Приемник и передатчик схемы и принцип работы. Как работает ЧМ приёмник. Антенны: реальные примеры

Приемник и передатчик схемы и принцип работы. Как работает ЧМ приёмник. Антенны: реальные примеры

22.04.2019

Портативные радиостанции, автомобильные рации наземного применения

Радиостанция (рация): принцип работы

В широком смысле радиостанция обозначает техническое устройство или комплекс устройств, которые производят обмен данными посредством радиоволн. Как видно из определения радиостанцией можно назвать довольно большой круг приборов. В данной статье мы затронем непосредственно сухопутное приемопередающее оборудование.

Радиостанция (рация) состоит из двух основных элементов: приемника и передатчика, которые имеют общие узлы. Для лучшего понимания принципа работы рации, рассмотрим более подробно данные элементы.

Приемник радиостанции отвечает за преобразование радиочастотных сигналов в привычные для человеческого слуха акустические колебания. Современная радиостанция использует двойное преобразование частот, с помощью которого улучшается качество воспроизводимого голоса. Сначала принимаем сигнал (С) отфильтровывается и усиливается, далее происходит понижение по частоте и перевод С на специальный дешифратор, который вычленяет из всего потока информационную составляющую. Затем происходит еще одно усиление и вывод уже обработанных звуковых данных на динамик. Это довольно общая схема работы приемника, которая доступным языком объясняет принцип и особенности его функционирования.

Передатчик рации выполняет диаметрально противоположные действия: преобразует данные (чаще всего это голос, но могут быть и текстовые сообщения) и отправляет его с помощью радиоволн к другому абоненту. Приблизительно этот процесс можно описать так: передаваемая информация наслаивается на выбранную частоту и передается посредством антенны в эфир. Строение приемника и передатчика схоже, поэтому здесь мы рассмотрим только один узел, имеющий принципиальное различие. Если приемник при своей работе задействует дешифратор, то передатчик – модулятор. Модулятор преобразует голосовую информацию в радиосигнал по определенным правилам.

Радиостанция (рация) получила широкое распространение в годы Второй мировой войны, когда необходимость в оперативной связи на дальних расстояниях возросла в геометрической прогрессии. К слову, стационарная радиостанция уже использовалась в то время, однако она была довольно громоздкой. А вот в военные годы появилась первая портативная радиостанция (рация). Ее спроектировали инженеры фирмы Motorola. И хотя она и называлась носимой, от современных раций ее разделяет огромная пропасть различных модификаций и изменений.

Радиостанция (рация): классификация

Сухопутная радиостанция (рация) имеет множество различных классификаций, основным из них мы уделим должное внимание.

По мобильности:

  • – удобная рация, помещающаяся в руку, которую можно легко переносить на довольно большие расстояния;
  • – не предназначена для транспортировки, часто выступает как базовая станция.

По типу пользователя:

  • – создана для постоянного использования в определенной сфере; наиболее важными характеристиками является емкость АКБ, удобство и простота использования, минимальный набор необходимых функций, программирование с ПК;
  • – призвана сопровождать охотников или туристов в их походах; пользователь может самостоятельно программировать рацию в зависимости от конкретных нужд.

По принципу работы:

  • – использует в своей работе принцип частотной модуляции; такая рация – классика жанра, преимущественно рынок радиосвязи наполнен именно аналоговыми моделями;
  • – кодирует сигнал с помощью двух цифр: 0 и1; она позволяет вести несколько бесед на одном канале, а также предоставляет внушительный набор дополнительных функций, включая отправку SMS.

По способу защиты:

  • - оболочка такой рации имеет повышенную защиту, что позволяет использовать ее во взрывоопасных условиях, например в шахтах.

Также все рации имеют различные степени защиты от пыли и влаги. Так, некоторые радиостанции могут исправно функционировать даже после длительного погружения под воду.

Радиостанция (рация): частоты

Каждая сухопутная радиостанция (рация) работает в определенном диапазоне частот (ДЧ). Условно все частоты можно разделить на 2 большие категории: безлицензионные (не требуют регистрации рации и разрешают свободное пользование) и лицензионные (требуют получение специальной лицензии). Основные рабочие частоты (Ч) современных раций.

CB (27 МГц) – гражданские частоты. Радиостанция (рация), работающая на данной Ч, с выходной мощностью до 10 Вт не требует регистрации или лицензирования (на территории РФ). Часто используются дальнобойщиками или таксопарками.

UHF (400 - 520 МГц) – городской диапазон, поэтому если вы хотите общаться по рации в городе и территориальный разброс абонентов небольшой, то лучше использовать именно эти Ч. На открытой местности прием\передача существенно ухудшаются, так как радиоволнам сложно преодолевать естественные природные барьеры (леса, крутые рельефы и прочее).

LPD (433,075-434,775 МГц) – безлицензионный диапазон для маломощных радиостанций.

PMR (446,000 - 446,100 МГц) – еще один частотный диапазон, не требующий лицензии, широко распространен в Европе. Отличительной особенностью является применение на открытой местности, поскольку волны практически не способны огибать препятствия. Радиостанция (рация), работающая в частотах PMR не должна иметь мощность более 0,5Вт. Это наиболее популярный диапазон, использующийся для повседневного активного общения.

VHF (136 - 174 МГц) – наиболее универсальный диапазон, так как одновременно хорошо работает и на открытой местности, и в условиях плотной городской застройки.

Радиостанция (рация): как выбрать

Для начала пользователь должен определиться со сферой применения рации и основными задачами, которые она должна решать. Например, если вы хотите отправиться на рыбалку и просто переговариваться со своими товарищами, находящимися на противоположном берегу, то вам совершенно необязателен расширенный функционал или получение лицензии.

В то же время шахтерам, трудящимся во взрывоопасных условиях, будет крайне необходима такая особенность, как искробезопасность радиостанции.

Как только пользователь определился с задачами, он может приступать к выбору радиостанции. Основные характеристики, на которые стоит обращать внимание:

  • Частотный диапазон
  • Выходная мощность
  • Дальность работы
  • Время работы без подзарядки (емкость АКБ)
  • Размер

Прочие характеристические особенности рации являются второстепенными.

Долгое время радиоприёмники возглавляли список самых значимых изобретений человечества. Первые такие устройства сейчас реконструированы и изменены под современный лад, однако в схеме их сборки мало что поменялось - та же антенна, то же заземление и колебательный контур для отсеивания ненужного сигнала. Бесспорно, схемы сильно усложнились со времён создателя радио - Попова. Его последователями были разработаны транзисторы и микросхемы для воспроизведения более качественного и энергозатратного сигнала.

Почему лучше начинать с простых схем?

Если вам понятна простая то можете быть уверены, что большая часть пути достижения успеха в сфере сборки и эксплуатации уже осилена. В этой статье мы разберём несколько схем таких приборов, историю их возникновения и основные характеристики: частоту, диапазон и т. д.

Историческая справка

7 мая 1895 года считается днём рождения радиоприёмника. В этот день российский учёный А. С. Попов продемонстрировал свой аппарат на заседании Русского физико-химического общества.

В 1899 году была построена первая линия радиосвязи длиной 45 км между и городом Котка. Во время Первой мировой войны получили распространение приёмник прямого усиления и электронные лампы. Во время военных действий наличие радио оказалось стратегически необходимым.

В 1918 году одновременно во Франции, Германии и США учёными Л. Левви, Л. Шоттки и Э. Армстронгом был разработан метод супергетеродинного приёма, но из-за слабых электронных ламп широкое распространение этот принцип получил только в 1930-х годах.

Транзисторные устройства появились и развивались в 50-х и 60-х годах. Первый широко используемый радиоприёмник на четырёх транзисторах Regency TR-1 был создан немецким физиком Гербертом Матаре при поддержке промышленника Якоба Михаэля. Он поступил в продажу в США в 1954 году. Все старые радиоприёмники работали на транзисторах.

В 70-х начинается изучение и внедрение интегральных микросхем. Сейчас приёмники развиваются с помощью большой интеграции узлов и цифровой обработки сигналов.

Характеристики приборов

Как старые радиоприёмники, так и современные обладают определёнными характеристиками:

  1. Чувствительность - способность принимать слабые сигналы.
  2. Динамический диапазон - измеряется в Герцах.
  3. Помехоустойчивость.
  4. Селективность (избирательность) - способность подавлять посторонние сигналы.
  5. Уровень собственных шумов.
  6. Стабильность.

Эти характеристики не меняются в новых поколениях приёмников и определяют их работоспособность и удобство эксплуатации.

Принцип работы радиоприёмников

В самом общем виде радиоприёмники СССР работали по следующей схеме:

  1. Из-за колебаний электромагнитного поля в антенне появляется переменный ток.
  2. Колебания фильтруются (селективность) для отделения информации от помех, т. е. из сигнала выделяется его важная составляющая.
  3. Полученный сигнал преобразуется в звук (в случае радиоприёмников).

По схожему принципу появляется изображение на телевизоре, передаются цифровые данные, работает радиоуправляемая техника (детские вертолёты, машинки).

Первый приёмник был больше похож на стеклянную трубку с двумя электродами и опилками внутри. Работа осуществлялась по принципу действия зарядов на металлический порошок. Приёмник обладал огромным по современным меркам сопротивлением (до 1000 Ом) из-за того, что опилки плохо контактировали между собой, и часть заряда проскакивала в воздушное пространство, где рассеивалась. Со временем эти опилки были заменены колебательным контуром и транзисторами для сохранения и передачи энергии.

В зависимости от индивидуальной схемы приёмника сигнал в нём может проходить дополнительную фильтрацию по амплитуде и частоте, усиление, оцифровку для дальнейшей программной обработки и т. д. Простая схема радиоприёмника предусматривает единичную обработку сигнала.

Терминология

Колебательным контуром в простейшем виде называются катушка и конденсатор, замкнутые в цепь. С помощью них из всех поступающих сигналов можно выделить нужный за счёт собственной частоты колебаний контура. Радиоприемники СССР, как, впрочем, и современные устройства, основаны на этом сегменте. Как все это функционирует?

Как правило, питание радиоприёмников происходит за счёт батареек, количество которых варьируется от 1 до 9. Для транзисторных аппаратов широко используются батареи 7Д-0.1 и типа "Крона" напряжением до 9 В. Чем больше батареек требует простая схема радиоприёмника, тем дольше он будет работать.

По частоте принимаемых сигналов устройства делятся на следующие типы:

  1. Длинноволновые (ДВ) - от 150 до 450 кГц (легко рассеиваются в ионосфере). Значение имеют приземлённые волны, интенсивность которых уменьшается с расстоянием.
  2. Средневолновые (СВ) - от 500 до 1500 кГц (легко рассеиваются в ионосфере днём, но ночью отражаются). В светлое время суток радиус действия определяется приземлёнными волнами, ночью - отражёнными.
  3. Коротковолновые (КВ) - от 3 до 30 МГц (не приземляются, исключительно отражаются ионосферой, поэтому вокруг приёмника существует зона радиомолчания). При малой мощности передатчика короткие волны могут распространяться на большие расстояния.
  4. Ультракоротковолновые (УКВ) - от 30 до 300 МГц (имеют высокую приникающую способность, как правило, отражаются ионосферой и легко огибают препятствия).
  5. - от 300 МГц до 3 ГГц (используются в сотовой связи и Wi-Fi, действуют в пределах видимости, не огибают препятствия и распространяются прямолинейно).
  6. Крайневысокочастотные (КВЧ) - от 3 до 30 ГГц (используются для спутниковой связи, отражаются от препятствий и действуют в пределах прямой видимости).
  7. Гипервысокочастотные (ГВЧ) - от 30 ГГц до 300 ГГц (не огибают препятствий и отражаются как свет, используются крайне ограниченно).

При использовании КВ, СВ и ДВ радиовещание можно вести, находясь далеко от станции. УКВ-диапазон принимает сигналы более специфично, но если станция поддерживает только его, то слушать на других частотах не получится. В приёмник можно внедрить плейер для прослушивания музыки, проектор для отображения на удалённые поверхности, часы и будильник. Описание схемы радиоприёмника с подобными дополнениями усложнится.

Внедрение в радиоприёмники микросхемы позволило значительно увеличить радиус приёма и частоту сигналов. Их главное преимущество в сравнительно малом потреблении энергии и маленьком размере, что удобно для переноса. Микросхема содержит все необходимые параметры для понижения дискретизации сигнала и удобства чтения выходных данных. Цифровая обработка сигнала доминирует в современных устройствах. были предназначены только для передачи аудиосигнала, лишь в последние десятилетия устройство приёмников развилось и усложнилось.

Схемы простейших приёмников

Схема простейшего радиоприёмника для сборки дома была разработана ещё во времена СССР. Тогда, как и сейчас, устройства разделялись на детекторные, прямого усиления, прямого преобразования, супергетеродинного типа, рефлексные, регенеративные и сверхрегенеративные. Наиболее простыми в восприятии и сборке считаются детекторные приёмники, с которых, можно считать, началось развитие радио в начале 20-ог века. Наиболее сложными в построении стали устройства на микросхемах и нескольких транзисторах. Однако если вы разберетесь в одной схеме, другие уже не будут представлять проблемы.

Простой детекторный приёмник

Схема простейшего радиоприёмника содержит в себе две детали: германиевый диод (подойдут Д8 и Д9) и главный телефон с высоким сопротивлением (ТОН1 или ТОН2). Так как в цепи не присутствует колебательный контур, ловить сигналы определённой радиостанции, транслирующиеся в данной местности, он не сможет, но со своей основной задачей справиться.

Для работы понадобится хорошая антенна, которую можно закинуть на дерево, и провод заземления. Для верности его достаточно присоединить к массивному металлическому обломку (например, к ведру) и закопать на несколько сантиметров в землю.

Вариант с колебательным контуром

В прошлую схему для внедрения избирательности можно добавить катушку индуктивности и конденсатор, создав колебательный контур. Теперь при желании можно поймать сигнал конкретной радиостанции и даже усилить его.

Ламповый регенеративный коротковолновой приёмник

Ламповые радиоприёмники, схема которых довольно проста, изготавливаются для приёма сигналов любительских станций на небольших расстояниях - на диапазоны от УКВ (ультракоротковолнового) до ДВ (длинноволнового). На этой схеме работают пальчиковые батарейные лампы. Они лучше всего генерируют на УКВ. А сопротивление анодной нагрузки снимает низкая частота. Все детали приведены на схеме, самодельными можно считать только катушки и дроссель. Если вы хотите принимать телевизионный сигналы, то катушка L2 (EBF11) составляется из 7 витков диаметром 15 мм и провода на 1,5 мм. Для подойдет 5 витков.

Радиоприёмник прямого усиления на двух транзисторах

Схема содержит и двухкаскадный усилитель НЧ - это настраиваемый входной колебательный контур радиоприёмника. Первый каскад - детектор ВЧ модулированного сигнала. Катушка индуктивности намотана в 80 витков проводом ПЭВ-0,25 (от шестого витка идёт отвод снизу по схеме) на ферритовом стержне диаметром 10 мм и длиной 40.

Подобная простая схема радиоприёмника рассчитана на распознавание мощных сигналов от недалёких станций.

Сверхгенеративное устройство на FM-диапазоны

FM-приёмник, собранный по модели Е. Солодовникова, несложен в сборке, но обладает высокой чувствительностью (до 1 мкВ). Такие устройства используют для высокочастотных сигналов (более 1МГЦ) с амплитудной модуляцией. Благодаря сильной положительной обратной связи коэффициент возрастает до бесконечности, и схема переходит в режим генерации. По этой причине происходит самовозбуждение. Чтобы его избежать и использовать приёмник как высокочастотный усилитель, установите уровень коэффициента и, когда дойдет до этого значения, резко снизьте до минимума. Для постоянного мониторинга усиления можно использовать генератор пилообразных импульсов, а можно сделать проще.

На практике нередко в качестве генератора выступает сам усилитель. С помощью фильтров (R6C7), выделяющих сигналы низких частот, ограничивается проход ультразвуковых колебаний на вход последующего каскада УНЧ. Для FM-сигналов 100-108 МГц катушка L1 преобразуется в полувиток с сечением 30 мм и линейной частью 20 мм при диаметре провода 1 мм. А катушка L2 содержит 2-3 витка диаметром 15 мм и провод с сечением 0,7 мм внутри полувитка. Возможно усиление приёмника для сигналов от 87,5 МГц.

Устройство на микросхеме

КВ-радиоприёмник, схема которого была разработана в 70-е годы, сейчас считают прототипом Интернета. Коротковолновые сигналы (3-30 МГц) путешествуют на огромные расстояния. Нетрудно настроить приёмник для прослушивания трансляции в другой стране. За это прототип получил название мирового радио.

Простой КВ-приёмник

Более простая схема радиоприёмника лишена микросхемы. Перекрывает диапазон от 4 до 13 МГц по частоте и до 75 метров по длине. Питание - 9 В от батареи "Крона". В качестве антенны может служить монтажный провод. Приёмник работает на наушники от плейера. Высокочастотный трактат построен на транзисторах VT1 и VT2. За счёт конденсатора С3 возникает положительный обратный заряд, регулируемый резистором R5.

Современные радиоприёмники

Современные аппараты очень похожи на радиоприёмники СССР: они используют ту же антенну, на которой возникают слабые электромагнитные колебания. В антенне появляются высокочастотные колебания от разных радиостанций. Они не используются непосредственно для передачи сигнала, но осуществляют работу последующей цепи. Сейчас такой эффект достигается с помощью полупроводниковых приборов.

Широкое развитие приёмники получили в середине 20-го века и с тех пор непрерывно улучшаются, несмотря на замену их мобильными телефонами, планшетами и телевизорами.

Общее устройство радиоприёмников со времён Попова изменилось незначительно. Можно сказать, что схемы сильно усложнились, добавились микросхемы и транзисторы, стало возможным принимать не только аудиосигнал, но и встраивать проектор. Так приёмники эволюционировали в телевизоры. Сейчас при желании в аппарат можно встроить всё, что душе угодно.

Доказал, что электромагнитная энергия может быть отправлена в космос в виде радиоволн, которые проходят через атмосферу примерно со скоростью света. Это открытие помогло разработать принципы радиосвязи, которыми пользуются и сегодня. Кроме того, ученый доказал, что радиоволны имеют электромагнитную природу, а главная их характеристика - это частота, при которой энергия колеблется между электрическими и магнитными полями. Частота в герцах (Гц) связана с длиной волны λ, представляющей собой расстояние, которое радиоволна проходит в течение одного колебания. Таким образом, получается следующая формула: λ = C/F (где C равна скорости света).

Принципы радиосвязи основаны на передаче несущих информацию радиоволн. Они могут передавать голос или цифровые данные. Для этого радиостанция должна иметь:

Устройство для сбора информации в электрический сигнал (например, микрофон). Этот сигнал называется основной полосой частот в обычном звуковом диапазоне.

Модулятор внесения информации в полосу частот сигнала на выбранной

Передатчик, сигнала, который посылает его на антенну.

Антенну из проводящего электричество стержня определенной длины, которая будет излучать электромагнитную радиоволну.

Усилитель сигнала на стороне приемника.

Демодулятор, который будет способен восстановить первоначальную информацию из принимаемого радиосигнала.

Наконец, устройство для воспроизведения переданной информации (например, громкоговоритель).

Современный принцип радиосвязи был задуман еще в начале прошлого века. В то время радио разработали в основном для передачи голоса и музыки. Но очень скоро появилась возможность использовать принципы радиосвязи для передачи более сложной информации. Например, такой ​​как текст. Это привело к изобретению телеграфа Морзе.

Общим для голоса, музыки или телеграфа является то, что основная информация зашифрована в которые характеризуются амплитудой и частотой (Гц). Люди могут слышать звуки в диапазоне от 30 Гц и примерно до 12 000 Гц. Этот диапазон называется звуковой спектр.

Радиочастотный спектр делится на различные Каждый из которых имеет конкретные характеристики в отношении излучения и затухания в атмосфере. Выделяют описанные в таблице ниже коммуникационные приложения, которые работают в том или ином диапазоне.

LF-диапазон от 30 кГц до 300 кГц В основном используется для воздушных судов, маяков, навигации, а также для передачи информации.
FM-диапазон от 300 кГц до 3000 кГц Используется для цифрового вещания.
ВЧ-диапазон от 3000 кГц до 30000 кГц Этот диапазон широко подходит для средней и дальней наземной радиосвязи.
УКВ-диапазон от 30000 кГц до 300000 кГц УКВ обычно используется для наземного радиовещания и связи морских и воздушных судов
UHF-диапазон от 300000 кГц до 3000000 кГц С помощью этого спектра работают спутниковые системы позиционирования, а также мобильные телефоны.

Сегодня сложно представить, что делало бы человечество без радиосвязи, которая нашла свое применение во многих современных устройствах. Например, принципы радиосвязи и телевидения используются в мобильных телефонах, клавиатуре, GPRS, Wi-Fi, беспроводных компьютерных сетях и так далее.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Принципы действия радиопереда тчика и радиоприёмника

радиопередатчик радиоприемник напряженность

Радиопереда тчик (радиопередающее устройство) - устройства для формирования радиосигналов, предназначенных для передачи информации на расстояние с помощью радиоволн. Формируют радиосигналы с заданными характеристиками, необходимыми для работы конкретных радиотехн. систем, и излучают их в пространство.

Функционально радиопередатчик состоит из следующих частей:

Любая система радиосвязи включает в себя радиопередающие устройства, функции которого включаются в преобразовании энергии постоянного тока источников питания в электромагнитные колебания и управлении этими колебаниями.

Передача энергии с помощью радиосвязи широко используется при управлении автоматическими объектами.

Основными устройствами радиосвязи являются радиопередатчик и радиоприемник. Радиопередатчик предназначен для создания высокочастотного сигнала, некоторые параметры которого (частота, амплитуда или фаза) изменяются по закону, соответствующему передаваемой информации. Частота высокочастотного сигнала называется несущей. Первые радиопередатчики искрового принципа действия на основе катушки Румкорфа были очень просты по конструкции -- излучателем радиоволн служил искровой разряд, а модулятором являлся телеграфный ключ. С помощью такого радиопередатчика информация передавалась в кодированной дискретной форме -- например азбукой Морзе или иным условным сводом сигналов. Недостатками такого радиопередатчика была относительно высокая мощность, требуемая для эффективного излучения радиоволн искровым разрядом, а также очень широкий радиочастотный диапазон излучаемых им волн. В результате одновременная работа нескольких близко расположенных искровых передатчиков была практически невозможной из-за интерференции их сигналов.

Современный радиопередатчик состоит из следующих конструктивных частей:

· задающий генератор частоты (фиксированной или перестраиваемой) несущей волны;

· модулирующее устройство, изменяющее параметры излучаемой волны (амплитуду, частоту, фазу или несколько параметров одновременно) в соответствии с сигналом, который требуется передать (часто задающий генератор и модулятор выполняют в одном блоке -- возбудитель);

· усилитель мощности, который увеличивает мощность сигнала возбудителя до требуемой за счёт внешнего источника энергии;

· устройство согласования, обеспечивающее максимально эффективную передачу мощности усилителя в антенну;

· антенна, обеспечивающая излучение сигнала.

Радиоприёмник -- устройство, соединяемое с антенной и служащее для осуществления радиоприёма .

Радиоприёмник (радиоприёмное устройство) -- устройство для приёма электромагнитных волн радиодиапазона (то есть с длиной волны от нескольких тысяч метров до долей миллиметра) с последующим преобразованием содержащейся в них информации к виду, в котором она могла бы быть использована.

Классификация радиоприёмников

Радиоприёмные устройства делятся по следующим признакам:

· по основному назначению: радиовещательные, телевизионные, связные, пеленгационные, радиолокационные, для систем радиоуправления, измерительные и др.;

· по роду работы: радиотелеграфные, радиотелефонные, фототелеграфные и т.д.;

· по виду модуляции, применяемой в канале связи: амплитудная, частотная, фазовая;

· по диапазону принимаемых волн, согласно рекомендациям МККР:

· мириаметровые волны -- 100-10 км, (3 кГц-30 кГц), СДВ

· километровые волны -- 10-1 км, (30 кГц-300 кГц), ДВ

· гектометровые волны -- 1000--100 м, (300 кГц-3 МГц), СВ

· декаметровые волны -- 100-10 м, (3 МГц-30 МГц), КВ

· метровые волны -- 10-1 м, (30 МГц-300 МГц), УКВ

· дециметровые волны -- 100-10 см, (300 МГц-3 ГГц), ДМВ

· сантиметровые волны -- 10-1 см, (3 ГГц-30 ГГц), СМВ

· миллиметровые волны -- 10-1 мм, (30 ГГц-300 ГГц), ММВ

· приёмник, включающий все широковещательные диапазоны (ДВ, СВ, КВ, УКВ) называют всеволновым .

· по принципу построения приёмного тракта: детекторные, прямого усиления, прямого преобразования,регенеративные, сверхрегенераторы, супергетеродинные с однократным, двукратным или многократным преобразованием частоты;

· по способу обработки сигнала: аналоговые и цифровые;

· по применённой элементной базе: на кристаллическом детекторе, ламповые, транзисторные, на микросхемах;

· по исполнению: автономные и встроенные (в состав др. устройства);

· по месту установки: стационарные, носимые;

· по способу питания: сетевое, автономное или универсальное.

Элемент, с помощью которого осуществляется воздействие на колебания высокой частоты, называется модулятором. Модулятор является неотъемлемой частью радиопередатчика, так как формирует сигнал информации, подлежащий передаче на расстояние. Модулированные высокочастотные колебания усиливаются усилителем мощности и излучаются в окружающее пространство с помощью антенны.

Уменьшение напряжённости поля, а следовательно, и потока энергии, переносимого радиоволной вдоль поверхности Земли (земной волной), обусловлено проводимостью поверхности в этой области. Вдоль проводящей поверхности возникает поток энергии, направленный в проводящую среду и быстро затухающий по мере распространения в ней. Глубина проникновения радиоволны в земную кору определяется толщиной слоя и, следовательно, увеличивается с увеличением длины волны. Поэтому для подземной и подводной радиосвязи используются длинные и сверхдлинные радиоволны. т.к. чем больше число столкновений, тем большая часть энергии, получаемой электроном из волн, переходит в тепло. Поэтому поглощение больше в ниж. областях ионосферы, где v больше, т.к. выше плотность газа. С увеличением частоты поглощение уменьшается. Короткие волны испытывают слабое поглощение и распространяются на большие расстояния. По этому короткие волны используются для передачи

Короткие волны (3-30 МГц)так же в результате их отражения от ионосферы возможна связь как на малых, так и на больших расстояниях при значительно меньшем уровне мощности передатчика и гораздо более простых антеннах, чем в более низкочастотных диапазонах.

Размещено на Allbest.ru

...

Подобные документы

    Системы передачи информации с помощью радиотехнических и радиоэлектронных приборов. Понятие, классификация радиоволн, особенности их распространения и диапазон. Факторы, влияющие на дальность и качество радиоволн. Рефракция и интерференция радиоволн.

    реферат , добавлен 27.03.2009

    Радиопередающие устройства, их назначение и принцип действия. Разработка структурной схемы радиопередатчика, определение его элементной базы. Электрический расчет и определение потребляемой мощности радиопередатчика. Охрана труда при работе с устройством.

    курсовая работа , добавлен 11.01.2013

    Основные понятия и классификация приборов для измерения напряженности электромагнитного поля и помех. Измерение напряженности электромагнитного поля. Метод эталонной антенны. Метод сравнения. Измерительные приемники и измерители напряженности поля.

    реферат , добавлен 23.01.2009

    Радиоволны, распространяющиеся вдоль земной поверхности от радиопередатчика, до приемника, без использования верхних слоев атмосферы. Электромагнитные волны с частотами, использующиеся в традиционной радиосвязи. Преимущества работы на коротких волнах.

    презентация , добавлен 13.03.2015

    Структурная схема радиопередатчика подвижной связи с угловой модуляцией. Расчет полосового фильтра, опорного (кварцевого) генератора, ограничителя амплитуд, интегратора. Электрический расчет фазового модулятора. Принципиальная схема радиопередатчика.

    курсовая работа , добавлен 04.05.2013

    Принципы выбора необходимого числа транзисторов и каскадов и их энергетический расчёт. Составление структурной и электрической принципиальной схем радиопередатчика. Расчёт умножителя частоты, LC-автогенератора с параметрической стабилизацией частоты.

    курсовая работа , добавлен 26.05.2014

    Назначение радиоприемников для приема и воспроизведения аналоговых и цифровых сигналов. Классификация приемных устройств по принципу действия. Построение приемников УКВ-диапазона. Схема супергетеродинного приемника. Расчет смесителя УКВ-радиоприемника.

    дипломная работа , добавлен 05.06.2012

    Структурная схема устройства. Миниатюрный микромощный радиопередатчик: классификация по назначению; выбор номенклатуры задаваемых показателей надежности; установление критериев отказов и предельных состояний. Расчет показателей ремонтопригодности.

    курсовая работа , добавлен 04.03.2011

    Классификация источников индустриальных радиопомех. Среда их распространения. Подавление индустриальных радиопомех. Проявление их в радиопередатчике. Создание линиями передач и их оборудованием наибольшей напряженности поля индустриальных радиопомех.

    реферат , добавлен 22.10.2009

    Устройство общих схем организации радиосвязи. Характеристика радиосистемы передачи информации, в которой сигналы электросвязи передаются посредством радиоволн в открытом пространстве. Особенности распространения и области применения декаметровых волн.

Радио 1953 №8-9

Как известно, применение ЧМ позволяет ослабить влияние помех на радиоприём.

Атмосферные помехи практически не мешают приёму на УКВ. Помехи, создаваемые другими радиостанциями, также не опасны на диапазоне УКВ, если радиостанции правильно в нём размещены. «Вместимость» УКВ диапазона достаточно велика. Поэтому в его пределах может работать большое число УКВ радиостанций без взаимных помех.

Промышленные помехи сильно сказываются на приёме ДВ и СВ радиостанций и гораздо слабее на приёме УКВ радиостанций. Однако в крупных городах, где уровень этих помех бывает достаточно велик, задача организации качественного радиовещания на УКВ без помех оказывается всё же не столь простой. Источниками помех на УКВ являются различные промышленные установки и особенно автомобильные двигатели. Широкое развитие автотранспорта привело к тому, что в крупных городах влияние этих помех стало очень заметным и на УКВ диапазоне.

Собственные шумы приёмника практически сказываются лишь в приёмниках, обладающих очень высокой чувствительностью.

Как известно, в цепях приёмника всегда возникают небольшие «хаотические» напряжения, обусловленные неравномерным и нерегулярным движением электронов. Так, например, поток электронов, излучаемый катодом электронной лампы, не остаётся абсолютно равномерным, а испытывает незначительные нерегулярные изменения, влияние которых становится заметным при большом усилении. Такие же нерегулярные движения электронов существуют в любом проводнике, даже если он не подключён к источнику электроэнергии.

Хаотические движения электронов создают в проводниках хаотические напряжения, которые в результате многократного усиления чувствительным приёмником проявляются на его выходе как равномерный шум, напоминающий шипение примуса. «Шумящими» элементами приёмника обычно оказываются его входные цепи и первая лампа.

Отметим, что собственные шумы приёмника проявляются лишь в случае приёма очень слабых сигналов при большом усилении. Собственные шумы возникают в приёмнике независимо от того, на каком диапазоне проводится приём.

ПОМЕХИ И АМ

Импульсы помех от электрозажигания автомобильного двигателя следуют друг за другом соответственно вспышкам запальных свечей (рис. 1, а). Нарастание и затухание каждого из импульсов происходят в течение миллионных долей секунды. Воздействуя на приёмник, такие импульсы создают в его контурах переменные напряжения, имеющие затухающий характер; частота этих колебаний равна резонансной частоте контуров.

Рис. 1. а - импульсы помехи, излучаемые системой электрозажигания автомашины; б - импульсы помехи изменяются в приёмнике по форме и продолжительности; в - немодулированные колебания, возбуждаемые радиоволнами принимаемой радиостанции; г - от действия помех принимаемые колебания модулируются как по амплитуде, так и по частоте; д - колебания после ограничителя амплитуды.

Рис. 2. а - токи «гладких» помех; б - немодулированные колебания, возбуждаемые радиоволнами принимаемой радиостанции; в - от действия помех принимаемые колебания модулируются как по амплитуде, так и по частоте; г - колебания после ограничителя амплитуды.

При прохождении импульсов помех через колебательные контуры приёмника форма и продолжительность этих импульсов изменяются (рис. 1, б). Происходит это потому, что установление и затухание электрических колебаний происходят в контурах не мгновенно, а в течение некоторого промежутка времени. Поэтому при возникновении импульса амплитуды напряжения в контурах приёмника нарастают постепенно, а при исчезновении импульса они тоже затухают не сразу (рис. 1, б).

Для упрощения дальнейших рассуждений представим, что принимаемый сигнал немодулирован (рис. 1, в). При этом действие помех на сигнал проявляется как увеличение и уменьшение амплитуды его колебаний в зависимости от того, с каким мгновенным значением напряжение сигнала складывается с напряжением возникшего импульса помехи. Следовательно, принимаемые колебания в этом случае оказываются модулированными по амплитуде; огибающая их «отображает» импульсы помех (рис. 1, г). При детектировании таких колебаний обычным (амплитудным) детектором выделяются низкочастотные напряжения помех. После соответствующего усиления эти напряжения воздействуют на громкоговоритель, который воспроизводит их как трески и щелчки.

Существо описанного процесса не изменяется и в случае действия собственных шумов приёмника. Помехи этого вида (рис. 2, а) называются «гладкими» в отличие от помех импульсных, только что рассмотренных. Воздействуя на принимаемые колебания (рис. 2, б), эти помехи также изменяют их амплитуду (рис. 2, в). После детектирования таких колебаний возникает напряжение звуковой частоты, которое изменяется в соответствии с ходом огибающей.

Отметим следующее важное обстоятельство. Как известно, напряжение низкой частоты, а следовательно, и громкость звука тем больше, чем больше глубина модуляции детектируемых колебаний. Поэтому, чем сильнее (глубже) помехи модулируют принимаемые колебания по сравнению с полезной глубиной модуляции, осуществлённой в передатчике, тем сильнее действие помех.

Ослабить помехи можно, сужая полосу пропускания приёмника. Чем острее резонансная кривая контуров приёмника, тем медленнее происходит нарастание и затухание колебаний в контурах под действием помехи и тем меньше энергия этих колебаний.

ПОМЕХИ И ЧМ

При ЧМ токи звуковой частоты, созданные микрофоном, воздействуют на частоту колебаний токов радиопередатчика. В приёмнике ЧМ из принятых колебаний должны быть выделены токи звуковой частоты, по характеру такие же, как и токи микрофона. Этот процесс также называется детектированием, но осуществляется он с помощью частотного детектора иначе, чем при АМ.

Как известно, при сложении колебаний с различными частотами суммарные колебания всегда имеют частоту, отличающуюся от частоты каждого из слагаемых колебаний. Действие же помех на принимаемый сигнал и есть сложение колебаний с различными частотами, так как частоты помехи и сигнала отличаются друг от друга.

Рис. 3. Схема ограничителя и его амплитудная характеристика

Импульсные помехи, как уже отмечалось, создают затухающие колебания с собственной частотой контуров приёмника. Частота же сигнала практически всегда отличается от частоты колебаний, вызванных помехой, так как она никогда не совпадает точно с собственной частотой контуров приёмника. Различие в частотах колебаний помех и сигнала существует также и при гладких помехах, потому что последние состоят из разных частот, лежащих в полосе пропускания приёмника.

Поэтому помехи изменяют не только амплитуду, но и частоту колебаний принимаемого сигнала (см. рис. 1, г и 2, в). Следовательно, они должны прослушиваться и при ЧМ, так как частотный детектор реагирует на изменение частоты колебаний и потому он должен выделить токи помех.

Итак, действие помех на принимаемый сигнал проявляется в двух формах, причём в случае АМ приходится считаться с одной формой, а в случае ЧМ - с другой В самом деле, обычный амплитудный детектор отвечает на изменения амплитуды принимаемых колебаний, но не отвечает на изменения их частоты. Частотный же детектор, наоборот, должен отвечать на изменения частоты колебаний и не должен реагировать на изменения их амплитуды. Если же детектор будет отвечать на обе формы действия помех, то легко заключить, что влияние помех усилится.

Для того чтобы частотный детектор не реагировал на изменения амплитуд принятых колебаний, последние надо ограничить так, чтобы уничтожить амплитудную модуляцию, создаваемую помехами. Это осуществляется специальным устройством - ограничителем амплитуды. Как видно из рис. 1, д и 2, г, после ограничения получаются колебания, модулированные только по частоте; амплитудная модуляция, вызванная действием помех, устраняется. Таким образом ограничитель уменьшает влияние помех.

В некоторых случаях с той же целью применяется ограничение амплитуды и при приёме АМ радиостанций. Но это ограничение не может быть значительным, так как при сильном ограничении амплитуды принимаемый сигнал искажается. В случае ЧМ, как бы ни было велико ограничение амплитуды, оно не вносит изменений в процесс качания частоты, а следовательно, не искажает сигнала.

Важное значение имеет и отношение напряжений помехи и сигнала. Чем больше амплитуда помехи, тем больше и пределы, в которых помеха может вызвать качание частоты.

Рис. 4. Диаграммы работы ограничителя: а - когда амплитуды напряжения на сеточном контуре малы, лампа работает в режиме усилителя; б - при увеличении напряжения верхушки его отрицательных амплитуд отсекаются; в, г - дальнейшее увеличение напряжения ведёт к ограничению напряжения ни анодном контуре

Иное положение при АМ. При том же соотношении уровней принимаемого сигнала и помех последние будут создавать глубину модуляции, достигающую 50%, и оказывать сильное действие, так как полезная модуляция не может превысить 100%.

ОГРАНИЧИТЕЛЬ АМПЛИТУДЫ

Распространённой схемой ограничителя амплитуды является так называемый сеточный ограничитель (рис. 3). Он включается на выход канала промежуточной частоты приёмника (до ЧМ детектора). Отрицательное смещение на управляющую сетку его лампы подаётся с сопротивления R утечки сетки.

Промежуток сетка - катод лампы ограничителя является как бы диодом, осуществляющим детектирование принятых колебаний. При детектировании возникает сеточный ток, величина которого тем больше, чем больше амплитуда колебаний на сеточном контуре. Полярность выпрямленного напряжения такова, что сетка получает отрицательный потенциал относительно катода.

До тех пор пока напряжение на сеточном контуре ограничителя сравнительно невелико (порядка 1-2 В и менее), лампа работает, как обычный усилитель (рис 4, а), т. е. напряжение на анодном контуре пропорционально напряжению на его сеточном контуре. При увеличении амплитуды подводимого напряжения отрицательное смещение на управляющей сетке возрастает.

Если при этом смещение на сетке увеличится настолько, что рабочая точка на характеристике лампы передвинется к нижнему сгибу, происходит отсечка верхушек отрицательных полупериодов приложенного напряжения (рис. 4, б) и рост выходного напряжения замедляется.

Если же амплитуда напряжения на входе ограничителя достигнет значительной величины (3-4 В и более), то смещение на сетке лампы увеличивается настолько, что рабочая точка смещается влево от нижнего загиба характеристики лампы (рис. 4, в) и при дальнейшем росте входного напряжения амплитуда импульсов анодного тока практически перестаёт увеличиваться (рис. 4, г). Это приводит к тому, что напряжение промежуточной частоты на анодном контуре ограничителя также больше не растёт, т. е. происходит ограничение амплитуды колебаний.

Получающаяся в результате рассмотренного процесса амплитудная характеристика ограничителя изображена на рис. 3. До точки А на этой характеристике выходное напряжение ограничителя возрастает пропорционально входному, так как лампа работает на прямолинейном участке характеристики. На участке АБ кривой уже нет этой пропорциональности, так как рабочая точка приближается к нижнему сгибу характеристики. После точки Б приращение выходного напряжения практически прекращается, несмотря на значительное увеличение входного напряжения Точка Б кривой, соответствующая такому входному напряжению, после которого выходное напряжение практически не увеличивается, называется «порогом ограничения». Очевидно, что ограничитель действует только тогда, когда входное напряжение превышает «порог ограничения».

ЧАСТОТНЫЙ ДЕТЕКТОР

Можно ли принять ЧМ колебания на обычный УКВ приёмник? Оказывается, можно, если расстроить его настолько, чтобы несущая частота ЧМ колебаний оказалась в пределах наклонной части (а не на вершине) резонансной кривой его контуров (Напомним, что резонансная кривая выражает характер изменения величины напряжения, (или тока) в контуре в зависимости от частоты, подводимых колебаний.).

Процесс преобразования ЧМ колебаний в АМ колебания этим способом поясняется рис. 5. Если несущая частота принимаемых колебаний соответствует точке А, находящейся на середине наклонной части резонансной кривой, то при качании частоты амплитуды напряжения на контуре изменяются в пределах от А до Б и до В, Изменения амплитуды высокочастотного напряжения, которые графически отображает огибающая, происходят при этом в некоторых пределах по тому же закону, что и изменения частоты колебаний. Полученные таким способом модулированные по амплитуде колебания далее детектируются обычным амплитудным детектором. Очевидно, что эти колебания остаются модулированными и по частоте, но это не имеет значения, поскольку амплитудный детектор нечувствителен к изменениям частоты.

Указанный простейший способ преобразования АМ колебаний в ЧМ колебания не нашёл широкого применения на практике главным образом потому, что при нем преобразованные колебания оказываются искажёнными: вершины и впадины огибающей «уплощаются» (см. рис. 5). После детектирования форма токов низкой частоты также будет искажённой. Поэтому и громкоговоритель будет воспроизводить принимаемую передачу с искажениями.

Из рис. 5 нетрудно увидеть, что искажения возникают из-за наличия криволинейных участков резонансной кривой, поскольку на этих участках изменения частоты вызывают гораздо меньшие изменения амплитуды, чем на средней части склона резонансной кривой, которая имеет почти прямолинейный участок. Искажения можно уменьшить, если удлинить средний участок резонансной кривой путём ухудшения добротности контура. Но при этом уменьшится наклон резонансной кривой, что приведёт к уменьшению напряжения звуковой частоты на нагрузке детектора. В результате частотный детектор станет менее чувствительным к величине качания частоты.

Одна из широко применяемых на практике схем частотного детектора изображена на рис. 6. Она содержит резонансные контуры L1C1 и L2C2 настроенные на одну частоту, диоды Д1 и Д2, их нагрузочные сопротивления и другие детали.

Ток, выпрямленный диодом Д1 проходит через сопротивления, R1 и R2 и верхнюю половину катушки индуктивности, L2. На сопротивлении R1 возникает выпрямленное напряжение с положительным полюсом в точке А и отрицательным в точке В. Ток, выпрямленный диодом Д2, проходит через сопротивления R2 и R3 и нижнюю половину той же катушки индуктивности; при этом на сопротивлении R2 возникает выпрямленное напряжение с положительным полюсом в заземлённой точке Б и отрицательным в точке В.

Выходными точками схемы детектора являются точки А и Б, поэтому выходное напряжение представляет собой разность напряжений на сопротивлениях R1 и R2, поскольку напряжения на этих сопротивлениях направлены навстречу друг другу.

Если на оба диода действуют напряжения принятого сигнала с одинаковыми амплитудами» одинаковы будут и выпрямленные напряжения на сопротивлениях R1 и R2. Поэтому напряжение между точками А и Б в этом случае равно нулю.

Рис. 5. Преобразование ЧМ колебаний в колебания, модулированные по амплитуде с помощью расстроенного колебательного контура.

Если же на диод Д1 поступит высокочастотное напряжение с амплитудой, превышающей амплитуду напряжения на диоде Д2, то напряжение на сопротивлении R1 превысит напряжение на сопротивлении R2. В таком случае точка А будет иметь положительную полярность относительно точки Б. Если же на диод Д1 поступит напряжение с меньшей амплитудой, чем на диод Д2, то напряжение на R1 окажется меньше, чем на R2. В этом случае точка А будет иметь отрицательную полярность относительно заземлённой точки Б. Следовательно, выходное напряжение может иметь различную полярность в зависимости от соотношения напряжений сигнала на диодах.

Рис. 6. Одна из схем частотного детектора

Теперь нам нужно понять, как в описываемой схеме передаётся напряжение сигнала на диоды. Заметим, что контуры L1C1 и L2C2 связаны между собой двумя способами: индуктивно через взаимоиндукцию между катушками L1 и L2 и непосредственно через конденсатор С3, включённый между верхним концом катушки L1 и средней точкой катушки L2.

Чтобы разобраться в особенностях таких способов связи, надо вспомнить о фазовых соотношениях переменного тока и напряжения в колебательном контуре.

Напомним, что такое фаза напряжения или тока. В широком смысле слова фаза - это определённое состояние в данный момент какого-либо периодически повторяющегося процесса. В электротехнике и радиотехнике фазой называют определённое состояние тока или напряжения, характеризующееся величиной и полярностью колебательного процесса в данный момент времени относительно некоторого исходного значения.

На рис. 7 приведён график синусоидального переменного тока и отмечены его нулевые и амплитудные фазы. Как видно из этого рисунка, соседние нулевая и амплитудная фазы отстоят друг от друга на четверть периода. Фазу часто выражают в угловых величинах (градусах, минутах), пропорциональных долям периода синусоидального переменного тока, считая, что один период изменения тока соответствует углу в 360°, подобно тому как один полный оборот при вращательном движении соответствует углу в 360°.

Рис. 7. Фазы переменного тока

При сравнении переменных токов одинаковой частоты важную роль играет понятие о сдвиге фаз. Если два переменных тока одновременно достигают однозначных амплитудных и нулевых значений, говорят, что эти токи совпадают по фазе, что сдвиг фаз между этими токами равен нулю. Если же одни ток достигает положительных амплитудных значений в те моменты, когда другой ток достигает отрицательных амплитудных значений, говорят, что эти токи находятся в противофазе или сдвиг фаз между ними составляет 180°. Возможны и многие другие случаи сдвига фаз, например, на 45°, 90° и т. д. Угол сдвига фаз принято обозначать греческой буквой φ (фи).

В электрических цепях, содержащих индуктивности или ёмкости, всегда существует сдвиг фаз между напряжением, действующим на цепь, и током, протекающим в цепи. Если цепь содержит только индуктивность, то вследствие действия явления самоиндукции ток отстаёт по фазе на четверть периода (φ = 90°, см. рис. 8, а) от приложенного напряжения; в цепи, содержащей только ёмкость, ток опережает приложенное напряжение на φ = 90° (рис. 8, б); если же цепь содержит только активное сопротивление, ток совпадает по фазе с напряжением (рис. 8, б).

В более сложной цепи - в колебательном контуре - существуют сдвиги фаз между напряжением и током как в каждой ветви контура, так и в цепи, питающей контур, причём сдвиг фаз в последней зависит от частоты колебаний, подводимых к контуру.

Как известно, на резонансной частоте индуктивное сопротивление контура компенсируется его ёмкостным сопротивлением и поэтому контур в целом представляет собой для этой частоты активное сопротивление.

Рис. 8. Напряжения и токи в цепях с индуктивностью (а), с ёмкостью (б) и с активным сопротивлением (в).

На частотах ниже резонансной индуктивное сопротивление уменьшается, а ёмкостное увеличивается. Общее сопротивление цепи, образуемой параллельно соединёнными сопротивлениями, как известно, имеет характер меньшего из них. В данном случае меньшим является индуктивное сопротивление, следовательно, контур, ведёт себя как индуктивность, и в питающей его цепи ток отстаёт по фазе от напряжения.

Нетрудно сделать вывод, что на частотах выше резонансной контур действует как ёмкость и в питающей цепи ток опережает напряжение. Зависимость сдвига фаз от частоты может быть выражена так называемой фазовой характеристикой контура (рис. 9).

Рис. 9. Фазовая характеристика колебательного контура

В двух индуктивно связанных и настроенных на одну частоту контурах существуют более сложные зависимости сдвига фаз между напряжениями и токами в отдельных элементах, а также и между напряжением U1, приложенным к первому контуру, и напряжением U2, возникающим вследствие взаимоиндукции на втором контуре.

Последний случай и представляет для нас практический интерес, так как в частотном детекторе (рис. 6) имеются два контура, настроенных на одну частоту.

Если частота колебаний, подведённых к первому контуру, равна резонансной частоте контуров, то напряжение во втором контуре, возникающее вследствие взаимоиндукции, отстаёт по фазе от напряжения в первом контуре на 90°. Это объясняется тем, что взаимоиндукция действует подобно индуктивности.

Если частота подведённых колебаний, будет ниже резонансной частоты, то напряжение во втором контуре будет больше чем на 90° отставать по Фазе от

напряжения в первом контуре, так как каждый из них действует как индуктивность.

Если же частота подводимых колебаний станет выше резонансной частоты контуров, то напряжение во втором контуре будет меньше чем на 90° отставать по фазе от напряжения в первом контуре. В этом случае каждый контур действует как ёмкость, а это уменьшает общий сдвиг фаз.

Зависимость от частоты сдвига фаз между напряжениями второго (U2) и,первого (U1) контуров показана графически на рис. 10. При определённой величине связи между контурами эта зависимость практически имеет линейный характер при изменении частоты колебаний в пределах полосы пропускания контуров.

Как мы уже говорили, в схеме частотного детектора (рис. 6) энергия из одного контура в другой передаётся не только с помощью индуктивной связи, но и через конденсатор С3. Напряжение, поступающее в контур последним путём, очевидно, подаётся на оба диода, так как схема симметрична по отношению к средней точке катушки L2, а катоды диодов для токов высокой частоты заземлены (катод диода заземлён по высокой частоте через конденсаторы C4 и C5, шунтирующие сопротивления R1 и R2).

На рис. 6 видно, что на каждый диод частотного детектора поступает лишь половина напряжения, наведённого индуктивным путём на катушке L2 второго контура; поскольку аноды диодов подключены к противоположным концам этой катушки, напряжение на аноде одного диода противоположно по фазе напряжению на аноде другого диода.

Рис. 10. Зависимость сдвига фаз между напряжениями в связанных контурах от частоты.

На рис. 11, а показаны составляющие напряжений на каждом диоде для случая, когда частоты приходящих колебаний равны резонансной частоте контуров. Суммарное высокочастотное напряжение на диоде Д1 (кривая 1) определяется сложением напряжения, поступающего с первого контура через непосредственную связь (кривая 3), с отстающим по фазе на 90° напряжением на половине катушки второго контура (кривая 4). Суммарное напряжение на диоде Д2 (кривая 2) определяется сложением напряжения, поступающего через непосредственную связь с первого контура, с напряжением на другой половине катушки второго контура (кривая 5). Из рис. 11, а, видно, что в этом случае амплитуды суммарных напряжений на диодах равны.

Рис. 11. Высокочастотные напряжения на диодах изменяются при качании частоты: а - когда частота поступающих с ограничителя колебаний равна резонансной частоте контуров, суммарные напряжения на диодах одинаковы; б - если частота поступающих колебаний ниже резонансной частоты контуров, амплитуда суммарного напряжения на диоде Д2 превышает амплитуду суммарного напряжения на диоде Д1; в - когда частота поступающих колебаний выше резонансной частоты контуров, амплитуда суммарного напряжения на диоде Д1 превышает амплитуду суммарного напряжения на диоде Д2. Кривые 1 получены путём геометрического сложения кривых 3 и 4, а кривые 2 - путём геометрического сложения кривых 3 и 5.

На рис. 11, б, показаны напряжения для случая, когда частота приходящих колебаний ниже резонансной частоты контуров. Суммарное напряжение на диоде Д1 определяется сложением напряжения, поступающего непосредственно с первого контура (кривая 3), с отстающим более чем на 90° напряжением, наведённым в контуре индуктивным путём (кривая 4); суммарное же напряжение на диоде Д2 (кривая 2) определяется сложением напряжения, поступающего непосредственно с первого контура, с напряжением, наведённым индуктивным путём, но противоположным по фазе (кривая 5). Теперь на диоде Д2 напряжение больше, чем на Д1.

На рис 11, в, показаны напряжения в том случае, когда частота подводимых колебаний выше резонансной частоты контуров. При этом индуктированное напряжение во втором контуре отстаёт от напряжения, поступающего через конденсатор С3, менее чем на 90°. Амплитуды суммарных напряжений на диодах в этом случае также не равны, но напряжение на диоде Д1 больше, чем на диоде Д2.

Итак, при изменении частоты колебаний в контурах изменяется и соотношение напряжений на диодах, причём увеличение напряжения на одном диоде приводит к уменьшению напряжения на другом и наоборот. Как отмечалось выше, это приводит к изменению выходного напряжения между точками А и В частотного детектора (рис. 6).

Зависимость выходного напряжения частотного детектора от частоты подведённых к нему колебаний выражается характеристикой, показанной на рис. 12. Из неё видно, что когда частота принимаемых ЧМ колебаний изменяется по закону, «отображающему» модулирующее напряжение, по такому же закону изменяется и напряжение на выходе частотного детектора.

Рис. 12. Характеристика частотного детектора.

Характеристика описанного детектора ЧМ колебаний имеет большой линейный участок, что позволяет детектировать ЧМ колебания без искажений. Большой угол наклона характеристики свидетельствует о высокой чувствительности частотного детектора, т. е. на его нагрузке можно получить достаточно большие напряжения звуковой частоты.

ДРУГИЕ ОСОБЕННОСТИ ЧМ ПРИЁМНИКА

Входная часть ЧМ приёмника не отличается от входной части супергетеродинного УКВ приёмника, предназначенного для приёма АМ колебаний. Эта часть, а также и гетеродин приёмника имеют много общего с входной частью телевизионного приёмника, выполненного по супергетеродинной схеме. Существенной особенностью ЧМ приёмника является широкая полоса пропускания по промежуточной частоте.

При качании частоты принимаемого сигнала в пределах +-75 кГц усилитель промежуточной частоты должен иметь полосу пропускания не менее 150 кГц. Практически приходится делать полосу шириной около 200 кГц, так как нужно учитывать возможность ухода частоты гетеродина и неточность настройки приёмника.

С первого взгляда может показаться, что широкая полоса пропускания по промежуточной частоте является недостатком приёмника, поскольку для ослабления действия помех в АМ приёмнике обычно стремятся сузить полосу пропускания. Однако это справедливо только при приёме АМ колебаний. Ослабление влияния помех при ЧМ, как мы видели, достигается не за счёт сужения полосы, а другим путём. Поэтому широкополосность усилителя промежуточной частоты ЧМ приёмника с этой точки зрения не является его недостатком.

Применение ограничителя амплитуды в ЧМ приёмнике приводит к тому, что уровень напряжения на входе частотного детектора не зависит от напряжения на входе приёмника. Поэтому ЧМ приёмник, если он даже не имеет автоматической регулировки усиления (АРУ), будет воспроизводить передачу одинаково громко, независимо от того, находится ли он вблизи передатчика или удалён от него.

Уровень громкости в ЧМ приёмнике определяется лишь пределами качания частоты при модуляции. Однако это справедливо только при условии, что уровень сигнала превышает порог ограничения.

А. Князев, г. Москва.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows