Составь для робота алгоритм из нескольких шагов. Исполнитель Робот. Вспомогательные алгоритмы

Составь для робота алгоритм из нескольких шагов. Исполнитель Робот. Вспомогательные алгоритмы

24.04.2019

Исполнитель Робот. Вспомогательные алгоритмы (2ч)

Цель: ввести понятие основного и вспомогательного алгоритма; объяснить правила использования вспомогательного алгоритма; разобрать примеры алгоритмов с использованием вспомогательного. Отработать практические навыки построения алгоритмов методом последовательного уточнения.

План урока

1.Ввод новых терминов (основного и вспомогательного алгоритма, вызова) и объяснение новых понятий.

2.Разбор примеров решения задач с применением вспомогательного алгоритма.

3. Практическая работа

При решении некоторых задач удобно разбить их на более мелкие подзадачи, каждую из которых можно оформит как самостоятельный алгоритм. В этом случае сначала составляется так называемый основной алгоритм, в котором для решения подзадач используются вызовы вспомогательных алгоритмов, которые дописываются позднее. Такой способ решения называется методом последовательного уточнения. Он позволяет работать над проектом группе программистов, каждый при этом решает свою подзадачу.

В процессе решения задачи каждый вспомогательный алгоритм может при необходимости быть разбит на более мелкие вспомогательные алгоритмы.

Команда выполнения вспомогательного алгоритма называется вызовом и записывается в теле основного алгоритма.

Один и тот же алгоритм может рассматриваться как основной и вспомогательный по отношению к другим алгоритмам. В алгоритмическом языке сначала записывается основной алгоритм, ниже подряд записываются вспомогательные.

Задача1:

Робот находится в верхнем левом углу поля. Стен и закрашенных клеток нет. Составить алгоритм, с использованием вспомогательного, рисующий четыре крестика на одной горизонтали. Конечное положение Робота может быть произвольным.

Решение

Разбор на доске:

Задача2. Робот находится в верхнем левом углу поля. Стен и закрашенных клеток нет. Составьте алгоритм, который закрашивает в шахматном порядке квадрат 8 х 8. Конечное положение Робота может быть произвольным.

Практическая работа на ПК «Решение задачи с использованием вспомогательных алгоритмов»

Задача1 . Робот находится в нижнем левом углу поля. Стен и закрашенных клеток нет. Составьте алгоритм, который закрашивает 6 вертикальных полос одинаковой длины в 6 клеток. Конечное положение Робота может быть произвольным.

Задача2 . Используя вспомогательные, составьте алгоритм для закрашивания клеток, образующих число 1212.

Домашнее задание : Придумайте алгоритм, рисующий следующее изображение: Для решения задачи примените два вспомогательных алгоритма.

Исполнитель Робот действует на прямоугольном клетчатом поле. Между некоторыми клетками поля могут быть расположены стены. Некоторые клетки могут быть закрашены (рис. 3.11).

Рис. 3.11

Робот занимает ровно одну клетку поля. По командам вверх, вниз, влево и вправо Робот перемещается в соседнюю клетку в указанном направлении. Если на пути оказывается стена, то происходит отказ - выдается сообщение о невозможности выполнить очередную команду.

По команде закрасить Робот закрашивает клетку, в которой стоит. Если клетка уже была закрашена, то она закрасится повторно, хотя никаких видимых изменений не произойдет.

Важно помнить, что Робот может исполнять только правильно записанные команды. Например, если вместо команды вниз написать внис, то Робот эту запись не поймет и сразу же сообщит об ошибке.

  • Вспомните, как называются ошибки в записи команд. Каких еще ошибок следует избегать при разработке алгоритмов?

Пример алгоритма управления Роботом

Напишем программу, исполняя которую Робот нарисует на клетчатом поле меандр из пяти витков (рис. 3.12).

Рис. 3.12

Программа может иметь вид:

Здесь мы использовали конструкцию повторения, так как совершенно одинаковые фрагменты повторяются на рисунке 5 раз. При записи тела цикла мы в одной строке через точку с запятой записывали несколько команд.

Если оформить процедуру виток, то основная программа окажется совсем короткой.

  • Предложите свой вариант программы для рисования меандра.

Цикл «пока»

А теперь попробуем написать программу для решения очень простой задачи: закрасить все клетки справа от Робота (рис. 3.13).

Рис. 3.13

Правда, сколько именно клеток следует закрасить, не уточнено. Известно только, что:

  1. справа на неизвестном расстоянии есть стена;
  2. клетки нужно красить, пока Робот не подойдет к стене вплотную.

Воспользуемся тем, что Робот может анализировать и сообщать обстановку вокруг себя, проверяя следующие простые условия:

    справа свободно
    слева свободно
    сверху свободно
    снизу свободно
    закрашено

Ясно, что пока будет выполняться условие справа свободно , нужно выполнять команды:

    вправо
    закрась

Для оформления таких последовательностей действий используется специальная конструкция алгоритмического языка - цикл «пока».

В общем виде цикл «пока» записывается так:

Блок-схема цикла «пока» имеет вид, показанный на рис. 3.14.

Рис. 3.14

При выполнении этого цикла исполнитель повторяет следующие действия:

  1. проверяет записанное после служебного слова ПОКА условие;
  2. если условие не соблюдается (Робот ответил «Нет»), то выполнение цикла прекращается, и Робот начинает выполнять команды, записанные после служебного слова КОНЕЦ. Если же условие соблюдается (Робот ответил «Да»), то Робот выполняет тело цикла и снова проверяет условие.

Напишем программу, исполняя которую Робот нарисует на клетчатом поле меандр (рис. 3.12), число витков которого зависит от положения правой стены.

Виток меандра умещается на клетчатом поле, если между клеткой, занимаемой Роботом, и правой стеной есть 1 клетка.

В зависимости от исходного положения Робота тело цикла пока может не выполниться ни разу. Такая ситуация не является отказом.

  • Подумайте, каким должно быть исходное положение Робота в программе рисования меандра, чтобы тело цикла не выполнилось ни разу.

Из-за логических ошибок, допущенных при составлении алгоритма, может возникнуть ситуация зацикливания. Это значит, что условие будет всегда соблюдаться, и выполнение цикла «пока» никогда не завершится.

Рассмотрим следующий пример:

  • Что будет происходить, если справа от Робота нет стены?

Условие в цикле «пока» проверяется только перед выполнением тела цикла, но не в процессе его выполнения.

Простые и составные условия

В цикле «пока» могут использоваться не только простые, но и составные условия.

Составное условие образуется из одного или нескольких простых условий и служебных слов И, ИЛИ, НЕ.

Рассмотрим составное условие А И В, где А, В - простые условия. Условие А И В выполнено, когда выполнено каждое из двух входящих в него простых условий.

Пусть А - простое условие сверху свободно, В - простое условие справа свободно. Рассмотрим подробно проверку составного условия А И В - сверху свободно и справа свободно (рис. 3.15).

Рис. 3.15

В случае а выполнено условие А (сверху свободно), выполнено условие В (справа свободно). Составное условие АИВ (сверху свободно И справа свободно) также выполнено.

В случае б выполнено условие А, условие В не выполнено. Составное условие А И В не выполнено.

В случае в не выполнено условие А, условие В выполнено. Составное условие А И В не выполнено.

В случае г не выполнено условие А, не выполнено условие В. Составное условие А И В не выполнено.

  • Нужно ли проверять условие В в составном условии А И В, если условие А не выполнено?

Составное условие А ИЛИ В выполнено, когда выполнено хотя бы одно из двух входящих в него простых условий.

Рассмотрим проверку составного условия А ИЛИ В - сверху свободно ИЛИ справа свободно (см. рис. 3.15).

В случае а выполнено условие А (сверху свободно), выполнено условие В (справа свободно). Составное условие А ИЛИ В (сверху свободно ИЛИ справа свободно) выполнено.

В случае б выполнено условие А, не выполнено условие В. Составное условие А ИЛИ В выполнено.

В случае в не выполнено условие А, выполнено условие В. Составное условие А ИЛИ В выполнено.

В случае г не выполнено условие А, не выполнено условие В. Составное условие А ИЛИ В не выполнено.

  • Нужно ли проверять условие В в составном условии А ИЛИ В, если условие А выполнено?

Составное условие НЕ А выполнено, когда не выполнено условие А.

Пусть А - простое условие закрашено. Рассмотрим проверку составного условия НЕ А (рис. 3.16).

Рис. 3.16

В случае а условие А выполнено, условие НЕ А (НЕ закрашено) не выполнено.

В случае б условие А не выполнено, условие НЕ А (НЕ закрашено) выполнено.

Рассмотрим пример использования составного условия.

Известно, что Робот находится где-то в вертикальном коридоре. Ни одна из клеток коридора не закрашена.

Составим алгоритм, под управлением которого Робот закрасит все клетки этого коридора и вернется в исходное положение.

Так как Роботу предстоит закрасить только клетки коридора, мы должны «научить» его их распознавать. Чем же клетки коридора отличаются от всех прочих клеток поля? Из рис. 3.17 видно, что каждая клетка коридора слева и справа ограничена стеной.

Рис. 3.17

Робот находится в коридоре, пока слева стена и справа стена. В СКИ нашего исполнителя такие условия не предусмотрены. Там есть противоположные условия: слева свободно, справа свободно. Используем служебное слово НЕ:

Нужное условие примет вид:

Представим план действий Робота укрупненными шагами (рис. 3.18).

Рис. 3.18

Для простоты предположим, что над коридором и под коридором есть хотя бы по одной клетке без стен (иначе придется делать дополнительные проверки сверху свободно, снизу свободно).

1. Чтобы закрасить все клетки коридора, находящиеся выше Робота, прикажем Роботу шагнуть вверх и выполним цикл «пока»:

Под управлением этого алгоритма Робот закрасит все клетки коридора, находящиеся выше от него, и окажется на клетке рядом с верхней границей коридора.

  • При каком исходном положении Робота этот цикл не выполнится ни разу?

2. Командой вниз вернем Робота в коридор. Наша задача - вернуть его в исходную точку. Эта точка имеет единственный отличительный признак - она не закрашена. Поэтому пока занимаемая Роботом клетка оказывается закрашенной, будем перемещать его вниз:

Под управлением этого алгоритма Робот окажется в исходной клетке.

3. Выполнив команду вниз , Робот пройдет исходную клетку и займет первую клетку, расположенную ниже исходной. Теперь можно закрашивать клетки коридора, расположенные ниже исходной:

  • Возможна ли ситуация, что этот цикл не выполнится ни разу?

4. Так как, выполнив предыдущий алгоритм, Робот окажется под коридором, командой вверх вернем его в коридор. Возвращение в исходную точку обеспечивается алгоритмом:

5. По команде закрась Робот закрашивает исходную точку.

Полностью программа управления Роботом выглядит так:

Команда ветвления

Вспомним, что форма организации действий, при которой в зависимости от выполнения или невыполнения некоторого условия совершается либо одна, либо другая последовательность действий, называется ветвлением.

Графически ветвление можно представить, как показано на рис. 3.19.

Рис. 3.19

Для организации ветвлений в СКИ Робота предусмотрена специальная команда ЕСЛИ. Ее общий вид:

Служебные слова ЕСЛИ, ТО, ИНАЧЕ имеют обычный смысл.

Между ТО и ИНАЧЕ записываются одно или несколько действий, составляющих серию действий 1. Между ИНАЧЕ и КОНЕЦ помещается серия действий 2. Служебное слово ИНАЧЕ вместе с серией действий 2 может отсутствовать (сокращенная форма ветвления).

Пусть теперь Робот находится в горизонтальном коридоре, нижняя граница которого сплошная, а в верхней имеются выходы (рис. 3.20). Требуется провести Робота через весь коридор и закрасить клетки коридора, не имеющие верхних границ.

Рис. 3.20

Единственным признаком коридора является наличие нижней границы, т. е. выполнение условия НЕ снизу свободно. Если при этом выполняется условие сверху свободно, то клетку нужно закрасить, иначе - красить не надо. Аналогично случаю закрашивания вертикального коридора, предполагаем, что слева и справа от горизонтального коридора есть клетки. Блок-схема алгоритма имеет вид, показанный на рис. 3.21.

Рис. 3.21

Программа:

Коротко о главном

Исполнитель Робот действует на прямоугольном клетчатом поле. Между некоторыми клетками поля могут быть расположены стены. Некоторые клетки могут быть закрашены. Робот занимает ровно одну клетку поля.

Система команд исполнителя представлена в следующей таблице:

Робот может выполнять цикл «повторить n раз».

Если заранее не известно, сколько именно раз следует выполнить тело цикла, используется специальная конструкция алгоритмического языка - цикл «пока».

В цикле «пока» могут использоваться не только простые, но и составные условия. Составное условие образуется из одного или нескольких простых условий и служебных слов И, ИЛИ, НЕ.

Для организации ветвлений в СКИ Робота предусмотрена специальная команда ЕСЛИ.

Вопросы и задания

| §2.3 Конструирование алгоритмов

Урок 15
§2.3 Конструирование алгоритмов

2.3.1. Последовательное построение алгоритма

Существуют различные методы конструирования (разработки, построения) алгоритмов. Мы познакомимся с одним из них - методом последовательного построения (уточнения) алгоритма. Иначе он называется методом разработки «сверху вниз», нисходящим методом или методом пошаговой детализации.

Процесс последовательного построения алгоритма выглядит следующим образом.

На первом шаге мы считаем, что перед нами совершенный исполнитель, который «всё знает и всё умеет». Поэтому достаточно определить исходные данные и результаты алгоритма, а сам алгоритм представить в виде единого предписания - постановки задачи (рис. 2.4).

Рис. 2.4. Линейный алгоритм, являющийся результатом первого этапа детализации задачи


Если исполнитель не обучен исполнять заданное предписание, то необходимо представить это предписание в виде совокупности более простых предписаний (команд). Для этого:

Задачу разбивают на несколько частей, каждая из которых проще всей задачи;
решение каждой части задачи формулируют в отдельной команде, которая также может выходить за рамки системы команд исполнителя;
при наличии в алгоритме предписаний, выходящих за пределы возможностей исполнителя, такие предписания вновь представляются в виде совокупности ещё более простых предписаний.

Процесс продолжается до тех пор, пока все предписания не будут понятны исполнителю.

Объединяя полученные предписания в единую совокупность выполняемых в определённой последовательности команд, получаем требуемый алгоритм решения исходной задачи.

2.3.2. Разработка алгоритма методом последовательного уточнения для исполнителя Робот

Вы уже знакомы с исполнителем Робот. Он действует на клетчатом поле, между клетками которого могут быть стены.

Система команд исполнителя Робот:

В одном условии можно использовать несколько команд, применяя логические операции И, ИЛИ, НЕ.

Известно, что Робот находится где-то в горизонтальном коридоре. Ни одна из клеток коридора не закрашена.

Составим алгоритм, под управлением которого Робот закрасит все клетки этого коридора и вернётся в исходное положение.

Представим план действий Робота следующими укрупнёнными шагами (модулями):

Детализируем каждый из пяти модулей.

1. Чтобы закрасить все клетки коридора, находящиеся левее Робота, прикажем Роботу шагнуть влево и выполнить цикл - ПОКА:

влево
нц пока сверху стена и снизу стена закрасить; влево
кц

Под управлением этого алгоритма Робот закрасит все клетки коридора, находящиеся левее от него, и окажется в клетке левее коридора.

2. Командой вправо вернём Робота в коридор. Наша задача - вернуть Робота в исходную клетку. Эта клетка - первая незакрашенная клетка, находящаяся правее Робота. Поэтому пока занимаемая Роботом клетка оказывается закрашенной, будем перемещать его вправо.

вправо
нц пока клетка закрашена вправо
кц

Под управлением этого алгоритма Робот окажется в исходной клетке.

3. Выполнив команду вправо, Робот пройдёт исходную клетку и займёт клетку правее исходной. Теперь можно закрашивать клетки коридора, расположенные правее исходной.

вправо
нц пока сверху стена и снизу стена закрасить; вправо
кц

4. Так как, выполнив предыдущий алгоритм, Робот оказался правее коридора, командой влево вернём его в коридор. Возвращение в исходную клетку обеспечивается алгоритмом:

влево
нц пока клетка закрашена влево
кц

5. По команде закрасить Робот закрашивает исходную клетку. Полностью программа управления Роботом выглядит так:


2.3.3. Вспомогательные алгоритмы

При построении новых алгоритмов нередко возникают ситуации, когда в разных местах алгоритма необходимо выполнение одной и той же последовательности шагов обработки данных. Для такой последовательности шагов создают отдельный алгоритм, называемый вспомогательным. В качестве вспомогательных могут использоваться алгоритмы, ранее разработанные для решения других задач.

Вспомогательный алгоритм - алгоритм, целиком используемый в составе другого алгоритма.

Пример 1 . В среде КуМир составим алгоритм для исполнителя Робот, под управлением которого он нарисует узор:

Начальное положение Робота отмечено звёздочкой. В алгоритме использован вспомогательный алгоритм фигура.

При представлении алгоритмов с помощью блок-схем для обозначения команды вызова вспомогательного алгоритма используется блок «предопределённый процесс» (рис. 2.5), внутри которого записывается название (имя) вспомогательного алгоритма, после которого в скобках перечисляются параметры - входные данные и результаты.

Рис. 2.5. Блок «предопределённый процесс»


Вспомогательный алгоритм делает структуру алгоритма более понятной.

Пример 2 . Вспомним алгоритм вычисления степени с натуральным показателем у = а n . Соответствующая блок-схема:

Степень с целым показателем у = а х, где х - целое число, а ≠ 0 вычисляется так:

В приведённой записи дважды фигурирует вычисление степени с натуральным показателем. Поэтому в алгоритм вычисления степени с целым показателем можно включить вызов вспомогательного алгоритма вычисления степени с натуральным показателем. Соответствующая блок-схема:

Алгоритм, представленный на блок-схеме, является основным по отношению к вызываемому в нём вспомогательному алгоритму.

Параметрами используемого вспомогательного алгоритма являются величины а, n, у. Это формальные параметры, они используются при описании алгоритма. При конкретном обращении к вспомогательному алгоритму формальные параметры заменяются фактическими параметрами, т. е. именно теми величинами, для которых будет исполнен вспомогательный алгоритм. Типы, количество и порядок следования формальных и фактических параметров должны совпадать.

Команда вызова вспомогательного алгоритма исполняется следующим образом (рис. 2.6):

1) формальные входные данные вспомогательного алгоритма заменяются значениями фактических входных данных, указанных в команде вызова вспомогательного алгоритма;
2) для заданных входных данных исполняются команды вспомогательного алгоритма;
3) полученные результаты присваиваются переменным с именами фактических результатов;
4) осуществляется переход к следующей команде основного алгоритма.

Рис. 2.6. Схема выполнения команды вызова вспомогательного алгоритма


Алгоритм, в котором прямо или косвенно содержится ссылка на него же как на вспомогательный алгоритм, называют рекурсивным.

Рассмотрим несколько примеров рекурсивных алгоритмов.

Пример 3 . Алгоритм вычисления степени с натуральным показателем п для любого вещественного числа а можно представить в виде рекурсивного:

Число а в степени n (n-я степень числа а) есть не что иное, как произведение а n-1 а; в свою очередь, а n-1 = а n-2 а и т. д.

Пример 4 . Рекурсивный алгоритм положен в основу эффективного решения головоломки «Ханойская башня».

Интерактивная игра «Ханойские башни» (195747) поможет вам вспомнить условие и алгоритм решения головоломки (http://sc.edu.ru/).

Пример 5 . Рассмотрим алгоритм построения геометрической фигуры, которая называется снежинкой Коха. Шаг процедуры построения состоит в замене средней трети каждого из имеющихся отрезков двумя новыми такой же длины, как показано на рисунке:

С каждым шагом фигура становится всё причудливее. Граница снежинки Коха - положение кривой после выполнения бесконечного числа шагов.

САМОЕ ГЛАВНОЕ

Один из основных методов конструирования алгоритмов - метод последовательного построения алгоритма . Его суть состоит в том, что: исходная задача разбивается на несколько частей, каждая из которых проще всей задачи, и решение каждой части формулируется в отдельной команде; если получаются команды, выходящие за пределы возможностей исполнителя, то они представляются в виде совокупности ещё более простых предписаний. Процесс продолжается до тех пор, пока все предписания не будут понятны исполнителю.

Вспомогательный алгоритм - алгоритм, целиком используемый в составе другого алгоритма.

Алгоритм, в котором прямо или косвенно содержится ссылка на него же как на вспомогательный алгоритм, называют рекурсивным .

Вопросы и задания

1. Ознакомьтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Дополняет ли презентация информацию, содержащуюся в тексте параграфа?

2. Почему при решении сложной задачи затруднительно сразу конкретизировать все необходимые действия? Обсудите этот вопрос в группе.

3. В чём заключается метод последовательного уточнения при построении алгоритма?

4. Какая связь между методом последовательного построения алгоритма и такими процессами, как написание сочинения или подготовка к многодневному туристическому походу?

5. Известен рост каждого из n учеников 9А класса и m учеников 9Б класса. Опишите укрупнёнными блоками алгоритм сравнения среднего роста учеников этих классов.

6. В ряду из десяти клеток правее Робота некоторые клетки закрашены. Последняя закрашенная клетка может примыкать к стене. Составьте алгоритм, который закрашивает клетки выше и ниже каждой закрашенной клетки. Проверьте работу алгоритма в следующих случаях:

7. Для чего нужны вспомогательные алгоритмы?

8. Опишите процесс выполнения команды вызова вспомогательного алгоритма в основном алгоритме.

9. Сталкивались ли вы с идеей формальных и фактических параметров при изучении математики и физики? Приведите пример.

10. Какие алгоритмы называют рекурсивными? Приведите пример рекурсии из жизни.

11. Составьте алгоритмы, под управлением которых Робот закрасит указанные клетки. При необходимости используйте вспомогательный алгоритм.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows