачи данных. Компьютер-отправитель отбирает данные, которые нужно отправить. Эти данные преобразуются в короткие пакеты (иногда их называют кадрами), которые содержат адреса отправителя и получателя. Пакет снабжен служебной информацией -- преамбулой (отмечает начало пакета) -- и информацией о значении контрольной суммы пакета, которая необходима для проверки правильности передачи пакета по сети.

Перед тем как отправить пакет, компьютер-отправитель проверяет кабель, контролируя в нем отсутствие несущей частоты, на которой и будет происходить передача. Если такая частота не наблюдается, то он начинает передачу пакета в сеть.

Пакет будет принят всеми сетевыми платами компьютеров, которые подключены к этому сегменту сети. Сетевые карты контролируют адрес назначения пакета. Если адрес назначения не совпадает с адресом данного компьютера, то пакет отклоняется без обработки. Если же адреса совпадают, то компьютер примет и обработает пакет, удаляя из него все служебные данные и транспортируя необходимую информацию «вверх» по уровням модели OSI вплоть до прикладного.

После того как компьютер передаст пакет, он выдерживает небольшую паузу, равную 9,6 мкс, после чего опять повторяет алгоритм передачи пакета вплоть до полной транспортировки необходимых данных. Пауза нужна для того, чтобы один компьютер не имел физической возможности заблокировать сеть при передаче большого количества информации. Пока длится такая технологическая пауза, канал сможет использовать любой другой компьютер сети.

Если два компьютера одновременно проверяют канал и делают попытку отправить пакеты данных по общему кабелю, то в результате этих действий происходит коллизия, так как содержимое обоих кадров сталкивается на общем кабеле, что значительно искажает передаваемые данные.

После того как коллизия будет найдена, передающий компьютер обязан остановить передачу на небольшой случайный интервал времени.

Важным условием корректной работы сети является обязательное распознавание коллизии всеми компьютерами одновременно. Если любой передающий компьютер не вычислит коллизию и сделает вывод о правильности передачи пакета, то данный пакет попросту пропадет из-за того, что будет сильно искажен и отклонен принимающим компьютером (несовпадение контрольной суммы).

Вероятно, что утерянную или искаженную информацию повторно передаст протокол верхнего уровня, который работает с установлением соединения и идентификацией своих сообщений. Следует учитывать и то, что повторная передача произойдет через достаточно длительный интервал времени (десятки секунд), что приведет к значительному снижению пропускной способности конкретной сети. Именно поэтому своевременное распознание коллизий крайне важно для стабильности работы сети.

Все параметры Ethernet составлены так, чтобы коллизии всегда четко определялись. Именно поэтому минимальная длина поля данных кадра составляет не менее 46 байт (а с учетом служебной информации -- 72 байта или 576 бит). Длина кабельной системы рассчитывается таким образом, чтобы за то время, пока транспортируется кадр минимальной длины, сигнал о коллизии успел дойти до самого отдаленного компьютера сети. Исходя из этого, при скорости в 10 Мбит/с максимальное расстояние между произвольными элементами сети не может превышать 2500 м. Чем выше скорость передачи данных, тем меньше максимальная длина сети (уменьшается пропорционально). Используя стандарт Fast Ethernet ограничивается максимальный размер 250 м, а в случае с гигабитным Ethernet -- 25 м.

Таким образом, вероятность успешного получения общей среды напрямую зависит от загруженности сети (интенсивности возникновения потребности передачи кадров.

Постоянное возрастание уровня требований к пропускной способности сети послужило причиной разработки технологии Ethernet, скорость передачи в которой превышала 10 Мбит/с. В 1992 году был реализован стандарт Fast Ethernet, поддерживающий транспортировку информации со скоростью 100 Мбит/с. Большинство принципов работы Ethernet остались без изменений.

Некоторые изменения произошли в кабельной системе. Коаксиальный кабель был не в состоянии обеспечить скорость передачи информации в 100 Мбит/с, поэтому ему на смену в Fast Ethernet приходят экранированные неэкранированные кабели типа витая пара, а также оптоволоконный кабель.

Выделяют три вида Fast Ethernet:

  • - 100Base-TX;
  • - 100Base-T4;
  • - 100Base-FX.

Стандарт 100Base-TX использует сразу две пары кабеля: UTP или STP. Одна пара необходима для передачи данных, а вторая -- для приема. Перечисленным требованиям соответствуют два кабельных стандарта: EIA/TIA-568 UTP категории 5 и SТР Типа 1 компании IBM. В 100Base-TX предоставляется возможность полнодуплексного режима в процессе работы с сетевыми серверами, а также применение всего двух из четырех нар восьмижильного кабеля -- две оставшиеся пары будут свободными и в дальнейшем могут быть использованы для расширения функциональности данной сети (например, на их основе возможна организация телефонной сети).

Стандарт 100Base-T4 позволяет использовать кабели категорий 3 и 5. Это происходит из-за того, что в 100Base-T4 используются четыре пары восьмижильного кабеля: одна -- для передачи, а другая -- для приема, остальные могут использоваться как для передачи, так и для приема. Соответственно, как прием, так и передача данных могут проводиться сразу по трем парам. Если общая пропускная способность в 100 Мбит/с распределяется на три пары, то 100Base-T4 снижает частоту сигнала, поэтому для нормальной работы вполне достаточно и менее качественного кабеля. Для организации сетей 100Base-T4 могут использоваться кабели UTP категорий 3 и 5, точно так же, как и UTP категории 5 и STP типа 1.

Стандарт 100Base-FX использует для передачи данных многомодовое оптоволокно с 62,5-микронным ядром и 125-микронной оболочкой. Данный стандарт предназначен для магистралей -- соединения репитеров Fast Ethernet в пределах одного помещения. Основные преимущества оптического кабеля передались и рассматриваемому стандарту 100Base-FX: невосприимчивость к электромагнитным шумам, повышенный уровень защиты информации и увеличенные расстояния между сетевыми устройствами.

Сравнительный анализ технологий локально-вычислительных сетей представлен в Приложении Б

Долгое время интерфейс Firewire (высокоскоростной последовательный интерфейс Firewire, так же известный как IEEE1394) использовался в основном при обработке потокового видео. В общем-то, для этого он первоначально и проектировался. Однако, высочайшая, даже по сегодняшним меркам, пропускная способность этого интерфейса (400 Мбит/с) сделала его достаточно эффективным для современных периферийных высокоскоростных устройств, а так же для организации небольших быстродействующих сетей.

Благодаря поддержке WDM драйвера, Firewire интерфейс поддерживается операционными системами, начиная с Windows 98 Second Edition. Однако встроенная поддержка интерфейса Firewire была впервые реализована в Windows Millennium, и теперь поддерживается в Windows 2000 и Windows XP. Все операционные системы, кроме Windows 98SE также поддерживают горячую установку сети. Если Firewire контроллер присутствует в системе, Windows автоматически инсталлирует виртуальный сетевой адаптер, с возможностью прямого доступа и модификации стандартных сетевых установок.

По умолчанию Firewire сеть поддерживает TCP/IP протокол, которого вполне достаточно для решения большинства современных сетевых задач, например, функция Internet Connection Sharing (совместное использование Интернет), встроенная в операционную систему Microsoft.

Firewire обеспечивает существенное преимущество в скорости по сравнению со стандартной 100BaseT Ethernet сетью. Но это не главное преимущество Firewire сети. Более важна простота создания такой сети, доступная пользователю не самого высокого уровня подготовки. Так же важно отметить универсальность и невысокую стоимость.

Главным недостатком Firewire сети является ограниченная длинна, кабеля. Согласно спецификации, для работы на скорости 400 Мбит/с длинна кабеля не должна превышать 4,5 метров. Для решения этой проблемы используется различные варианты репитеров.

Несколько лет назад был разработан новый стандарт Ethernet -- Gigabit Ethernet. На данный момент он пока еще не имеет широкого распространения. Технология Gigabit Ethernet в качестве среды транспортировки информации использует оптические каналы и экранированную витую пару. Такая среда способна десятикратно повысить скорость передачи данных, что является необходимым условием для проведения видеоконференций или работы сложных программ, оперирующих большими объемами информации.

Данная технология использует те же принципы, что и более ранние стандарты Ethernet. Кроме того, сеть, которая базируется на основе экранированной витой пары, можно осуществить посредствам перехода на технологию Gigabit Ethernet путем замены сетевых плат и сетевого оборудования, которые используются в сети, 1000Base-Х содержит сразу три физических интерфейса, параметры и характеристики которых указаны ниже:

  • - Интерфейс 1000Base-SX определяет лазеры с допустимой длиной излучения в промежутке 770-860 нм, мощность излучения передатчика в диапазоне от 10 до 0 дБм, при существующем соотношении ON/OFF (есть сигнал/ нет сигнала) не менее 9 дБ. Чувствительность такого приемника -- 17 дБм, а его насыщение -- 0 дБм.
  • - Интерфейс 1000Base-LX определяет лазеры с допустимой длиной излучения в промежутке 1270-1355 нм, мощность излучения передатчика в диапазоне от 13,5 до 3 дБм, при существующем соотношении ON/OFF (есть сигнал/ нет сигнала) не менее 9 дБ. Чувствительность такого приемника -- 19 дБм, а его насыщение -- 3 дБм.
  • - 1000Base-CX -- экранированная витая пара, предназначенная для транспортировки данных на небольшие расстояния. Для транспортировки данных используются все четыре пары медного кабеля, а скорость передачи по одной паре составляет 250 Мбит/с. Технология Gigabit Ethernet -- самая быстрая из всех существующих на данный момент технологий локальных сетей. Достаточно скоро большинство сетей будут создаваться на основе данной технологии.

Wi-Fi- технология беспроводной связи. Название это расшифровывается как Wireless Fidelity (с англ. - беспроводная точность). Предназначена для доступа на коротких дистанциях и, в то же время, на достаточно больших скоростях. Существует три модификации этого стандарта - IEEE 802.11a, b и g, их отличие друг от друга в скорости передачи данных и расстоянии на которое они могут передавать данные. Максимальная скорость работы 11/ 54/ 320 Мбит/c соответственно, а расстояние передачи порядка 100 метров. Технология удобна тем, что не требует больших усилий объединения компьютеров в сеть, позволяет избежать неудобств возникающих при проложении кабеля. В настоящее время услугами можно воспользоваться в кафе, аэропортах, парках и др

USB сеть. Предназначена в основном для пользователей ноутбуков, т.к. при отсутствии сетевой карты в ноутбуке она может обойтись довольно дорого. Удобство в том, что сеть может быть создана без использования сетевых карт и концентраторов, универсальность, возможность подключать любой компьютер.

Скорость передачи данных 5-7 Мбит/с.Локальная сеть через электрические провода. 220В. Электрические сети не идут ни в какое сравнение с локальными и глобальными сетями. Электрическая розетка есть в каждой квартире, в каждой комнате. По дому можно протянуть десятки метров кабелей, соединив между собой все компьютеры, принтеры и прочие сетевые устройства.

Но тогда каждый компьютер станет "рабочим местом", стационарно расположенным в помещении. Перенести его - значит переложить сетевой кабель. Можно установить дома беспроводную сеть IEEE 802.11b, но могут возникнуть проблемы с проникновением сигнала через стены и перекрытия, к тому же это лишнее излучение, которого в современной жизни итак хватает. А есть и иной способ - использовать уже существующие электрические провода и розетки, установленные в стенах. Единственное, что для этого потребуется - соответствующие адаптеры. Скорость сетевого подключения через электрические провода составляет 14 Мбит/с. Дальность действия - примерно 500 метров.

Но стоит учитывать, что распределительная сеть - трёхфазная, а к домам подводится по одной фазе и нулю, равномерно нагружая каждую из фаз. Так что, если один пользователь подключен к одной фазе, а второй - к другой, то воспользоваться подобной системой не удастся.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows