Плачущий холодильник принцип действия. Как образуется холод. Основные типы охлаждающих систем

Плачущий холодильник принцип действия. Как образуется холод. Основные типы охлаждающих систем

25.05.2019

Типы холодильников, их систем охлаждения

Первые устройства для охлаждения пищи и напитков появились несколько тысяч лет назад в Древнем Египте и Китае. В большинстве случаев древние холодильники представляли собой две емкости: меньшая с едой помещалась в большую, частично заполненную льдом или холодной водой. Очевидно, что такое устройство было доступно исключительно для богатых людей и являлось не только предметом роскоши, но и произведением искусства.

Научно-техническая революция XIX века внесла свой вклад и в технологии замораживания еды. Так, начиная с 1850 года в опытных и промышленных образцах, а с 1913 года и в бытовых холодильниках для охлаждения используются так называемые тепловые насосы - специальные устройства, переносящие тепло из рабочей (холодильной или морозильной) камеры во внешнюю среду.

Возможность длительного сохранения свежести продуктов была по достоинству оценена, поэтому к середине XX века холодильник был практически в каждой американской семье, у 30% хозяек из Западной Европы - и лишь у отдельных граждан Советского Союза, так как отец всех народов И. В. Сталин отнес холодильник к буржуазным излишествам. Маловероятно, чтобы Сталин целенаправленно старался уморить население несвежими продуктами, просто в предвоенные годы почти весь металл, необходимый в том числе и для изготовления холодильников, шел на строительство военной техники. Тем не менее начало массового производства холодильников в СССР совпало с развенчанием культа личности, поэтому, если секса в Советском Союзе не было еще долгих сорок лет до самого 1991 года, холодильники к концу 80-х годов были практически в каждой семье.

За последующие двадцать лет разгула демократии холодильники проникли на все кухни, в том числе деревенских и дачных домов. Современные хозяйки могут позволить себе покапризничать и выбрать из всего множества моделей подходящую им по цвету и размеру. Однако, несмотря на бесконечное их разнообразие, технология охлаждения и заморозки еды и напитков практически во всех холодильниках неизменна уже полвека.

Типы холодильников

Всего можно выделить четыре вида холодильных агрегатов, которые претендовали на звание домашних: компрессионный, абсорбционный, термоэлектрический и холодильник с вихревыми охладителями.

В последнем, крайне редком типе, не вышедшем за пределы прототипов и тестовых установок, охлаждение осуществляется за счет расширения сжатого компрессором воздуха в специальных камерах - вихревых охладителях . Эти устройства были надежны и безопасны, однако обладали крайне низким КПД, чудовищно шумели и поэтому практически не имели шансов на успех, особенно в быту.

Агрегаты второго типа - абсорбционные холодильники , конструкция которых была предложена Альбертом Эйнштейном - обеспечивают охлаждение рабочей камеры за счет испарения аммиака. Свое название они получили потому, что циркуляция хладагента происходит в процессе его растворения в жидкости, чаще всего в воде. Для дальнейшей работы холодильника этот раствор разделяется на воду и аммиак, после чего последний сжижается, затем испаряется и снова растворяется в воде, далее цикл повторяется с самого начала.

В отличие от вихревых холодильников абсорбционные практически бесшумны, кроме того, в большинстве конструкций также отсутствуют движущиеся части. Устройства, основанные на этом принципе, обладают достаточно экзотической для бытовых устройств особенностью - они могут работать не на электричестве, а на сжигаемом топливе, например дровах. Это позволяет брать такие холодильники, например, в поход или на пляж. Несмотря на преимущества, не обошлось и без недостатков - относительно низкая удельная производительность, а также потенциальная опасность отравления ядовитыми веществами.

Автомобильный холодильник

В основе работы термоэлектрического холодильника лежит эффект Пельтье - охлаждение места контакта двух разных проводников при прохождении электрического тока. Холодильники на таких элементах надежны, бесшумны, но достаточно дороги и крайне малоэффективны по сравнению с другими тепловыми насосами. Несмотря на это, их можно встретить в автомобильных охладителях, водных и компьютерных кулерах.

Структура элемента Пельтье

В быту наиболее распространены компрессионные холодильники . Они основаны на свойстве вещества поглощать тепло при испарении. Хладагент (безопасный газ фреон) кипит в испарителе, охлаждая тем самым воздух внутренней камеры. Для завершения цикла его нужно снова превратить в жидкость. Это происходит при повышенном давлении, создаваемом компрессором в конденсаторе, при этом выделяется тепло. Конденсаторы могут размещаться сзади как в открытом виде (знакомая всем решетка), так и в закрытом (конденсатор защищен специальной пластиной, а для эффективного теплообмена сверху предусмотрены вентиляционные отверстия). Кроме того, некоторые производители размещают конденсатор в боковых стенках, что позволяет устанавливать холодильник впритык к стене.

Компрессор - самый шумный элемент холодильника

Этот тип теплового насоса относительно прост, дешев и безопасен при бытовом применении. Недостатком конструкции является шум, создаваемый компрессором, поэтому для снижения шумовой нагрузки его размещают на специальных виброподвесах.

Одно- и двухкомпрессорные холодильники

На рынке присутствуют холодильники, оснащенные как одним, так и двумя компрессорами. В последнем случае в каждой камере (холодильной и морозильной) реализована автономная система охлаждения, что позволяет независимо регулировать температуру и отключать неиспользуемые камеры. Это может быть полезным, например, при длительном отпуске или в том случае, когда временно нет необходимости замораживать и долго хранить продукты.

В холодильниках с одним компрессором для раздельного управления работой камер используется электромагнитный клапан, регулирующий подачу хладагента к испарителям. Для потребителей это означает, что разницы по сравнению с двухкомпрессорными моделями при эксплуатации они не заметят. Единственное отличие - нельзя отключить морозильную камеру.

В целом двухкомпрессорные модели несколько дороже, менее надежны (за счет большего количества элементов и, соответственно, большей вероятности поломки), однако потенциально имеют преимущество в том, что при отказе одного компрессора второй продолжает функционировать. Остается неясным, кто будет довольствоваться одной работающей камерой из двух возможных.

Системы охлаждения

Любые холодильники, даже самые современные, требуют регулярного обслуживания. В первую очередь это связано с тем, что на испарителях намерзает иней. Всего существует несколько систем, с тем или иным успехом борющихся с этой проблемой.

Наиболее распространенной является так называемая плачущая стенка или «плачка». Холодильник с такой системой работает следующим образом: испаритель на задней стенке охлаждает холодильную камеру, но при этом на нем образуется иней. На одном из этапов работы холодильника компрессор останавливается, охлаждение прекращается и иней тает, превращаясь в воду, которая стекает по дренажной системе в специальную емкость, расположенную вблизи компрессора. При работе последнего емкость нагревается и вода испаряется. Очевидно, что при этом в холодильной камере поддерживается достаточно высокая влажность.

Знакомая всем "плачущая" стенка

Работа такой системы предполагает разморозку испарителя морозильной камеры от нескольких раз в год до одного раза в несколько лет, в зависимости от условий эксплуатации - нагрузки, влажности, частоты открытия дверцы и прочих факторов. Такие устройства теоретически более надежны, чем модели с принудительным охлаждением, поскольку система более простая.

Второй тип - смешанное охлаждение , когда в холодильной камере оттаивание происходит автоматически ("плачущая" стенка), а в морозильной - с помощью электронагревателя. В зависимости от произволителя такая комбинированая система может называться по-разному - No Frost, Frost Free и т. д.

Третья, технически более сложная, система основана на охлаждении продуктов за счет потоков холодного воздуха. Скрытый за стенкой испаритель с помощью специальных вентиляторов охлаждает обе камеры. Его температура несколько ниже, чем внутри камер, и поэтому иней намерзает только на нем, при этом оттаивание, как и в случае комбинированной системы, происходит за счет специального нагревателя. В итоге стенки камер холодильника, оснащенного такой системой, не обмерзают, что значительно облегчает уход. Маркетинговые названия - Full No Frost, Full Frost Free и т. д.

Системы No Frost впечатляют полным отсутствием инея в морозилке

Нужно отметить, что, независимо от системы охлаждения, необходимо периодически проводить гигиеническую уборку холодильника, которую достаточно легко совмещать с разморозкой.

Полки

Несмотря на свою кажущуюся простоту, большую роль в работе холодильника играют полки. Дело в том, что старые, решетчатые, полки, при всех своих многочисленных недостатках, обладали одним серьезным преимуществом - обеспечивали качественную циркуляцию воздуха, а значит, и более равномерное охлаждение.

От полок во многом зависит удобство использования холодильника

Современные полки из закаленного стекла весьма удобны, красивы и гигиеничны, но существенно затрудняют конвекцию воздуха. Поэтому многие производители оснащают свои устройства принудительной вентиляцией для обеспечения качественного перемешивания воздуха. Как правило, каждое решение получает свое маркетинговое имя и преподносится как значительное усовершенствование, например Multi Air Flow, Dynamic Air Flow и т. д.

Дополнительные функции охлаждающей системы

Некоторые модели холодильников оснащены функцией суперзаморозки - она позволяет дополнительно охлаждать морозильную камеру, для того чтобы при добавлении новых продуктов не возрастала температура и не оттаивали уже хранящиеся. Кроме того, пониженная температура обеспечивает быструю заморозку, а значит, позволяет лучше сохранить полезные свойства пищи. Нужно отметить, что аналогичная функция существует и для холодильной камеры.

Существенным расширением функциональности холодильника, безусловно, являются так называемые зоны свежести . Такая зона представляет собой отдельную камеру или ячейку (ящик), в которой поддерживается температура, близкая к нулевой. Это позволяет без заморозки длительное время сохранять свежесть продуктов, в первую очередь скоропортящихся. Оптимальным является наличие отдельной камеры, похожей на холодильную, но меньших размеров. Такое разделение позволяет эффективно поддерживать температуру и влажность.

Зоны свежести уменьшают частоту походов в магазин

Обычно пользователям предлагаются две зоны свежести:

  • сухая, предназначенная для хранения мяса, птицы, рыбы, морепродуктов;
  • влажная, которая идеально подходит для сохранения овощей, фруктов, зелени.

Так, по информации компании - одной из родоначальниц нулевых зон - срок хранения ягод увеличивается в 3-4 раза, картофель и яблоки останутся свежими практически три месяца, а мясо и птица продержатся целую неделю вместо нескольких дней. Это означает, что планировать свой рацион и запасы можно с гораздо большей свободой. В более простых решениях, когда зона свежести представляет собой ящик или специальное отделение внутри холодильной камеры, такой контроль температуры и влажности по понятным причинам невозможен, что снижает полезность нулевой зоны.

Льдогенератор, несомненно, порадует ваших гостей

Еще одним приятным дополнением может стать льдогенератор - специальное устройство, автоматически готовящее лед. Как правило, такие холодильники напрямую подключаются к источнику холодной воды, которая фильтруется для повышения качества льда. Нужно отметить, что в ряде случаев некоторые производители льдогенераторами могут называть специальную систему лотков, предусматривающую минимальную автоматизацию получения льда.

Классический холодильник, без системы No Frost работает следующим образом:

    Мотор - компрессор (1), засасывает газообразный фреон из испарителя, сжимает его, и через фильтр (6) выталкивает в конденсатор (7).

    В конденсаторе, нагретый в результате сжатия фреон остывает до комнатной температуры и окончательно переходит в жидкое состояние.

    Жидкий фреон, находящийся под давлением, через отверстие капиляра (8) попадает во внутреннюю полость испарителя (5), переходит в газообразное состояние, в результате чего, отнимает тепло от стенок испарителя, а испаритель, в свою очередь, охлаждает внутреннее пространство холодильника.

    Этот процесс повторяется до достижения заданной терморегулятором (3) температуры стенок испарителя.

    При достижении необходимой температуры терморегулятор размыкает электрическую цепь и компрессор останавливается.

    Через некоторое время, температура в холодильнике (за счет воздействия внешних факторов) начинает повышаться, контакты терморегулятора замыкаются, с помощью защитно-пускового реле (2) запускается электродвигатель мотор - компрессора и весь цикл повторяется сначала (см. пункт 1)

1-Мотор-компрессор; 2-Защитно-пусковое реле; 3-Терморегулятор; 4-Внутренняя лампа освещения холодильника; 5-Испаритель; 6-Фильтр-осушитель; 7-Конденсатор; 8-Капиляр; 9-Включатель лампы

Электрическое оборудование холодильников

К электрическому оборудованию бытовых холодильников относятся следующие приборы:
электрические нагреватели: для обогрева генератора в абсорбционных холодильных агрегатах; для предохранения дверного проема низкотемпературной (морозильной) камеры от выпадения конденсата (запотевания) на стенках; для обогрева испарителя при полуавтоматическом и автоматическом удалении снежного покрова;
электродвигатель компрессора (это относится к компрессионным холодильникам);
проходные герметичные контакты для соединения обмоток электродвигателя с внешней электропроводкой холодильника через стенку кожуха мотор-компрессора;
осветительная аппаратура, предназначенная для освещения холодильной камеры;
вентиляторы: для обдува конденсатора холодильного агрегата воздухом (при использовании в холодильниках конденсаторов с принудительным охлаждением) и для принудительной циркуляции воздуха в камерах холодильников.

К приборам автоматики бытовых холодильников относятся:
датчики-реле температуры (терморегуляторы) для поддержания заданной температуры в холодильной или низкотемпературной камере бытовых холодильников;
пусковое реле для автоматического включения пусковой обмотки электродвигателя при запуске;
защитное реле для предохранения обмоток электродвигателя от токов перегрузки;
приборы автоматики для удаления снежного покрова со стенок испарителя

Электрическая схема холодильника и принцип ее работы.
При подаче напряжения электрический ток проходит через замкнутые контакты терморегулятора (3), кнопки размораживания (10), реле тепловой защиты (11), катушку пускового реле (контакты пускового реле12.2 пока разомкнуты) и рабочую обмотку электродвигателя мотор-компрессора.
Поскольку двигатель пока не вращается, ток протекающий через рабочую обмотку мотор-компрессора в несколько раз превышает номинальный, пусковое реле (12) устроено таким образом, что при превышении номинального значения тока замыкаются контакты (12.2), к цепи подключается пусковая обмотка электродвигателя. Двигатель начинает вращаться, ток в рабочей обмотке снижается, контакты пускового реле размыкаются и двигатель продолжает работать в нормальном режиме.
Когда стенки испарителя охладятся до установленного на терморегуляторе значения, контакты (3) разомкнуться и электродвигатель мотор-компрессора остановиться.
С течением времени температура внутри холодильника повышается, контакты терморегулятора замыкаются и весь цикл повторяется заново.
Реле защиты предназначено для отключения двигателя при опасном повышении силы тока. С одной стороны оно защищает двигатель от перегрева и поломки, а с другой - Вашу квартиру от пожара.
Реле состоит из биметаллической пластины (11.1), которая при повышении температуры изгибается и размыкает контакты (11.2), после остывания биметаллической пластины контакты снова замыкаются.

1 - электродвигатель мотор-компрессора; 1.1 - рабочая обмотка; 1.2 - пусковая обмотка; 3 - контакты терморегулятора; 10 - кнопка размораживания; 11 - реле защиты; 11.1 - биметаллическая пластина; 11.2 - контакты реле; 12 - пусковое реле
12.1 - катушка реле; 12.2 - контакты реле

Из каких материалов изготовлен холодильник

Упрощенно представляя, холодильник состоит из изотермического шкафа и электрического оборудования (холодильного агрегата)

Корпус
Корпус является несущей конструкцией, поэтому должен быть достаточно жестким. Его изготавливают из листовой стали толщиной 0,6-0,1 мм. Герметичность наружного шкафа обеспечивается пастой ПВ-3 на основе хлорвиниловой смолы. Поверхность шкафа фосфатируют, затем грунтуют и дважды покрывают белой эмалью МЛ-12-01, ЭП-148, МЛ-242, МЛ-283 или др. Выполняют это с помощью краскопультов или в электростатическом поле. Поверхность сервировочного столика, если таковой имеется, покрывают полиэфирным лаком.

В последнее время для изготовления корпуса холодильника все чаще применяют ударопрочные пластики. Благодаря этому сокращается расход металла и уменьшается масса холодильного прибора.

Внутренние шкафы холодильников
Металлические внутренние шкафы из стального листа толщиной 0,7- 0,9 мм изготавливают методом штамповки и сварки и эмалируют горячим способом силикатно-титановой эмалью.

Пластмассовые камеры изготавливают из АБС-пластика или из ударопрочного полистирола методом вакуум-формирования. АБС (акрилбутадиеновый стирол) обладает высокими механическими свойствами и стойкостью по отношению к хладону (фреону). Детали из АБС-пластика, покрытые хромом и никелем, широко применяются в декоративных целях. АБС-пластики отечественного производства по физико-механическим свойствам делятся на четыре группы:
АБС-0903 средней ударной вязкости;
АБС-1106Э, АБС-1308, АБС-1530, АБС-2020 повышенной ударной вязкости;
АБС-2501К, АБС-2512Э, АБС-2802Э высокой ударной вязкости;
АБС-0809Т, АБС-0804Т, АБС-1002Т повышенной теплостойкости.
АБС-пластики выпускаются в виде гранул диаметром не более 3 мм и длиной 4-5 мм или в виде порошка и перерабатываются литьем под давлением, выдуванием, термоформованием. Камеры у морозильников и камеры низкотемпературных отделений холодильников металлические - из алюминия или нержавеющей стали. Стальные камеры более долговечны, гигиеничны, но они увеличивают массу холодильника и требуют особых способов крепления к наружному корпусу для наиболее эффективной теплоизоляции от окружающей среды.
К преимуществам пластмассовых камер относятся технологичность изготовления, малый коэффициент теплопроводности, меньшая масса. Однако такие камеры быстрее стареют, со временем теряют товарный вид, менее долговечны и менее прочны по сравнению с металлическими. В холодильниках с пластмассовыми камерами по периметру дверного проема не устанавливают накладки, закрывающие теплоизоляцию, так как роль накладок выполняют отбортованные края камеры.

Двери
Изготовляют из стального листа толщиной 0,8 мм методом штамповки и сварки. В некоторых моделях холодильников двери изготовлены из древесностружечной плиты или ударопрочного полистирола.

Дверь холодильника состоит из наружной и внутренней панелей, теплоизоляции между ними и уплотнителя. Панели двери изготовляют из ударопрочного полистирола методом вакуум-формования. Толщина листа 2-3 мм. У большинства холодильников двери открываются слева направо. В всех современных холодильниках предусмотрена перенавеска двери, т.е. возможность открывания двери справа налево. У настенных холодильников дверь двухстворчатая.

Дверь холодильника должна плотно прилегать к дверному проему, иначе теплый воздух будет проникать в камеру. Для обеспечения герметичности внутреннюю сторону двери по всему периметру окантовывают магнитным уплотнителем разного профиля. В холодильниках старых конструкций применялись резиновые уплотнители баллонного типа.

Двери в закрытом положении удерживаются с помощью механических (чаще куркового типа) или магнитных затворов. Последние наиболее распространены. При их наличии ручку двери можно расположить на разной высоте, исходя из требований технической эстетики. Замена дверных петель специальными навесками, укрепляемыми сверху и снизу двери, уменьшает общие габариты холодильника при открывании двери, что важно при установке холодильников в углу помещений.

Теплоизоляция
Теплоизоляцию применяют для защиты холодильной камеры от проникновения тепла окружающей среды и прокладывают по стенкам, верху и дну холодильного шкафа и холодильной камеры, а также под внутренней панелью двери. От теплоизоляционных материалов требуется, чтобы они обладали низким коэффициентом теплопроводности, небольшой объемной массой, малой гигроскопичностью, влагостойкостью, были огнестойкими, долговечными, дешевыми, биостойкими, не издавали запаха, а также были механически прочными. Для теплоизоляции шкафа и двери холодильников применяют штапельное стекловолокно МТ-35, МТХ-5, МТХ-8, минеральный войлок, пенополистирол ПСВ и ПСВ-С и пенополиуретан ППУ-309М.

Минеральный войлок изготовляют из минеральной ваты путем обработки ее растворами синтетических смол. Исходным сырьем для получения минеральной ваты служат минеральные породы (доломит, доломитоглинистый мергель), а также металлургические шлаки.

Стеклянный войлок - разновидность искусственного минерального войлока. Он состоит из тонких (толщина 10-12 мк) коротких стеклянных нитей, связанных синтетическими смолами. Теплоизоляция из стеклянного войлока и супертонкого волокна биостойка, не имеет запаха, обладает водоотталкивающим свойством, удобно укладывается и поэтому часто применяется.

Пенополистирол - синтетический теплоизоляционный материал. Он представляет собой легкую твердую пористую газонаполненную пластмассу с равномерно распределенными замкнутыми порами. Теплоизоляцию из пенополистирола получают вспениванием жидкого полистирола непосредственно в простенках холодильной камеры и корпуса шкафа холодильника.

Пенополиуретан - пенопласты мелкопористой жесткой структуры, полученные путем вспучивания полиуретановых смол с применением соответствующих катализаторов и эмульгаторов. Для повышения теплозащитных свойств в качестве вспучивающего газа применяют хладон-11 и др. Процесс пенообразования и затвердевания пены происходит в течение 10-15 мин при температуре до 5 °С.
Пенополиуретан обладает малой объемной массой, низким коэффициентом теплопроводности, влагостоек. Его можно вспенивать непосредственно в холодильном шкафу. При этом он равномерно и без воздушных полостей заполняет все пространство в простенках, хорошо склеивается со стенками, повышая прочность шкафа.

В зависимости от качества теплоизоляционных материалов толщина изоляции в стенках шкафа холодильника может быть от 30 до 70 мм, в двери - от 35 до 50 мм. Замена теплоизоляции из стекловолокна изоляцией из пенополиуретана позволяет при одних и тех же габаритах корпуса увеличить объем холодильника на 25%.

Затворы и уплотнители дверей
Ранее в холодильниках применялись курковые и секторные затворы дверей. В современных холодильниках применяются магнитные запоры.

Магнитные затворы представляют собой эластичную магнитную вставку, помещенную в уплотнительный профиль на внутренней панели двери. При закрывании двери она плотно притягивается к металлическому корпусу. Исходным сырьем для получения магнитных материалов служит феррит бария ВаО в смеси с каучуками или поливиниловыми и другими смолами, придающими ему гибкость. Изготовленные ленты эластичного магнита намагничивают в магнитном поле.

Притягивая уплотнитель к шкафу по всему периметру, магнитный затвор обеспечивает хорошее уплотнение и в то же время не требует усилий для открывания двери, которое необходимо проверять динамометром с погрешностью +1 Н. Динамометр прикрепляют к ручке на расстоянии, наиболее отдаленном от шарниров. Усилие при этом должно быть направлено перпендикулярно плоскости двери.

Для дверных уплотнителей в холодильниках с курковыми и секторными затворами применяют пищевую резину, с магнитными затворами - поливинилхлоридные и полихлорвиниловые уплотнители с магнитной вставкой и магнитные уплотнители с дополнительными удерживателями. В холодильниках с механическим затвором плотное закрывание двери достигается благодаря сжатию профиля резинового уплотнителя.

В холодильниках с магнитным затвором уплотнитель притягивается к шкафу силой притяжения магнита, при этом профиль уплотнителя растягивается. Уплотнитель имеет два баллона. Баллон прямоугольного сечения, в котором находится магнитная вставка, прижимается передней плоскостью к шкафу. Толщина стенки баллона существенно влияет на силу притяжения уплотнителя и не превышает 0,45 мм. Баллон "гармошка" служит для компенсации небольшого свободного хода двери. В свободном состоянии уплотнителя "гармошка" несколько сжата и при отходе двери растягивается, препятствуя отрыву уплотнителя от шкафа. Для эффективной работы профиль баллона "гармошка" имеет небольшое сопротивление растяжению, что обеспечивается тонкими стенками баллона, а также соответствующей конфигурацией его.

Магнитные вставки узлов уплотнения делают прямоугольного сечения. Их изготовляют из эластичных многокомпонентных ферритонаполненных композиций. Улучшить магнитные, физико-химические и термомеханические свойства, а также технико-экономические показатели магнитных эластичных вставок стало возможным благодаря использованию новых полимерных композиций на основе сополимеров ЭВА.

Уплотнение двери следует проверять, не включая холодильник в сеть. Бумажная полоска шириной 50 мм и толщиной 0,08 мм, заложенная между уплотнителем двери и закрываемой поверхностью шкафа, ни в одном месте не должна свободно перемещаться.

Немало копий поломано разъяснением принципа выработки холода, но решили сегодня послать очередное войско. Авось, не пройдут материал даром, старания понапрасну. Принцип работы холодильника основывается на способности фреона легко менять агрегатное состояние, отдавая, забирая тепло. Не всегда использовался этот класс веществ. Применяли аммиак, другие агрессивные среды. В 30-х годах прошлого века открыли фреоны, относительно безопасные для человека, эффективные. В результате другое сегодня забыто, хладагенты называются цифрами, маркируемыми префиксом R. Сегодня мир осваивает изобутан, концентрации рабочие малы, безопасность для озонового слоя велика. Правда, вещество взрывоопасно. Обсудим принцип работы холодильника.

Холодильник после магазинного рандеву

Как работает холодильник

Начнем обсуждение принципов работы холодильника компрессором. Сердце! Главное здесь. Мотор холодильника обычно стоит асинхронный, поэтому для работы часто требуется пускозащитное реле. В обязанности устройства входит подключение пусковой обмотки, только на время старта. Нагревается внутренняя биметаллическая пластина, конденсатор отключается от пусковой обмотки, функционирует единственно рабочая. По схожей системе работает защита против перегрева: двигатель холодильника работает слишком долго, тепловой эффект тока разгибает очередную биметаллическую пластину, рвущую контакт, давая обмоткам отдохнуть.

Такая схема позволит работать холодильнику эффективно, обеспечит неплохой пусковой момент. Понятно, внутри прибора фреон, который не то чтобы с удовольствием циркулирует по контуру, поршень требует затраты некоторых усилий. Здесь помните:

Из холодильника изымается мотор — пускозащитное реле идет в комплекте. Нельзя брать другое реле, другого двигателя, с высокой степенью вероятности нарушает нормальную работу, рано или поздно вызывает сгорание обмоток.

У двигателей холодильников индивидуальные пусковые требования. Мощность также отличается, следовательно, тип, нагрев биметаллической пластины реле не остаются постоянными. Написаны специальные справочники, где посмотрим, какие двигатели холодильников бывают, какие типы реле соответствуют. Кстати, на сайте выкладывали перечень, надеемся, порадовал читателей. Современные двигатели холодильников обладают инверторным управлением, коленвала больше не содержат. Движение вала линейное, прилепили остряки названный эпитет компрессорам.

Внутри находится катушка, снабженная сердечником, движущимся поступательно согласно закону переменного тока, подаваемого на проволоку. Несмотря на кажущуюся несуразность (сходство с электробритвами) моторы, как показывает практика, максимально удовлетворяют целям. Кроме того наиболее эффективно реализуется инверторное управление, помогая снизить уровень шума, продлить жизнь. Недаром Samsung дает 10 лет гарантии на моторы холодильников. Напомним:

В результате появляется следующая схема:

  1. Входное напряжение выпрямляется.
  2. Нарезается силовым ключом нужными длительностями.
  3. Работой заправляет генератор тактовых импульсов.

Простейшая схема, скорее относящаяся к импульсному блоку питания, суть равно остается: присутствует напряжение 50 Гц, затем становящееся напряжением другой частоты. Результатом видим изменение скорости движения поршня, отчего фреон начинает двигаться ускоренно, замедленно. Что это дает?

Фреон холодильников

Сердце перекачивает кровь, компрессор - фреон. Смысл: требуется создать высокое давление на конденсоре (на задней стенке холодильника), низкое на испарителе. В результате на первом начинает сжижаться хладагент, со второго активно испаряется. В первом случае выделяется большое количество тепла, которое достается кухне, во втором случае поглощается энергия, конфискуемая из холодильного отделения. В результате холодильник морозит. Быстрее движется кровь, бодрее самочувствие человека, больше разница перепадов давлений конденсор-испаритель, больше холода, а значит — компрессору придется попотеть.

Встроенный таймер холодильника

Итак, показали зависимость выработки холода от скорости работы компрессора, теперь рассмотрим методику получения разницы давлений. Знаете, Ютуб крутят ролик: человек в ластах осваивает водный стадион. Забегает достаточно далеко от берега. Быстрота бега первый фактор, вторым назовем увеличенную площадь опоры. В холодильнике ситуация аналогичная. Резвое кручение ротора двигателя бессильно фреону обеспечить нужную разницу давлений. Бессильно напрямую — помогает важное дополнение жилам циркуляции хладагента, капиллярная трубка. Ход очень тонкий, ставится после конденсора. В результате давление здесь быстро растет, фреон разом становится жидкостью. Моментально отдает энергию. Формируется принцип действия холодильника.

Какое-то тепло набрано испарителем. Не поверите, в вакууме испаряется даже вода, лед улетучивается… сублимация. Подобный процесс идет за задней стенкой морозилки (холодильной камеры), где создается компрессором разрежение. Жидкий фреон понемногу втекает через капиллярную трубку и улетучивается. Даже при малой температуре, которая царит в испарителе, умудряется отобрать тепло замерзшего металла. В связи с этим пора упомянуть одну деталь, без которой устройство холодильника никак неполно. Фильтр-осушитель (иногда называют ресивером).

Фильтр-осушитель холодильника

Итак, видим близ конденсора высокие температуры — вода быстро становится паром. Откуда берется во фреоновом контуре, остается загадкой даже для мастеров, однако известно доподлинно: без жидкости половина ремонтников холодильного оборудования лишится работы.

Полезная жидкость, пытаясь покинуть капиллярную трубку, образует ледяную пробку, намертво закупоривающую работу агрегата. Если помните, давление по эту сторону невысокое, вакуум не может прошибить нарост кристаллов застывшей влаги.

В результате получается, компрессор работает на полную катушку, разница давлений между конденсором и испарителем невероятная, толку — нуль, фреон не циркулирует. Некому переносить тепло с места на место.

Характерная особенность неисправности в этом случае, что неполадка пропадает, если выключить холодильник на время. Затем коллизия начинается сызнова. Вызвано тем, что пробка тает, нарастая снова. Поэтому фильтр-осушитель трудится возле конденсора, забрать побольше воды. Внутри находится тривиальный силикагель, многим знакомый по ботинкам, одежде. Пакетики, заполненные шариками, забирающие влагу. Постепенно фильтр-осушитель вырабатывает ресурс, пары воды продолжают третировать фреоновый контур холодильника. Кстати, при перезаправке деталь подлежит обязательной замене.

Фильтр-осушитель выглядит утолщением медной трубки, которое невозможно не заметить. Однако частенько укрыт слоем пенополиуретана. В этом случае к детали требуется еще пробиться. Все зависит от разновидности холодильников. Однако сложная система была бы грудой железа, не существуй термостата, занимающегося измерением условий камер, выдающего команду включения и выключения компрессора.

Термостат холодильника

Обычно термостат построен на основе измерения давления. Понятно, что холодный воздух тяжелее, следовательно, можно определить достаточно ли давит мембрану. Доступ к чувствительному элементу ведется через трубку. Винтом подтягивается натяжение мембраны. В результате получаем такие небольшие «карманные часы», у которых вместо цепочки длинная трубка. Лишний отрез укладывается между стенками, заборное отверстие проводится в рабочую камеру.

Современные термостаты гораздо более примитивны. Унылая термопара, от величины ЭДС которой зависит, что предпримет электронная плата холодильника в следующий момент. Понятно, такая схема в отличие от предыдущей требует наличия питания, что несколько усложняет процесс регулировки. Зато ремонт превращается в настоящее развлечение: главное найти термопару с подходящими характеристиками, не требуется драть половину холодильника, чтобы тянуть трубку. Упрощает жизнь мастеров.

Закончили рассказ про то, как работает холодильник, упомянули аспекты устройства прибора.

Хозяевам не приходится задумываться об устройстве такого прибора, как холодильник. Главное, чтобы он вырабатывал холод круглый год, не шумел, не ломался, расходовал минимум электричества. Однако многие владельцы и не подозревают, что бытовые холодильники довольно хрупки, несмотря на свой внушительный внешний вид. Возможно, если им узнать принцип работы приборов, то они не допустят распространенных ошибок в ходе их эксплуатации.

Для начала расскажем о том, как именно эти агрегаты работают. Говоря простым языком, объясним, почему в холодильнике холодно даже в самый жаркий день. Постараемся обойтись без сложных технических деталей и ни одной важной мелочи не упустить.

Что такое хладагент

Даже если вы и не знаете, как устроен ваш холодильник, то о такой его составляющей, как хладагент, наверняка слышали. Под этим названием скрываются всевозможные жидкие химические вещества, циркулирующие по трубкам-конденсаторам в ваших холодильниках. По своей роли они – как кровь в кровеносной системе. Самый распространенный хладагент – фреон.

В русскоязычных странах хладагенты часто называют «хладонами», но их качества от этого не изменяются.

Принцип работы примерно такой же, как и у воды в системах отопления. Такой же, но со знаком «минус» – задача фреона не нагреть помещение, а забрать из него тепло. Сперва хладагент под давлением или воздействием тока превращается в газ, нагревается, затем по трубкам циркулирует в стенках холодильника, конденсируясь (становясь жидким). По простейшим законам термодинамики, во время этого процесса происходит отъем тепла из воздуха.

Различия холодильников по принципу действия

Теперь о самом сложном – принципе действии холодильника. То есть мы поговорим о том, каким образом внутренним камерам бытовых приборов передается холод. Существует три типа конструкций холодильников:

  • компрессионные – в такой конструкции обязательно присутствует мотор-компрессор, а вещество-хладагент под воздействием давления постоянно переходит из жидкого в газовое состояние, одновременно отбирая тепло из камер;
  • абсорбционные – в целом схожи с компрессорными моделями, но сам компрессор в них заменен на ТЭН (электрический нагреватель в виде трубки); изменение агрегатных состояний хладагента происходит под воздействием тока;
  • термоэлектрические – в них совсем нет хладагента, а поглощение тепла (читайте выше про охлаждение) происходит за счет особых проводников, по которым проходит ток.

В прошлом выпускались еще и пароэжекторные холодильники, но сегодня это устаревший принцип устройства холодильного оборудования. В то время как у абсорбционных и термоэлектрических моделей чрезвычайно высокое потребление электричества, компрессорные агрегаты экономичны, служат долго, очень легко ремонтируются, к тому же являются самыми дешевыми. Единственный их минус – повышенная шумность.

Обращаться с компрессионными холодильниками нужно осторожно – компрессор чрезвычайно уязвим, может сломаться от сильной встряски, простого наклона, .

Компрессионное устройство холодильника сегодня – это самый массовый вариант. Поэтому этим моделям мы уделим больше всего внимания.

Устройство компрессионных холодильников

Неизменные составные части бытовых приборов, устроенных по компрессионному принципу, следующие:

– компрессор – самый громоздкий и шумный прибор, создающий давление на хладагент;
– конденсатор – трубопровод в виде сетки на задней стенке холодильника; по нему циркулирует хладагент;
– испаритель – трубопровод с низким давлением; в нем хладагент становится жидким, забирает тепло из атмосферы в камерах и морозильнике.

Также в конструкцию бытовых приборов иногда включают и другое оборудование – фильтры, расширительные вентили и другие необязательные составляющие.

Войдя снова в жидкое состояние, фреон возвращается к компрессору, и цикл повторяется. На одном и том же запасе хладагента холодильник может бесперебойно работать десятилетиями.

Компоновка холодильников

О том, как работает современный холодильник, мы рассказали. Теперь перейдем к более понятной рядовому пользователю теме – компоновке, то есть к способам расположения камер.

Компоновка является очень важной частью внутреннего устройства холодильника. Наиболее распространены три подвида:

  • азиатская – морозильная камера расположена сверху; именно по такой схеме выпускались бытовые приборы в СССР; больше подходит для небольших моделей с маленькой вместимостью;
  • европейская – самая распространенная разновидность, когда морозилки располагаются снизу, что упрощает конструкцию конденсаторов, удешевляет производство холодильника; схема оптимальная для холодильников средних размеров;
  • американская – схема, популярная практически исключительно в Штатах, оттуда модели и поставляются на отечественные рынки; холодильные и морозильные камеры устроены «бок о бок», то есть разделяются по вертикали.

Американский способ компоновки более подходит для вместительных моделей, вплоть до 700 литров.

Подобное внутреннее устройство имеет большая часть холодильников на рынке. Особенно многочисленны среди них компрессионные модели – до 90% из всех выпущенных в мире.

Теперь вы будете в курсе, каким образом устроены большинство современных холодильников, какими они бывают в зависимости от компоновки.

Четкое представление об устройстве и о процессах, происходящих внутри холодильного агрегата, помогает продлить срок службы и обеспечить безопасную эксплуатацию оборудования в быту. Понять принцип работы холодильника несложно.

В любой модели он заключается в образовании холодной среды путем поглощения тепла во внутренней части объекта и его последующего перенесения за пределы прибора.

Холодильное оборудование используется во многих сферах деятельности. Без него не обойтись в быту и невозможно представить полноценную работу производственных цехов на предприятиях, торговых площадок, заведений общественного питания.

В зависимости от целевого предназначения и области применения различают несколько основных типов приборов: абсорбционные, вихревые, термоэлектрические и компрессорные. Последний тип наиболее распространен, поэтому его подробно рассмотрим в следующем разделе.

Функционирование абсорбционной техники

В системе установок абсорбционного типа циркулируют два вещества – хладагент и абсорбент. Функции хладагента обычно выполняет аммиак, реже – ацетилен, метанол, фреон, раствор бромистого лития.

Абсорбент представляет собой жидкость, которая обладает достаточной поглотительной способностью. Это может быть серная кислота, вода и др.

Вся работа оборудования построена на принципе абсорбции, подразумевающем поглощение одного вещества другим. Конструкция состоит из нескольких ведущих узлов – испарителя, абсорбера, конденсатора, регулирующих вентилей, генератора, насоса

Элементы системы соединены трубками, с помощью которых образуется единый замкнутый контур. Охлаждение камер происходит за счет тепловой энергии.

Процесс осуществляется следующим образом:

  • холодильный агент, растворенный в жидкости, проникает в испаритель;
  • из концентрированного раствора выделяются кипящие при 33 градусах пары аммиака, охлаждающие объект;
  • вещество переходит в абсорбер, где снова поглощается абсорбентом;
  • насос перекачивает раствор в генератор, обогреваемый определенным источником тепла;
  • вещество закипает и выделяемые аммиачные пары уходят в конденсатор;
  • хладагент остывает и преобразовывается в жидкость;
  • рабочее тело проходит сквозь регулирующий вентиль, сжимается и отправляется в испаритель.

В результате аммиак, циркулирующий в замкнутом контуре, забирает тепло из охлаждаемой камеры, поступая в испаритель. И отдает его во внешнюю среду, находясь в конденсаторе. Циклы воспроизводятся безостановочно.

Так как агрегат нельзя выключить, он не очень-то экономен и отличается повышенным расходом энергии. Если такое оборудование выходит из строя, отремонтировать его, скорее всего, не получится.

Зависимость абсорбционных приборов от перепадов напряжения, тока и других параметров электросети минимальна. Компактные размеры позволяют с легкостью устанавливать их на любом удобном участке

В конструкции приспособлений нет громоздких движущихся и трущихся элементов, поэтому у них низкий уровень шума.

Устройства актуальны для зданий, электрическая сеть которых подвергается постоянным пиковым нагрузкам, и мест, где отсутствует постоянное электроснабжение.

Принцип абсорбции реализуется в промышленных холодильных установках, небольших холодильниках для автомобилей и офисных помещений. Иногда он встречается в отдельных бытовых моделях, функционирующих на природном газу.

Принцип действия термоэлектрических моделей

Снижение температуры в камере термоэлектрического аппарата достигается с помощью специальной системы, которая выкачивает тепло согласно эффекту Пельтье.

Он подразумевает поглощение теплоты в области соединения двух разных проводников в момент прохождения через нее электротока.

Конструкция холодильников состоит из термоэлектрических элементов в форме куба, изготовленных из металлов. Они объединяются одной электрической схемой. Вместе с передвижением тока из одного элемента в другой перемещается и тепло.

Алюминиевая пластина поглощает его из внутреннего отсека, а затем передает кубическим рабочим деталям, которые, в свою очередь, выполняют перенаправление к стабилизатору.

Там, благодаря вентилятору, оно выбрасывается наружу. По такому принципу работают переносные сумки-холодильники.

В большинстве моделей термоэлектрических холодильных приборов при переключении полярности питания можно получать не только холод, но и тепло – до 60 градусов Цельсия. Эта функция применяется для подогрева продуктов

Оборудование используется в отрасли кемпинга, в легковых автомобилях и моторных лодках, часто ставится на дачах и в других местах, где можно обеспечить устройство электропитанием с напряжением в сети 12 В.

В термоэлектрических изделиях предусмотрен специальный аварийный механизм, который отключает их в случае перегрева рабочих деталей или отказа системы вентиляции.

К преимуществам подобного метода работы относятся высокая надежность и довольно низкий уровень шума при эксплуатации приборов. В числе недостатков – дороговизна, чувствительность к внешним температурам.

Особенности оборудования на вихревых охладителях

В приборах этой категории присутствует компрессор. Он сжимает воздух, который в дальнейшем расширяется в установленных блоках вихревых охладителей. Объект охлаждается вследствие резкого расширения сжатого воздуха.

Вихревые приспособления долговечные и безопасные: они не нуждаются в электричестве, не имеют движущихся элементов, не содержат опасных химических составов во внутренней системе конструкции

Широкого распространения метод вихревых охладителей не получил, а ограничился лишь тестовыми образцами.

Это объясняется большим расходом воздуха, очень шумной работой и относительно низкой холодопроизводительностью. Иногда устройства применяют на промышленных предприятиях.

Подробный обзор компрессорной техники

Компрессорные холодильники – наиболее распространенный тип оборудования в быту. Они есть почти в каждом доме - потребляют не слишком много энергоресурсов и безопасны в эксплуатации.

Самые удачные модели надежных производителей служат своим владельцам более 10 лет. Рассмотрим строение и принципы, по которым работают компрессорные бытовые приборы.

Особенности устройства оборудования

Классический бытовой холодильник – это вертикально ориентированный шкаф, оснащенный одной или двумя дверцами. Его корпус изготавливается из жесткой листовой стали толщиной около 0,6 мм либо прочного пластика, облегчающего вес несущей конструкции.

Для качественной герметизации изделия применяют пасту с высоким содержанием хлорвиниловой смолы. Поверхность грунтуется и покрывается качественной эмалью из краскопультов.

В производстве внутренних металлических отделений задействуют так называемый способ штамповки, пластиковые шкафы делают по методу вакуумного формования.

Двери прибора состоят из стальных листов. По краям вставляется плотный резиновый уплотнитель, не пропускающий внешний воздух. В некоторые модификации встраивают магнитные затворы

Между внутренней и наружной стенкой изделия обязательно прокладывают слой теплоизоляции, который защищает камеру от тепла, пытающегося проникнуть из окружающей среды, и предотвращают потерю образующегося внутри холода.

Для этих целей хорошо подходит минеральный или стеклянный войлок, пенополистирол, пенополиуретан.

Внутреннее пространство традиционно подразделяется на две функциональные зоны: холодильную и морозильную.

По форме компоновки различают:

  • одно-;
  • двух-;
  • многокамерные приборы.

В отдельный вид выделены агрегаты Side-by-Side , включающие две камеры.

Однокамерные агрегаты снабжены одной дверью. В верхней части оборудования размещен морозильный отсек с собственной дверцей с откидным или открывающимся механизмом, в нижней – холодильный отдел с регулируемыми по высоте полками.

В камерах устанавливается осветительная аппаратура со светодиодом или лампой накаливания.

Приборы, сделанные по типу «бок о бок», гораздо объемнее и шире собратьев. Оба отсека в них занимают пространство по всей высоте оборудования. Они расположены параллельно друг другу

В двухкамерных агрегатах внутренние шкафы изолированы и отделены каждый своей дверью. Расположение отделов в них может быть европейским и азиатским. Первый вариант предполагает нижнюю компоновку морозильной камеры, второй – верхнюю.

Составляющие элементы агрегата

Холодильные установки компрессорного типа не производят холод. Они охлаждают объект, вбирая внутреннее тепло и переправляя его наружу.

Процедура образования холода протекает с участием следующих узлов:

  • охладительный агент;
  • конденсатор;
  • испарительный радиатор;
  • компрессорный аппарат;
  • терморегулирующий вентиль.

В роли хладагента , которым заполняют систему холодильника, чаще всего выступает фреон – смесь газов с высоким уровнем текучести и довольно низкими показателями температуры кипения/испарения.

Он передвигается по замкнутому контуру, перенося тепло по различным участкам цикла.

В большинстве случаев в качестве рабочего элемента для домашних холодильных машин производители применяют Фреон 12. Этот бесцветный газ с едва ощутимым специфическим запахом не ядовит для человека и не влияет на вкус и свойства продуктов, хранящихся в камерах

Компрессор – центральная часть конструкции любого холодильника. Это инверторный или линейный мотор, провоцирующий принудительную циркуляцию газа в системе, нагнетая давление. Проще говоря, он сжимает пары фреона и заставляет их двигаться в нужном направлении.

Техника может быть оснащена одним или двумя компрессорами. Вибрации, возникающие при работе, поглощает внешняя либо внутренняя подвеска. В двухкомпрессионных моделях за каждую камеру отвечает отдельное устройство.

Классификацией компрессоров предусмотрено два подтипа:

  1. Динамический . Вынуждает хладагент передвигаться за счет силы движения лопастей центробежного или осевого вентилятора. Имеет простое строение, но из-за низкого КПД и быстрого износа под действием крутящего момента в бытовом оборудовании используется редко.
  2. Объемный . Сжимает рабочее тело при помощи специального механического устройства, которое запускается электродвигателем. Бывает поршневым и роторным. В основном в холодильниках устанавливаются именно такие компрессоры.

Поршневой аппарат представлен в виде электромотора с вертикальным валом, заключенного в цельный металлический кожух. Когда пусковое реле подсоединяет питание, он активизирует коленчатый вал, а поршень, закрепленный на нем, начинает двигаться.

К работе подключается система открывающихся и закрывающихся клапанов. В итоге фреоновые пары вытягиваются из испарителя и нагнетаются в конденсатор.

При поломках поршневого компрессора ремонт возможен только при условии применения специализированного профессионального оборудования. Любая разборка в бытовой обстановке чревата потерей герметичности и невозможностью дальнейшей эксплуатации

В роторных механизмах необходимое давление поддерживается двумя роторами, движущимися навстречу друг другу.

Фреон попадает в верхний карман, расположенный в начале валов, сжимается и выходит через нижнее отверстие небольшого диаметра. Для уменьшения трения в пространство между валами вводится масло.

Конденсаторы выполняются в виде решетки-змеевика, которую закрепляют на задней либо боковой стенке оборудования.

Они имеют разную конструкцию, но всегда отвечают за одну задачу: охлаждение горячих газовых паров до заданных значений температуры путем конденсации вещества и рассеивания тепла в помещении. Бывают щитовыми или ребристо-трубчатыми.

Испаритель состоит из тонкого алюминиевого трубопровода, спаянных стальных пластинок. Он контактирует с внутренними отсеками холодильника, эффективно отводит поглощенное тепло из прибора и существенно понижает температуру в шкафах

Терморегулирующий вентиль нужен для того, чтобы поддерживать давление рабочего тела на определенном уровне. Крупные узлы агрегата связывают между собой системой трубок, образующих герметичное замкнутое кольцо.

Последовательность рабочего цикла

Оптимальная температура для долговременного хранения провизии в компрессионных приборах создается в ходе рабочих циклов, осуществляющихся один за другим.

Протекают они следующим образом:

  • при подключении аппарата к электросети запускается мотор-компрессор, сжимающий пары фреона, синхронно повышая их давление и температуру;
  • под силой действия избыточного давления горячее рабочее тело, находящееся в газовом агрегатном состоянии, попадает в емкость конденсатора;
  • передвигаясь по длинной металлической трубке, пар выбрасывает накопленное тепло во внешнюю среду, плавно остывает до комнатных температурных значений и превращается в жидкость;
  • жидкое рабочее тело проходит через фильтр-осушитель, поглощающий лишнюю влагу;
  • хладагент проникает сквозь узкую капиллярную трубку, на выходе из которой снижается его давление;
  • вещество остывает и преобразовывается в газ;
  • охлажденный пар добирается до испарителя и, проходя по его каналам, забирает тепло из внутренних отделений холодильного агрегата;
  • температура фреона повышается, и он опять отправляется в компрессор.

Если говорить простыми словами о том, как работает компрессорный холодильник, то процесс выглядит так: компрессор перегоняет хладагент по замкнутому кругу. Который, в свою очередь, меняет агрегатное состояние благодаря специальным приспособлениям, собирает тепло внутри и переносит его наружу.

Рабочий цикл в системе повторяется до тех пор, пока не будут достигнуты температурные значения, заданные системными программами, и возобновляется вновь, когда фиксируется их повышение

После охлаждения до нужных параметров терморегулятор останавливает мотор, размыкая электрическую цепь.

Когда температура в камерах начинает повышаться, контакты замыкаются вновь, а электродвигатель компрессора приводится в действие защитно-пусковым реле. Именно поэтому в процессе работы холодильника постоянно то появляется, то опять затихает гул мотора.

Тонкости управления холодильником

В эксплуатации оборудования нет ничего сложного: оно функционирует в автоматическом режиме круглосуточно.

Единственное, что необходимо сделать при первом включении и периодически корректировать в процессе работы, – установить оптимальный в конкретных обстоятельствах температурный режим.

Нужная температура задается терморегулятором. В электромеханической системе значения выставляются на глаз или с учетом рекомендаций, указанных в инструкции производителя. При этом следует брать во внимание тип и количество продуктов, хранящихся в холодильнике.

Ручка регулятора представляет собой круглый механизм с несколькими делениями. Каждая отметка соответствует определенному температурному режиму: чем больше деление, тем ниже температура.

Для того чтобы оценить степень заморозки, специалисты советуют поначалу поставить регулятор в среднее положение, а спустя некоторое время при необходимости подкрутить его вправо или влево

Электронный блок позволяет задать температуру с максимальной точностью до 1 градуса с помощью поворотного регулятора или кнопок. Например, установить в морозильном отсеке значение -14 градусов. Все введенные параметры будут отображаться на цифровом дисплее.

Чтобы максимально продлить жизнь домашнему холодильнику, следует не только разбираться в его устройстве, но и грамотно за ним ухаживать.

Отсутствие должного сервиса и неправильная эксплуатация может привести к быстрому изнашиванию важных деталей и неполноценному функционированию.

Избежать нежелательных последствий можно, придерживаясь ряда правил:

  1. Регулярно чистить конденсатор от грязи, пыли и паутины в моделях с открытой металлической решеткой на задней стенке. Для этого нужно использовать обычную слегка увлажненную тряпку или пылесос с маленькой насадкой.
  2. Правильно установить технику . Следить за тем, чтобы расстояние между конденсатором и стеной комнаты было не меньше 10 см. Такая мера поможет обеспечить беспрепятственную циркуляцию воздушных масс.
  3. Своевременно размораживать , не допуская образования чрезмерного слоя снега на стенках камер. При этом для устранения ледовых корок запрещено пускать в ход ножи и другие острые предметы, которые могут легко повредить и вывести из строя испаритель.

Также нужно учитывать, что холодильник нельзя ставить рядом с нагревательными приборами и в местах, где возможен прямой контакт с солнечными лучами.

Избыточное влияние внешнего тепла плохо сказывается на работе основных узлов и общей производительности прибора.

Для чистки фрагментов изделия, выполненных из нержавеющей стали, подходят только специальные средства, рекомендованные производителем в инструкции к прибору

Если планируется перевозка с места на место, то лучше всего транспортировать оборудование в грузовом автомобиле с высоким фургоном, фиксируя его в строго вертикальном положении.

Таким образом, можно предотвратить поломки мотора, вытекание масла из компрессора, попадающего непосредственно в контур циркуляции охлаждающего агента.

Выводы и полезное видео по теме

Как работает холодильный агрегат:

Подробное разъяснение устройства компрессионных холодильников:

Информация о работе абсорбционных машин:

Пока холодильное оборудование исправно работает, потребители редко интересуются его устройством. Однако этими знаниями не стоит пренебрегать . Они очень ценны, поскольку позволяют быстро определить причину поломки и обнаружить проблемное место, предотвратив серьезные неисправности.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows